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Abstract

A noisy input signal is observed by means of a parallel array of one-bit threshold quantizers, in which all the

quantizer outputs are added to produce the array output. This parsimonious signal representation is used to implement

an optimal detection from the output of the array. Such conditions can be relevant for fast real-time processing in large-

scale sensor networks. We demonstrate that, even for suprathreshold input signals, the presence of independent noises

added to the thresholds in the array, can lead to a better performance in the optimal detection. We relate these results to

the phenomenon of suprathreshold stochastic resonance, by which nonlinear transmission or processing of signals with

arbitrary amplitude can be improved by added noises in arrays.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When signal and noise are coupled nonlinearly,
there exists a possibility for the noise to interact
constructively with the signal, so that the presence
of the noise can reveal beneficial. Stochastic
resonance (SR) describes this possibility of a
constructive action of the noise. Introduced some
20 years ago in the context of nonlinear physics,
SR has progressively been reported in many areas,
e front matter r 2004 Elsevier B.V. All rights reserve
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under many different forms, with various types of
signals, nonlinear processes and measures of
performance receiving improvement from the
noise (see [1–5] for recent surveys). SR has also
been applied specifically to standard signal proces-
sing problems, for instance to detection [6–9] or
estimation [10].

So far, most studies have shown SR with
nonlinear systems presenting thresholds or poten-
tial barriers, and in which the noise brings
assistance to a small subthreshold signal in over-
coming the nonlinearity for a more efficient
response. Recently, another mechanism of im-
provement by noise was introduced under the
d.
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name of suprathreshold SR [11]. This SR applies
to threshold devices driven by a signal already
above threshold which needs no assistance to
overcome it. SR is thus absent in a single device,
but appears when the devices are associated in a
parallel array. Independent noises injected on the
devices have the ability to increase the efficacy of
representation of the signal by the array compared
to a single device with no added noise. This
translates into the possibility of improving various
measures of performance, depending on the task at
hand, by addition of noises in the array. This novel
suprathreshold SR has been observed with the
mutual information [11–13] and the input–output
correlation [14] in random signal transmission,
with a signal-to-noise ratio in periodic signal
transmission [15], with the Fisher information in
signal estimation [16].

In the present paper, we consider the same type
of parallel arrays of comparators as used in
previous suprathreshold SR studies [11–16], and
we investigate them in the framework of an
optimal detection task. We emphasize, as also
done in the previous studies, that such arrays of
nonlinearities bear similarities and significance to
several areas including known technologies (like
sonar arrays [17], flash analog-to-digital converters
[18]), or promising avenues (like neural processing
[19], cochlear implants [20], artificial vision [21], or
other new-generation sensing devices [22]). The
possibility of noise enhancement of information
processing in nonlinear arrays, with its various
modalities, is thus a new property with rich
potentialities to be explored, an endeavor to which
the present study participates.
2. Optimal detection from the output of a nonlinear

parallel array

We consider a detection task where an input
signal sðtÞ can be one of two known signals, sðtÞ �

s0ðtÞ with prior probability P0; or sðtÞ � s1ðtÞ with
prior probability P1 ¼ 1� P0: The input signal sðtÞ

is buried in an input noise xðtÞ with probability
density function f xðuÞ: This yields the input
signal–noise mixture sðtÞ þ xðtÞ ¼ xðtÞ: This mix-
ture xðtÞ is observed by means of a parallel array of
N threshold comparators or one-bit quantizers,
following the setting of [11–13]. We arrange for the
possibility of a noise ZiðtÞ; independent of xðtÞ; to
be added to xðtÞ before quantization by quantizer
i. Quantizer i, with threshold yi; delivers the output

yiðtÞ ¼ U ½xðtÞ þ ZiðtÞ � yi�; i ¼ 1; 2; . . .N; (1)

where UðuÞ is the Heaviside function, i.e. UðuÞ ¼ 1
if u40 and is zero otherwise. The response Y ðtÞ of
the array is obtained by summing the outputs of
all the quantizers, as

Y ðtÞ ¼
XN

i¼1

yiðtÞ: (2)

