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Abstract

A stochastic resonance e/ect, under the form of a noise-improved performance, is shown possible for an optimal detector.
This is established with a nonlinear signal–noise mixture where the noise acts on the phase of a periodic signal. The optimal
detector, achieving minimal probability of detection error, is explicitly derived. Conditions are exhibited where this minimal
probability of error is reduced when the noise level is raised. These results contribute a new step in the investigation of
stochastic resonance and in the inventory of its potentialities for nonlinear signal processing.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A nonlinear phenomenon, known as stochastic res-
onance, establishes that the transmission or the de-
tectability of a signal buried in noise and processed by
certain nonlinear systems, can be improved by rais-
ing the level of noise [4,8,16]. This counterintuitive
phenomenon has gradually been reported for an in-
creasing variety of signals, noises and nonlinear sys-
tems. It has been quanti;ed by various measures such
as signal-to-noise ratio [9,17], cross-correlation [5,6],
mutual information [1,2], detection statistics [7,10],
or other speci;c measures [13,18,19], all being shown
improvable by raising the level of the noise, in def-
inite conditions. These ;ndings, progressively accu-
mulating, have shed a new light on the status of noise
in relation to nonlinear signal processing. Yet, so far,
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stochastic resonance has been shown possible only
for suboptimal systems or detectors [3,12,20]. In each
case where stochastic resonance was demonstrated, for
a given measure of performance, noise improvement
was possible only for the performance of suboptimal
detectors or transmission systems; and if the optimal
device was calculated, then its performance would un-
dergo a monotonic degradation when raising the level
of noise. Here, we show that noise improvement is
also possible for the performance of an optimal detec-
tor, adding a new step in the development of stochas-
tic resonance and in the inventory of its potentialities
for nonlinear signal processing.

We place ourselves in the standard framework of
statistical detection theory. One among two known
signals s0(t) or s1(t) may be mixed to a noise �(t),
the resulting mixture forming the signal x(t). This sig-
nal x(t) is observed and it is to be decided whether
x(t) is formed by s0(t) mixed to the noise �(t) (hy-
pothesis H0), or by s1(t) mixed to the noise �(t) (hy-
pothesis H1). For this detection problem, we de;ne
the optimal detector as the one that minimizes the

0165-1684/03/$ - see front matter ? 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0165-1684(02)00495-4

mailto:chapeau@univ-angers.fr


666 F. Chapeau-Blondeau / Signal Processing 83 (2003) 665–670

probability of detection error Per, but a similar demon-
stration could be obtained with an optimal detector in
the sense of Neyman–Pearson or of a Bayes cost func-
tion. The level of the noise �(t) is quanti;ed by its
rms amplitude ��. The common expectation is that, as
�� grows, the performance Per of the optimal detector
degrades. This expectation indeed prevails in standard
detection problems, for instance for additive mixture
with Gaussian noise. Yet, no theoretical proof guar-
antees that this expectation is true in generality. For
nonlinear mixture with non-Gaussian noise, theoreti-
cal guarantees fail to be obtainable in generality. The
fact is that this expectation is not generally true. We
shall exhibit, for a nonlinear signal–noise mixture, an
optimal detector whose performance can be improved
by means of an increase in the level of noise.

2. Optimal detection theory

We brieGy review the key elements of optimal de-
tection theory, to make it clear, in a self-contained
way, that they are valid in generality and especially
for the detection problem with nonlinear signal-noise
mixture we shall consider. Detailed expositions and
applications can be found in [15,11].

For the general detection problem stated in Section
1, we further specify that hypothesis H0 occurs with
prior probability P0, and H1 with prior probability
P1 =1−P0. The observed signal x(t) is sampled at N
distinct times tj for j=1 to N , so as to provide N data
points xj= x(tj). A given detector will decide hypoth-
esis H0 whenever the observation x=(x1; : : : xN ) falls
in the region R0 of RN , and it will decide H1 when
x falls in the complementary region R1 of RN . In do-
ing so, the detector achieves an overall probability of
detection error Per expressable as

Per = P1

∫
R0

p(x|H1) dx+ P0

∫
R1

p(x|H0) dx; (1)

where p(x|H1) (respectively, p(x|H0)) is the proba-
bility density for observing x when H1 (respectively,
H0) holds, and the notation

∫
: dx stands for the

N -dimensional integral
∫
: : :

∫
: dx1 : : : dxN .

