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Structural Similarity Measure to Assess Improvement
by Noise in Nonlinear Image Transmission

David Rousseau, Agnes Delahaies, and Frangois Chapeau-Blondeau

Abstract—We show that the structural similarity index is able
to register stochastic resonance or improvement by noise in non-
linear image transmission, and sometimes when not registered by
traditional measures of image similarity, and that in this task this
index remains in good match with the visual appreciation of image
quality.

Index Terms—Image quality measure, improvement by noise,
nonlinearity, stochastic resonance, structural similarity.

1. INTRODUCTION

UTOMATIC image quality assessment is an important

task for many areas of image processing. Traditional met-
rics commonly used for image quality, such as mean squared
error, peak signal-to-noise ratio and related indices, are simple
to implement but are limited to providing a low-level-based as-
sessment of images. Recently, the structural similarity (SSIM)
index has been proposed as a novel measure of image quality [1],
[2], with the potentiality for a more structural assessment based
on evaluating image degradation as a combination of three dif-
ferent factors: loss of correlation, luminance and contrast dis-
tortions. The SSIM index has been shown to outperform sim-
pler traditional metrics while avoiding the complexity of an
explicit modeling of perception by the human visual system
[1], [2]. This ability of SSIM to offer an efficient measure of
image quality was established in [1], [2] in various image pro-
cessing tasks such as compression, contrast stretching, mean
shifting, noise contamination, blurring, and it was tested against
visual appreciation of image quality. Yet, as a recently intro-
duced index, SSIM may still benefit, as advocated in [1], from
further experiments in order to fully appreciate its capabilities.
In the present paper, we test SSIM as a relevant index to mea-
sure stochastic resonance or improvement by noise in nonlinear
image transmission.

Stochastic resonance, in broad sense, designates situations
where the noise can play a constructive role in signal processing
[3]-[5]. Such possibility to occur usually demands the pres-
ence of a nonlinear process. Stochastic resonance or improve-
ment by noise has been shown possible in different types of
nonlinear image transmission or processing [6]—[11]. The most
common indices that were used to manifest stochastic resonance
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for aperiodic signals or images were traditional similarity in-
dices like correlation measures or mean squared error. Such an
index measures the similarity between an input image and an
output image resulting from nonlinear transmission in the pres-
ence of noise, and stochastic resonance is manifested by the
input-output similarity index which culminates at a maximum
occurring for a finite nonzero amount of noise. This identifies
an improvement by noise of a nonlinear image transmission, yet
with low-level-based indices of image quality. At the same time,
stochastic resonance has been registered in psychovisual experi-
ments when measuring the performance by visual perception of
human subjects [6], [12]-[14]. Here, we complement the mea-
sures of stochastic resonance by testing the SSIM index of [1],
[2] for the first time for this purpose.

Also, most reports on stochastic resonance with images have
dealt with threshold or potential-barrier nonlinearities, where
the noise essentially assists a small signal in overcoming a
threshold or barrier. In this context of threshold nonlinearities,
more specific techniques like dithering can be viewed as a
special form of stochastic resonance [15]-[17]. Yet, stochastic
resonance can occur in other types of nonlinearities, and we
show it here with saturation as well as threshold nonlinearities.
Saturation nonlinearities are common in imaging devices,
and while testing the SSIM index here, we also illustrate the
possibility of image saturation restored by noise.

II. SIMILARITY MEASURES

For two images x = {x;|i = 1,2,... N} andy = {y;|i =
1,2,...N} with same size, we consider the SSIM index
S(x,y) defined from [1] as

A(zy) — (=) (W) (=)(y)
((2%) = ()2 + () = (*)((2)* + (1)?)

where (-) stands for an average over the images, for instance
(vy) = N7t Zf\;l x;y;- The SSIM index S(x,y) of (1) varies
in [—1, 1]; it achieves its best value of 1 when the two images x
and y are equal; it is at zero when x and y are unrelated; it is
at —1 when x and y are equal except for opposite signs of their
fluctuations. References [1], [2], [18] motivate the definition of
S(x,y) to quantify the structural departure between images x
and y by combining loss of correlation, luminance and contrast
distortions. In addition, we consider the two traditional mea-
sures given by the cross-correlation coefficient

(zy) — (2)(y)
V(@?) = (2)2/(y?) - (y)?

and root mean squared (rms) error

S(x,y) = M

C(x,y) = @)
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E(xy) = V{(x—y)?). ©)
Additionally, S(x,y) can be factored as S = CMV
where M(x,y) = 2z} {y)/({z)? + (y)?) measures

)
the similarity in the means of x and y, and V(x,y) =
2/(0?) — @2/ (%) — W02/ ((2%) — ()2 + (%) — ()?)
measures the snnllarlty in their contrasts [1].