The array output Y ðtÞ of Eq. (2) is measured at
M distinct times tk; for k ¼ 1 to M, so as to
provide M data points Y k ¼ Y ðtkÞ: Each one of
the Y k can assume only N þ 1 discrete integer
values from 0 to N, so a total of ðN þ 1ÞM discrete
states are accessible to the data Y ¼ ðY 1; . . . ;Y M Þ:
We then want to use the data Y to decide whether
the noisy input xðtÞ is formed by xðtÞ mixed to s0ðtÞ

(hypothesis H0) or to s1ðtÞ (hypothesis H1).
According to classical detection theory [23], the

detector that minimizes the overall probability of
detection error Per; uses the likelihood ratio LðYÞ

to implement the test

LðYÞ ¼
PrfY jH1g

PrfY jH0g

H1

_

H0

P0

P1
; (3)

and in doing so achieves the minimal Per

expressable as

Per ¼
1

2
�

1

2

X
Y

jP1 PrfY jH1g � P0 PrfY jH0gj;

(4)

where the sum in Eq. (4) runs over the ðN þ 1ÞM

states accessible to the data Y :
We will consider here that the N threshold

noises ZiðtÞ are white (strict sense), mutually
independent, and identically distributed with
cumulative distribution function F ZðuÞ and prob-
ability density function f ZðuÞ ¼ dF Z=du: We also
consider that the input noise xðtÞ is white, just as
the threshold noises ZiðtÞ are. The conditional
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Fig. 1. Probability of error Per of the optimal detector from the

array output, as a function of the rms amplitude sZ of the

threshold noises ZiðtÞ chosen zero-mean Gaussian. The input

noise xðtÞ is zero-mean Gaussian with rms amplitude sx ¼ 1:
The signals to be detected are s0ðtÞ � s0 ¼ 0 and s1ðtÞ � s1 ¼ 1:
All the thresholds in the array are set to y ¼ ðs0 þ s1Þ=2 ¼ 1=2:
Also P0 ¼ 1� P1 ¼ 1=2; and M ¼ 2: The solid lines are from

the theory of Eq. (4). The sets of discrete points (�) are from a

Monte Carlo simulation of the optimal detector from Eq. (3).

The dashed line is the probability of error Eq. (7) of the same

optimal (minimal Per) detector operating directly on the input

signal–noise mixture xðtÞ:
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probabilities therefore factorize as PrfY jHjg ¼QM
k¼1 PrfY kjHjg; for j 2 f0; 1g:
At any time t, for a given fixed value x of the

input signal xðtÞ; we have, according to Eq. (1), the
conditional probability PrfyiðtÞ ¼ 0jxg which is
also Prfx þ ZiðtÞpyig; this amounting to PrfyiðtÞ ¼

0jxg ¼ FZðyi � xÞ: In the same way PrfyiðtÞ ¼

1jxg ¼ 1� FZðyi � xÞ:
We assume for the present time, as done in

[12,14], that all the thresholds yi share the same
value yi ¼ y for all i. The conditional probability
PrfY ðtÞ ¼ njxg then follows, according to the
binomial distribution [24], as

PrfY ðtÞ ¼ njxg ¼ CN
n ½1� F Zðy� xÞ�n

F Zðy� xÞN�n; ð5Þ

where CN
n is the binomial coefficient. Since xðtÞ ¼

sjðtÞ þ xðtÞ; with j ¼ 0 or 1, the probability density
for the value x is f xðx � sjðtÞÞ: We therefore obtain
the probability

PrfY ðtÞ ¼ njHjg ¼

Z þ1

�1

CN
n ½1� FZðy� xÞ�n

F Zðy� xÞN�n f xðx � sjðtÞÞdx: ð6Þ

Eq. (6) now allows an explicit evaluation of the
optimal detector of Eq. (3) and of its performance
Per of Eq. (4).
3. Constructive action of the threshold noises

We proceed first with the simple case where the
signals to be detected are constant signals s0ðtÞ �

s0 and s1ðtÞ � s1; with two known constants s0as1:
In this case, Fig. 1 illustrates the possibility of
improving the detection performance measured by
Per of Eq. (4) in the presence of the threshold
noises ZiðtÞ:

Fig. 1 shows that application of the threshold
noises ZiðtÞ in the array leads to a reduction of the
probability of error Per in the optimal detection
task at the output, with an optimal nonzero
amount of the threshold noises ZiðtÞ where Per is
minimized. The effect is not present with a single
quantizer (N ¼ 1) and it gets more pronounced as
N increases. Qualitatively, this effect can be related
to a richer representation capability at the array
output where the presence of the threshold noises
ZiðtÞ allows the quantizers to respond differently,
as opposed to the case with no threshold noises
where all the quantizers respond in unison just like
a single quantizer with a poorer representation
capability. Suprathreshold SR, as observed in
[11–16], was also based on such constructive
action of the threshold noises in arrays, although
the tasks at hand and the measures of performance
were distinct. The treatment of Section 2 exempli-
fied by Fig. 1, reveals and describes in a
quantitative way that a constructive action of the
threshold noises can also occur in an optimal
detection task from the array output. A validation
by a Monte Carlo simulation of the optimal
detector of Eq. (3) is also offered in Fig. 1. The
complexity of implementing this detector is linear
with the array size N since it is based on the sum of
the N quantizer outputs.

For comparison of the optimal detector from
the array ouput that is addressed in Fig. 1, it is
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interesting to consider the same optimal detector
(the minimum Per detector) that would operate
directly on the input signal–noise mixture xðtÞ

rather than on its quantized representation by the
array. We shall write Pin

er the probability of error of
this detector, which is also given, according to
classical detection theory [23], by an expression
formally similar to Eq. (4), and which reduces, in
the case of a Gaussian input noise xðtÞ; to

Pin
er ¼

1

2
1þ P1 erf

ffiffiffiffiffiffi
M

p xT � s1ffiffiffi
2

p
sx

 !"

�P0 erf
ffiffiffiffiffiffi
M

p xT � s0ffiffiffi
2

p
sx

 !#
: ð7Þ

In Fig. 1, the probability of error Pin
er of Eq. (7)

is represented by the dashed line. It can be noted in
Fig. 1 that, in the optimal detection from the array
output, the minimal value reached by Per at the
optimal level of the threshold noises, as N

increases, tends to the performance Pin
er of the

optimal detector directly applied on the input
signal–noise mixture xðtÞ: This proves that the
optimal detector from the output of the array of
one-bit quantizers, as the array size becomes large,
is able to perform as efficiently as the optimal
detector operating directly on the analog input
signal xðtÞ: At the same time, Fig. 1 shows that
with relatively modest sizes N, the performance of
the array comes close to the best performance Pin

er

at the input. Advantages afforded by the array lie
in the parsimony of the representation and
simplicity of operation (possibly associated to
rapidity), working on a few bits collected by the
comparators, as opposed to the infinite number of
bits in principle associated with the analog input
xðtÞ: Such conditions can be specially relevant to
fast real-time processing in large-scale arrays of
low-complexity low-cost sensors, possibly with
neural inspiration.

The observation in Fig. 1 that the detection
from the ouput Y ðtÞ of the array of quantizers can
reach a performance as good as the detection from
the input signal–noise mixture xðtÞ; is reminiscent
of a linearizing action of the noise that is evoked in
the dithering phenomenon with quantizers [25].
Dithering can be described as a linearization of the
threshold characteristic of a quantizer, caused by
an added noise uniform over the quantization step.
Dithering can be seen as one possible form of
improvement by noise, with specific nonlinearities
(quantizers) and a specific measure of performance
(a linearized characteristic). If other measures of
performance are to be maximized, like for instance
a signal-to-noise ratio for periodic signal transmis-
sion, other optimum conditions for the added
noise come out [26]. The probability of detection
error Per is yet another measure of performance,
which is here meaningful for the detection with
arrays of quantizers. The behavior of Per in Fig. 1
as noise is added, although it displays some aspects
reminiscent of dithering, cannot be completely
deduced from consideration of dithering, and it
needs to be specifically studied. Improvements by
noise in nonlinear processes can occur which are
markedly distinct from a linearization effect such
as dithering. It is known that quantizers, isolated
[26] or assembled in parallel arrays [15], are
capable of realizing input–output gains in the
signal-to-noise ratio of a sinewave in noise, which
can be made larger than unity thanks to added
noise. Linearized systems as produced by dithering
can at best achieve a unit gain, but not a gain
amplification above unity. This legitimates explicit
inspection of the impact of noise in nonlinear
processes with their appropriate measures of
performance, each time new potentially useful
configurations are uncovered, as it is the case here
with parallel arrays of quantizers for signal
detection.
4. Influence of the different parameters