Since R0 and R1 are complementary inRN , one has∫
R0

p(x|H1) dx= 1 −
∫
R1

p(x|H1) dx; (2)

which substituted in Eq. (1) yields

Per = P1 +
∫
R1

[P0p(x|H0) − P1p(x|H1)] dx: (3)

The detector that minimizes Per can be obtained by
making the integral over R1 in the right-hand side of
Eq. (3) the more negative possible. This is realized
by including into R1 all and only those points x for
which the integrand P0p(x|H0) − P1p(x|H1) is neg-
ative. This gives the optimal detector, also known as
the maximum a posteriori probability (MAP) detec-
tor, which implements the test

H1

L(x) ?
P0

P1
;

H0

(4)

through the use of the likelihood ratio

L(x) =
p(x|H1)
p(x|H0)

: (5)

When the values accessible to the observation x,
instead of being continuously distributed, are re-
stricted to a set of discrete values xn, the same
formalism applies with probability densities de;ned
in terms of Dirac delta functions as p(x|Hi) =∑

n Pr{xn|Hi} �(x−xn), i=0; 1, and in this case the
likelihood ratio is de;ned only at these points xn as

L(xn) =
Pr{xn|H1}
Pr{xn|H0} : (6)

The minimal Per reached by the MAP detector of
Eq. (4) is expressable as

Per =
∫
RN

min[P0p(x|H0); P1p(x|H1)] dx: (7)

Since min(a; b) = (a + b − |a − b|)=2, the minimal
probability of error of Eq. (7) reduces to

Per =
1
2
− 1

2

∫
RN

|P1p(x|H1) − P0p(x|H0)| dx: (8)

3. Nonlinear signal–noise mixture

We now introduce a speci;c detection problem,
amenable to the general treatment of Section 2. We
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consider a periodic wavew(t) of period unity. A possi-
bility could be w(t)=sin(2�t), but w(t) will be further
speci;ed later. One of the two signals to be detected
is the wave w(t) with frequency �0, i.e. s0(t)=w(�0t)
(prior probability P0); the other signal is the same
wave w(t) with frequency �1 �= �0, i.e. s1(t) =w(�1t)
(prior probability P1). The noise �(t) acts on signals
s0(t) and s1(t) as a phase noise, so as to form the ob-
servable signal

x(t) = w[�0t + �(t)] (hypothesis H0);

or

x(t) = w[�1t + �(t)] (hypothesis H1):

Such periodic signals corrupted by a phase noise arise,
for instance, when a periodic wave propagates in a
Guctuating medium or through a Guctuating interface.
Phase noise is naturally present in oscillators and
phase-locked loops. Also, the conditions considered
may ;nd applicability in phase-contrast microscopy
or coherent imaging. A simple concretization of the
present setting is provided by a plane wave radiated
and/or received by transducers subjected to random
motions producing the phase noise.

Based on the data set x = (x1; : : : ; xN ) we want to
decide between hypotheses H0 or H1, i.e. to detect
whether the wave corrupted by the phase noise has
frequency �0 or �1.

We consider �(t) to be a white noise, i.e. �(tj)
and �(tk) are statistically independent for any two
sampling times tj �= tk . Then, the conditional proba-
bilities de;ned in Section 2 factorize as Pr{x|�1} =∏N
j=1 Pr{xj|�1} and Pr{x|�0}=

∏N
j=1 Pr{xj|�0}. Also,

�(t) is assumed stationary, with cumulative distribu-
tion function F�(u) and probability density function
f�(u) = dF�=du.

In order to allow a complete analytical treatment
of the optimal detector, we consider the simple case
where w(t) is a square wave of period 1 with w(t)=1
when t ∈ [0; 1=2) and w(t)=−1 when t ∈ [1=2; 1). We
then have the probabilities

Pr{xj = 1|�1}

=Pr{w[�1tj + �(tj)] = 1} (9)

= Pr

{
�1tj + �(tj)∈

⋃
k

[k; k + 1=2)

}
(10)

= Pr

{
�(tj)∈

⋃
k

[k − �1tj; k − �1tj + 1=2)

}
(11)

=
+∞∑
k=−∞

∫ k−�1tj+1=2

k−�1tj
f�(u) du= F(�1tj) (12)

with the function

F(u) =
+∞∑
k=−∞

[F�(k − u+ 1=2) − F�(k − u)]; (13)

k integer, and

Pr{xj = −1|�1} = 1 − Pr{xj = 1|�1}: (14)

In the same way, we have

Pr{xj = 1|�0} = F(�0tj) (15)

and

Pr{xj = −1|�0} = 1 − Pr{xj = 1|�0}: (16)

Given P0 and F�(u), when a realization of x is ob-
served, Eqs. (12)–(16) allow an explicit evaluation of
the likelihood ratio of Eq. (6) under the form L(x) =
(
∏N
j=1 Pr{xj|�1})=(

∏N
j=1 Pr{xj|�0}), making possible

an explicit implementation of the optimal MAP de-
tector of Eq. (4). This optimal detector achieves the
minimal probability of error, which, according to Eq.
(8), is explicitly computable as

Per =
1
2
− 1

2

1∑
x1=−1

: : :

1∑
xN=−1

|P1Pr{x1|�1} : : :Pr{xN |�1}

−P0Pr{x1|�0} : : :Pr{xN |�0}|; (17)

the multiple sum running over the 2N possible states
for the data x.
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4. Noise-enhanced optimal detection

We now exhibit conditions where the performance
of the optimal detector measured by Per of Eq. (17)
can be improved when the noise rms amplitude ��
grows.