We use and confront the three indices S, C and F of (1)—(3) to
assess image transmission by nonlinear devices in the presence
of noise. We specifically study the regime, related to a stochastic
resonance effect, where the noise can play a constructive role in
the nonlinear transmission. An input image X is corrupted by an
additive noise n with the noise realizations assumed indepen-
dent at each pixel. The noisy image x + n is then acquired or
transmitted by a nonlinear device modeled by the memoryless
characteristic ¢( - ) which delivers the output image y defined as

y = g(x+n). )

III. HARD-LIMITER TRANSMISSION

As a first example, we consider g(-) a hard limiter with
threshold 6,
g(u) = { (1)

in charge of the transmission of binary images x. We consider
the case of a small-amplitude input image x with binary inten-
sities at O or 1, which is everywhere below the threshold § > 1
of the transmission device of (5). In this condition, in absence
of the noise n in (4), no transmission occurs and at the output
y remains a blank image. Addition of the noise n in (4) enables
a cooperative effect where the noise assists the subthreshold
input image x in overcoming the threshold 6, so as to elicit an
output image y carrying some similarity with the input image
x. This similarity is quantified in Fig. 1 with the three measures
of (1)-(3), and as a function of the level of the noise n.

In Fig. 1, each similarity index S,C or E experiences a
nonmonotonic evolution as the noise level increases, passing
through an extremum which identifies a nonzero optimal noise
level where the similarity index is at its best. The optimal noise
level is different for each index, expressing the notion that each
index conveys some distinct aspect concerning the similarity.
As yet another aspect, Fig. 2 provides a visual appreciation of
the similarity at different levels of noise.

The sequence of images in Fig. 2 also makes clearly vis-
ible a nonmonotonic action of the noise n, with a visually poor
image transmission at low or high noise levels, and better quality
of transmission in between. From Fig. 2, it can be argued that
the SSIM index S(x,y) and the cross-correlation C'(x,y) best
match the visual assessment of the images, since images with
good visual quality are obtained at the noise levels that maxi-
mize S(x,y) and C(x,y). By contrast, at the noise level mini-
mizing the rms error F(x,y), the visual quality appears poorer
in Fig. 2, expressing that the rms error is not here in good match
with the visual appreciation.

foru <4

foru > 0 )

similarity measure

0 0.5 1 15 2 25 3
noise rms amplitude

Fig. 1. For the transmission by (5) with threshold # = 1.1 of the binary image
x of Fig. 2(a): as a function of the rms amplitude o of the zero-mean Gaussian
noise n in (4), the input-output similarity indices S(x, y) of (1), C(x,y) of (2)
and E(x,y) of (3). The inset shows the partial measures M (x,y) and V(x.y)
versus o.

IV. TRANSMISSION WITH SATURATION

We now consider g( - ) as a sensor which remains linear for
small positive intensities but saturates when the intensities ex-
ceed some level 0, i.e.,

0, foru<0
gluy=1< u, for0<u<46 (6)
0, foru>¥6

in charge of the transmission of gray-level images x. We con-
sider the case of a high-amplitude input image x with intensities
in [0, 1], and which strongly saturates the sensor of (6) having a
saturation level § < 1. The resulting output image y is strongly
affected by saturation. The impact of the added noise n in (4) is
shown in Fig. 3 on the three input-output similarity indices of
(H-3).

In Fig. 3 only the SSIM index S(x, y) achieves its best value
at a nonzero level of the noise n. This expresses the possibility
of a constructive action of the noise to improve image trans-
mission in the presence of strong saturation of the sensor, as
assessed by SSIM. On the contrary in Fig. 3, the cross-correla-
tion C(x,y) and the rms error F(x,y) are at their best with no
added noise n, and in this respect do not manifest the possibility
of a constructive action of noise in the nonlinear transmission.
This again illustrates the notion that each index reflects some
distinct aspect concerning the similarity.