By application of the theory of Section 2, we
have verified that the constructive action of the
threshold noises ZiðtÞ on the detection perfor-
mance, as illustrated by Fig. 1, is robustly
preserved in a broad range of conditions. This is
especially true upon changes of the probability
densities f xðuÞ and f ZðuÞ; of the location of the
common threshold y; and of P0: In each case, the
quantitative details of the effect can be worked out
with the theory of Section 2. We choose next to
focus on the influence of the number M of
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measurements. Later on, Figs. 4 and 5 show that
the effect is also qualitatively preserved with a
uniform density f xðuÞ at the input.

Concerning the number M of measurements, a
constructive action of the threshold noises ZiðtÞ is
observed for any value of M (see Fig. 2A), except
for M ¼ 1; as visible in Fig. 2B. An explanation
for this point can be given in this way. When M ¼

1; in the absence of the threshold noises ZiðtÞ; the
detector from the array output and the detector
from the input xðtÞ operate in an equivalent way
(see also Section 6): they both compare their single
measurement, respectively Y ðt1Þ ¼ NU ½xðt1Þ �

ðs0 þ s1Þ=2� and xðt1Þ; to their detection threshold
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Fig. 2. Influence of the number M of measurements. Panel A:

same conditions as Fig. 1 except a fixed array size N ¼ 5: Panel
B: same conditions as Fig. 1 except M ¼ 1:
according to Eq. (3). This mode of operation leads
to the same Per at sZ ¼ 0; as shown by Fig. 2B ,
and to a Per which degrades when the threshold
noises ZiðtÞ are added. It is at M41 that the
detections from the input and from the output,
cease to be comparable as two decisions taken
from a single measurement xðt1Þ; either directly or
after quantization. At M41; each detector has to
collect in an optimal way its M data points, so as
to produce the single scalar value on which the
detection will be based. This way of collecting the
data is in general a nonlinear combination, which
is performed in a specific way at the output of the
array. What the present study demonstrates then,
and which is by no means a priori obvious, is that
this nonlinear combination allows some room
where the action of the threshold noises can result
in improved detection performance.
5. Distribution of the quantization thresholds

We shall now examine the case where the
thresholds yi no longer share the same value y:
This case where the quantization thresholds yi can
be separately adjusted corresponds a priori to a
more efficient configuration of the array of N

comparators. This is what is done, for instance, in
flash analog-to-digital converters. When the
thresholds yi; for i ¼ 1 to N, no longer share the
same value y; the conditional probability
PrfY ðtÞ ¼ njxg of Eq. (5) has to be computed as

PrfY ðtÞ ¼ njxg

¼
X
ðnÞ

YN
i¼1

½1� F Zðyi � xÞ�yi F Zðyi � xÞ1�yi ; ð8Þ

where
P

ðnÞ stands for the sum over the CN
n

configurations accessible to the N comparators
for which the number of yi equal to 1 is exactly n,
among the 2N distinct configurations accessible to
the N comparators. After this replacement of Eq.
(5) by Eq. (8) is done, the probability PrfY ðtÞ ¼

njHjg for j 2 f0; 1g; follows in the same way as

PrfY ðtÞ ¼ njHjg

¼

Z þ1

�1

PrfY ðtÞ ¼ njxg f xðx � sjðtÞÞdx: ð9Þ
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Knowledge of PrfY ðtÞ ¼ njHjg from Eq. (9) again
allows an explicit evaluation of the optimal
detector of Eq. (3) and of its performance Per of
Eq. (4).