For illustration, we ;rst consider the case where �(t)
is chosen in the class of generalized Gaussian noises,
de;ned by the standardized density

fgg(u) = A exp(−|bu|�) (18)

with A = (�=2)[�(3=�)]1=2=[�(1=�)]3=2 and b =
[�(3=�)=�(1=�)]1=2, parameterized by the positive ex-
ponent �. Such generalized Gaussian noise models
are widely used in ocean acoustics and sonar appli-
cations for instance [14]. The density of �(t) is then
taken as f�(u) = fgg(u=��)=��, and our ;nding its
that, for any �¿ 2, the probability of error Per of the
optimal detector undergoes a nonmonotonic evolu-
tion as �� is raised, instead of a monotonic increase.
This is illustrated by Fig. 1 which represents the
evolution of Per of Eq. (17) as a function of ��, for
di/erent �. For the theoretical evaluations of Per in
Figs. 1 and 2, the in;nite sums of Eqs. (12) or (13)
have been truncated by considering the zero-mean
densities f�(u) to be negligible outside the interval
[ − 6��; 6��], which provides very good approxima-
tion. With standard Gaussian noise (� = 2), Per is
found to monotonically increase as �� grows, but for
�¿ 2, Fig. 1 shows ranges of �� where Per decreases
as �� grows. This demonstrates the possibility of im-
proving the performance of the optimal detector by
raising the level of a generalized Gaussian noise with
�¿ 2. This also shows that the e/ect is robust with
respect to changes in the type of the probability den-
sity, since it is qualitatively preserved when �¿ 2 is
varied.

The improvement as a reduction of Per can be found
larger if one moves to other classes of densities for
�(t). Consider the class of Gaussian mixture with stan-
dardized density (0¡m¡ 1)

fgm(u) =
1

2
√

2�
√

1 − m2

{
exp

[
− (u+ m)2

2(1 − m2)

]

+ exp
[
− (u− m)2

2(1 − m2)

]}
: (19)
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Fig. 1. Probability of detection error Per of the optimal detector,
as a function of the rms amplitude �� of the zero-mean noise �(t)
chosen Gaussian (dotted line), generalized Gaussian with � = 4
(dashed), uniform (solid). Also P0 =0:5, �0 =1, �1 =2=3, N =11
data samples equispaced with time step 0:2 from t1 = 0 to t11 = 2.
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Fig. 2. Probability of detection error Per of the optimal detector,
as a function of the rms amplitude �� of the Gaussian-mixture
noise �(t) with density fgm(u=��)=�� from Eq. (19). The solid
lines are Per from Eq. (17); the discrete points are Per numerically
estimated from 104 Monte Carlo trials of the MAP test for each
��; with (◦) m= 0:9, (∗) m= 0:95, (�) m= 0:99. Also P0 = 0:5,
�0 = 1, �1 = 2=3, N = 6 data samples equispaced with time step
0:3 from t1 = 0 to t6 = 1:5.

With f�(u) = fgm(u=��)=��, Fig. 2 shows again
conditions of nonmonotonic evolutions of Per as ��
grows, with possibilities of decreasing Per by increas-
ing ��. Fig. 2 also o/ers numerical validations of the
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theoretical performance, through Monte Carlo
implementation of the optimal detector of Eq. (4).

5. Discussion

The present results essentially stand for a demon-
stration in principle of the feasibility of a stochastic
resonance e/ect in optimal processing.

A qualitative explanation of the e/ect in optimal de-
tection here can be that the phase noise, at a suLcient
level, is able to bring some shift between w[�0t+�(t)]
and w[�1t + �(t)] that can make these signals, on av-
erage, more distinguishable, whence a reduced Per.
Of course in the present setting Per is always zero at
zero noise (a common behavior of any reasonable de-
tection scheme), and then a pre-existing non-optimal
amount of phase noise has to be present in order
to have a possibility of improvement through noise
enhancement.

The optimal detector, as implemented in Figs. 1 and
2, is a coherent or synchronized detector, which has
access to a time origin where the waveform w(�0t) or
w(�1t) starts a rising front, and where the detector will
start its sampling sequence {tj}, j = 1 to N . Yet, it
can easily be veri;ed from Eq. (17) that there is little
change in Per if the sampling sequence {tj} does not
start on a rising front, provided {tj} realizes a suL-
ciently even or representative coverage of the periodic
waves w(�0t) and w(�1t) in relation to their periods
1=�0 and 1=�1. Especially, the important property of
a nonmonotonic Per is preserved with sequences {tj}
that do not start on a rising front. The performance of
an incoherent or asynchronous detector could be ob-
tained by an additional averaging on Per of Eq. (17)
performed over a random initial time for the sampling
sequence {tj}, and nonmonotonic evolutions would
still exist for this performance. Detailed study of the
inGuence of the sampling sequence remains open for
future work.

For practical use of the reported e/ect, one needs
to be able to increase the noise level while control-
ling its nature, and especially its probability density.
Such issues are not explicitly addressed here, and may
require evolutions in the setting and conditions con-
sidered here. Again, the focus of the present paper is
more at the conceptual level of a proof of feasibility
in principle. This contributes to the inventory of the

various forms, aspects and potentialities of the still
emerging e/ect of stochastic resonance, which ulti-
mately may lead to useful bene;ts for nonlinear signal
processing.
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