Next, a visual appreciation regarding the impact of noise on
the input-output similarity can be obtained from Fig. 4.

Again, in Fig. 4 the visual appreciation appears in good match
with the behavior of the SSIM index S(x,y), while the cross-
correlation C(x,y) and rms error F(x,y) are comparatively
less in tune with the visual appreciation. This is so because, with
no added noise, C(x,y) and E(x,y) are at their best as shown
in Fig. 4, yet from visual inspection in Fig. 4(b) significant fea-
tures are missing in the output image y due to saturation. By
contrast, missing features become perceivable in Fig. 4 as noise
is added manifesting its ability to counteract the negative effect
of the saturation. This restoration by noise visually appears spe-
cially efficient in Fig. 4(d) at the nonzero noise level maximizing
the SSIM index S(x,y) in Fig. 3.
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Fig. 2. (a) Binary input image x. (b)—(f) binary image y at the output of the sensor of (5) with threshold # = 1.1, with the noise n zero-mean Gaussian of rms
amplitude o. (b) ¢ = 0.07. (¢) ¢ = 0.49 maximizing the cross-correlation C'(x,y) in Fig. 1. (d) ¢ = 0.59 maximizing the SSIM index S(x,y) in Fig. 1. (¢)

o = 0.99 minimizing the rms error E(x,y) in Fig. 1. (f) ¢ = 1.5.
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Fig. 3. For the transmission by (6) with saturation level § = 0.2 of the gray-
level image x of Fig. 4(a): as a function of the rms amplitude o of the zero-
mean Gaussian noise n in (4), the input-output similarity indices S(x,y) of
(1), C(x,y) of (2) and E(x,y) of (3). The inset shows the partial measures
M(x,y) and V(x,y) versus 0.

Also, Figs. 1 and 3 show distinct influences of the partial
measures M and V' in contributing to the global index S, de-
pending on the nonlinear operation. In particular, an approxi-
mation S =~ CV inspired from [19] is not necessarily accurate
at all noise levels o when M significantly varies with o.

V. CONCLUSION

The present study is the first demonstration of the capability
of the SSIM index of [1], [2] to register an effect of stochastic

resonance or improvement by noise in nonlinear image trans-
mission. A possible extension now is to apply SSIM on blocks
or patches or across scales [1], [2], [20], [19], in order to com-
plement with a more local or regional evaluation at relevant sub-
scales to be identified, the global assessment of the stochastic
resonance obtained here on the images.

Although still in an early stage, the SSIM index, from the
recent results [1], [20], [2], [21], [22], [18], [23], [24], [19],
is gradually emerging as a specially useful metric for image
quality, providing a specific intermediate approach exhibiting
richer capabilities for structural assessment compared to sim-
pler traditional low-level-based indices, while avoiding the com-
plexity of modeling the human visual system. The present re-
sults, by testing its behavior in a new task of image processing,
reinforces this position of SSIM as a valuable quality metric. Es-
pecially, the assessment of stochastic resonance by SSIM does
not copy the assessments by traditional low-level-based indices,
confirming its specific capabilities as a quality metric. At the
same time, the assessment by SSIM appears to better match
the visual appreciation of image quality in the stochastic res-
onance experiments. These two features of SSIM (specificity of
behavior and good match with visual perception) were gener-
ally preserved when varying the images and types of noise in
our stochastic resonance experiments. The present results thus
contribute to establish SSIM as an index for image quality with
many useful potentialities of application. Also, the results com-
plement the possible approaches for the on-going analyses of
stochastic resonance or improvement by noise in image trans-
mission, with a new metric enabling structural assessment of
images and with relevance toward visual perception.
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Fig. 4. (a) Gray-level input image x. (b)—(f) gray-level image y at the output of the sensor of (6) with saturation level # = 0.2, with the noise n zero-mean
Gaussian of rms amplitude ¢. (b) 0 = 0 maximizing the cross-correlation C'(x, y) and minimizing the rms error E(x,y) in Fig. 3. (¢) o = 0.1. (d) 0 = 0.28
maximizing the SSIM index S(x,y) in Fig. 3. (¢) ¢ = 0.5. () o = 1.
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