To proceed, some criterion has to be introduced
to specify the distribution of the thresholds yi: If
an optimal distribution is sought for the thresh-
olds, usually this distribution will be specific to a
given criterion, and it will depend upon the signals
to be detected, upon the types of the input and
threshold noises, and upon the size N of the array.
In definite conditions, this optimization problem
may be uneasy to solve. For constant signals
s0ðtÞ � s0 and s1ðtÞ � s1; a reasonable choice is a
regular distribution with the N thresholds yi evenly
covering the interval between s0 and s1 via

yi ¼ s0 þ i
s1 � s0

N þ 1
; i ¼ 1; 2; . . .N: (10)

This is the simple choice that is implemented by
flash analog-to-digital converters.

We select this simple distribution of Eq. (10), to
illustrate in Fig. 3 that a constructive action of the
threshold noises ZiðtÞ on the detection performance
is still possible with distributed thresholds, in
definite conditions. In Fig. 3, for all array sizes N,
the input signal sðtÞ is always suprathreshold, in
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Fig. 3. Influence of the threshold distribution. The sets of

discrete points ð�Þ are obtained in the same conditions as Fig. 1

with a single common threshold y ¼ ðs0 þ s1Þ=2 ¼ 1=2: The

solid lines are also obtained in the same conditions as Fig. 1

except for the thresholds yi which are distributed according to

Eq. (10).
the sense that, without assistance from the thresh-
old noises ZiðtÞ; sðtÞ alone when it switches from s0
to s1; is capable to induce transitions in any one of
each quantizer ouput yiðtÞ: As visible in Fig. 3,
when no threshold noises ZiðtÞ are present, the
optimal detection realized by the array with
distributed thresholds is more efficient than that
with a single common threshold y: At sZ ¼ 0; the
probability of error Per decreases as the array
size N increases; as expected, the threshold
distribution enhances the efficacy of the detection.
Still, even in this situation, the detection perfor-
mance can be further improved by the action
of the threshold noises ZiðtÞ: For sufficiently
large array size N (starting at N ¼ 3 in Fig. 3),
when the threshold noises ZiðtÞ are added, the
probability of error Per experiences a nonmono-
tonic evolution as the threshold noise rms ampli-
tude sZ is increased. This demonstrates that a
constructive action of the threshold noises ZiðtÞ can
take place with distributed thresholds, as well as
with a single common threshold, in the detection
from the array output.

Furthermore, it is interesting to notice in Fig. 3,
that at the optimal level of the threshold noises
sZ; the distributed-threshold array does not
perform better than the common-threshold array.
The added threshold noises equalize the perfor-
mance of both configurations. In the face of this
outcome, a noticeable superiority can be assigned
to the common-threshold configuration of the
array, in terms of simplicity. This configuration
requires, to set up the common threshold y;
only the prior knowledge of the mean value
between the two signals to be detected, i.e.
ðs0 þ s1Þ=2: For instance, it suffices to know
that the two signals to be detected are formed
by a bipolar waveform �A; with possibly
unknown A, to optimally set up the common
threshold at y ¼ 0: By contrast, the distributed-
threshold configuration of the array requires
the prior knowledge of both signal values s0
and s1; or the knowledge of A with the bipolar
signals, so as to distribute the thresholds in the
range between s0 and s1: Fig. 3 shows that the
same performance will be reached by these two
array configurations, at the optimum of the
threshold noises.
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6. Linear detection at the array output

The likelihood ratio test of Eq. (3) is the optimal
(minimal Per) detector based on the complete data set
Y = (Y1, . . . YM ) collected at the output of the ar-
ray. This optimal test of Eq. (3), as visible from the
derivation of Section 2, generally computes a nonlin-
ear expression of the measurementsYk, k = 1, . . . M ,
to serve as a test statistic. For a matter of simplicity,
it can be relevant to impose to base the detection, not
on the complete vector dataY , but only on its sam-
ple meanM−1

∑M
k=1

Yk or equivalently its sample sum
∑M

k=1
Yk = Ycum. The same principles of detection

theory [23] express that the optimal (minimalPer) de-
tector based onYcum is again a test of the likelihood
ratio, this time taking the form

L(Ycum) =
Pr{Ycum|H1}

Pr{Ycum|H0}

H1

>
<

H0

P0

P1

. (11)

To express the likelihood ratioL(Ycum) of Eq. (11), the
probabilitiesPr{Ycum = K|Hj} for K = 0 to M ×N ,
are computable from the probabilities in Eq. (6) of the
individual componentsYk, by monitoring the different
ways theseYk sum up inYcum to a givenK. This will
in general also lead, as seen from the form of Eq. (6),
to a nonlinear expression, ofYcum this time, serving as
a test statistic. It is possible to take the simplification
further, by imposing for the detection a linear test of the
sample sumYcum under the form

Ycum

H1

>
<

H0

γ . (12)

With this imposed linear structure to the detector, the
detection thresholdγ will be selected so as to minimize
the probability of error

Per = P0Pr{Ycum > γ|H0} + P1Pr{Ycum < γ|H1} .
(13)

Expressing thisPer of Eq. (13) for minimization will
again necessitate the probabilitiesPr{Ycum = K|Hj}
for K = 0 to M × N , computable from the proba-
bilities in Eq. (6). The resulting detector based on

Ycum and Eq. (12) is in principle a suboptimal detector
not as efficient as the optimal detector based onY and
Eq. (3). On the other hand, the detector based onYcum

and Eq. (12) can be viewed as a simpler (linear) detec-
tor compared to the generally nonlinear detector based
on Y and Eq. (3). For comparison, Fig. 4 shows the
performances of both detectors in representative con-
ditions, and their evolutions when the levelση of the
threshold noisesηi(t) is raised.

As expected, in Fig. 4 in general the performance
of the suboptimal detector fromYcum and Eq. (12) is
not as good as that of the optimal detector fromY and
Eq. (3). However, at zero threshold noisesση = 0,
both performances coincide. This is because in this case
theN quantizers switch in unison, just as if there were
only one quantizer, and the optimal test of Eq. (3) re-
duces to an equivalent test under the form of Eq. (12).
This equivalence between Eq. (3) and (12) breaks down
when the threshold noisesηi(t) are added, and expect-
edly optimal Eq. (3) outperforms suboptimal Eq. (12) in
Fig. 4. The two performances tend to rejoin again in the
limit of large levels of the threshold noises. The inter-
esting feature revealed by Fig. 4 is that both detectors,
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plitudeση of the zero-mean Gaussian threshold noisesηi(t),
for s0(t) ≡ s0 = 0 ands1(t) ≡ s1 = 1 in zero-mean uni-
form noiseξ(t) of rms amplitudeσξ = 1. Solid lines: op-
timal detector fromY and Eq. (3), dashed lines: linear sub-
optimal detector fromYcum and Eq. (12). AlsoP0 = 1/2,
N = 5, andθi = 0.5, ∀i.
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from Y and from Y cum; benefit from the presence
of a nonzero amount of the threshold noises ZiðtÞ:
Although the specific values of the optimal noise
level may differ in each case, the qualitative
possibility of a constructive action of the threshold
noises is preserved. More detailed analysis in this
direction remain open for further investigation.
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array output, as a function of the rms amplitude sZ of the

threshold noises ZiðtÞ chosen zero-mean Gaussian. The input

noise xðtÞ is Gaussian (solid lines) or uniform (dashed lines)

with zero-mean and rms amplitude sx ¼ 1: The signal to be

detected is a sinewave s1ðtÞ ¼ cosð2pt=T s þ fÞ with known

phase (two lower curves) or unknown phase (two upper curves).

Also P0 ¼ 1=2; N ¼ 5; M ¼ 6 and yi ¼ 0; 8i:
7. Application to sinewave detection

Eq. (6) allows the implementation of the optimal
detector of Eq. (3) for the detection of any two
known signals sjðtÞ; j 2 f0; 1g: We tested above the
case of two constant signals, essentially as the
simplest configuration to exhibit and analyze the
possibility of a constructive action of the threshold
noises ZiðtÞ in the detection. From a practical
standpoint, it can also be interesting to consider
the detection of a known sinusoidal signal s1ðtÞ ¼

cosð2pt=T sÞ in noise (i.e. s0ðtÞ � 0). In this case,
application of Eq. (6) directly specifies the optimal
detector of Eq. (3). Its performance Per of Eq. (4)
is shown in Fig. 5, for M ¼ 6 data points Y ðtkÞ

sampled at times tk ¼ ðk � 1ÞT s=M ; k ¼ 1 to 6.
Without going into a detailed analysis, the main
point we want to emphasize in Fig. 5 is that the
possibility of a beneficial action of the threshold
noises ZiðtÞ on the performance is preserved in the
detection of a known sinewave from the array
output.

Another case of practical interest is the detec-
tion of a sinewave s1ðtÞ ¼ A cosð2pt=T s þ fÞ with
unknown parameters, for instance an unknown
phase f (an unknown amplitude A or both could
be treated equivalently), and s0ðtÞ � 0: Essentially
two approaches are followed in classical detection
theory [23]. One is to treat f (or A, or both) as a
deterministic parameter with a fixed unknown
value which is estimated by maximum likelihood
as bf ¼ argmax PrfY jf;H1g; with PrfY jf;H1g

which is known through Eq. (6), and then
implement the (generalized likelihood ratio) test
of Eq. (3) where this time LðY ; bfÞ ¼
PrfY jbf;H1g=PrfY jH0g: Generally there is no
optimality of this approach, especially in terms
of Per; only asymptotically. The other approach is
to treat f (or A, or both) as a random parameter
with a known probability density pfðfÞ: For a
given realization of f; the probability PrfY ðtÞ ¼

njf;H1g is obtained by inserting the sinusoidal
expression of s1ðtÞ in Eq. (6). Then, the pro-
babilityPrfY jH1g ¼

R
f

QM
k¼1 PrfY kjf;H1gpfðfÞdf

is used to apply the test of Eq. (3). This approach
is optimal in the sense that it minimizes the overall
probability of detection error Per when computed
with the averages taken both over the noise
realizations and over the random phase. The
performance Per of this approach, resulting from
Eq. (4), is also shown in Fig. 5, when f is uniform
over ½0; 2pÞ: Again, without going into details, our
main point in Fig. 5 is that the possibility of a
beneficial action of the threshold noises ZiðtÞ on the
performance is preserved in the detection of a
sinewave with unknown phase from the array
output.
8. Discussion

The constructive action of the threshold noises
ZiðtÞ in the detection from the array output that we
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have shown possible here, is very similar, at least
qualitatively, to the effect of suprathreshold SR as
introduced in [11] and further developed in
[12–16]. The present results on detection can even
be interpreted as another further extension of
suprathreshold SR. A noticeable difference
though, is that here we investigated the effect of
noise on the performance of the optimal detector
from the array output, and by definition this
detector is noise-dependent (beneficially, we
showed). By contrast, previous studies on supra-
threshold SR [11–16] dealt with a fixed ‘‘hard-
wired’’ processing system. In spite of this distinc-
tion, it is interesting at another level to realize the
marked common feature shared by these phenom-
ena: the possibility of improving the processing at
the ouput of parallel arrays of nonlinearities, for
signals with arbitrary amplitudes, thanks to the
action of independent noises injected into the
array.

We have shown here essentially the feasibility in
principle of this phenomenon in a detection task.
In this context, many aspects remain open for
further investigations, which are accessible based
on the framework of Section 2. Other detection
strategies, like Neyman–Pearson or Bayesian-cost,
could be tested, and it is likely that the effect will
persist in these conditions, this remaining to be
studied explicitly. Still other extensions of the
effect, beyond detection and the other previous
forms [11–16], can also be sought, to complement
and appreciate all the capabilities of information
processing aided by noise with parallel arrays of
nonlinearities, and progressively elaborate a uni-
fied picture.

Beyond the specific detection task considered
here, the present results can carry relevance for
several broader areas. First, they add another step
in the on-going inventory and analysis of the
different modalities of improvement by noise in
nonlinear processes, in the line of SR. Second, the
present results, together with previous results on
suprathreshold SR in arrays, could lead to useful
applications for real-time processing in existing or
future multisensor networks or distributed intelli-
gent systems. Third, the present results can also be
meaningful for nonlinear processing by arrays of
sensory neurons. Neurons are natural devices with
intrinsic threshold nonlinearities, organized in
networks, operating in noisy conditions (of ex-
ternal or internal origins), and achieving high
efficiency for signal processing. Noise in these
arrays may play a part to contribute to the
performance, through detailed mechanisms which
largely remain to be elucidated, and which may
entail useful novel applications.
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