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Noise-aided information transmission via stochastic resonance is shown and analyzed in a binary channel
by means of information measures based on the Tsallis entropy. The analysis extends the classic reference
of binary information transmission based on the Shannon entropy, and also parallels a recent study based
on the Rényi entropy. The conditions for a maximally pronounced stochastic resonance identify optimal
Tsallis measures. The study involves a correspondence between Tsallis and Rényi information measures,
specially relevant to the characterization of stochastic resonance, and establishing that for such effects
identical properties are shared in common by both Tsallis and Rényi measures.
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1. Introduction

Information is an essential notion of our everyday experience.
A quantitative approach to information is also fundamental to sci-
ence and technology. Especially, growing impact is witnessed at
the intersection with physics, where informational concepts are
progressing for instance in statistical physics, thermodynamics,
nonlinear physics, complexity science, neural biophysics, quantum
computation, and the physics of information (see for instance [1–
10] for general overviews, and [11,12] for very recent examples in
this journal). A very important quantitative approach to informa-
tion, expressed in a statistical framework and based on the concept
of entropy, has been initiated by the work of Shannon and Weaver
[13]. This statistical theory of information has shown great impact
on communication technologies, and also it offered a foundation
to statistical mechanics [14,15]. An important extension to the en-
tropy underpinning the Shannon theory of information, has been
provided by the Rényi entropy [16]. Applicability of Rényi-entropy-
based information measures has been demonstrated for various
practical problems such as source coding or classification [17–23].
Comparatively, the Rényi entropy has so far found probably less
impact for its significance toward physics and the physics of in-
formation. Another, more recent, extension to the entropy of the
Shannon theory of information, has been proposed with the Tsal-
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lis entropy [24,25]. The Tsallis entropy is involved into much closer
connections with physics, since it has been postulated and tested
to form the ground of a nonextensive generalization to statistical
mechanics [24,26–28,25]. A line of thought is that, in the presence
of physical constraints on known statistical averages, maximiza-
tion of the Tsallis entropy leads to probability distributions for the
states of a system, that generalize (and contain as a special case)
the Boltzmann–Gibbs distribution of standard statistical mechanics.
Furthermore, such generalized probability distributions have been
found to offer efficient models to fit many experimental observa-
tions and data sets, especially associated with “complex” processes
of various types, possibly with long range interactions where the
specific nonextensive character of the Tsallis entropy could play a
relevant role. In the present Letter, as a complement, we will ex-
plore the significance of the Tsallis entropy toward informational
issues. Especially, we test measures of information based on the
Tsallis entropy in order to assess an effect of stochastic resonance
or noise-aided informational signal transmission in a reference
model formed by a binary channel.

Stochastic resonance is a phenomenon originating in nonlin-
ear physics, which is progressively gaining the status of a general
paradigm to designate situations where the noise can reveal ben-
eficial to some transmission or processing of information [29–31].
It is a specially significant concept at the intersection of physics
and information science, which is still under active exploration.
Stochastic resonance has been reported in a large variety of do-
mains, including optical devices [32–34], electronic circuits [35–
37], neural processes [38–41], nonlinear sensors [42–44]. Classi-
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cally, to characterize an effect of stochastic resonance, a measure
of performance appropriate to the process under study is intro-
duced, and conditions are investigated where this measure can be
improved by the action of noise. In this way, several standard mea-
sures have been shown improvable by an increase of the noise.
The signal-to-noise ratio was one of the earliest measures applied
to characterize stochastic resonance [45,29,46]. However, it has re-
peatedly appeared that the signal-to-noise ratio does not necessar-
ily provide a complete characterization of the impact of noise for
all situations and purposes, and that in fact there is not one sin-
gle measure universally significant for stochastic resonance. Other
measures have progressively been shown relevant to characterize
stochastic resonance, such as a cross-correlation coefficient [47–
49], a probability of detection [50,30,51,52], or an estimation error
[53–55]. Information-theoretic quantities, owing to their status of
general information measures, have also been applied for assess-
ment of stochastic resonance. Essentially Shannon-entropy-based
information measures have been considered, with the demonstra-
tion of mutual information [56–59] or information capacity [60–
62] improved by noise. Also, very recently, Ref. [63] developed a
characterization of noise-aided transmission over a binary channel
with information measures based on the Rényi entropy, generaliz-
ing the Shannon entropy, and uncovering nontrivial orders of the
Rényi entropy that best exploit stochastic resonance. In the present
Letter, a comparable analysis of stochastic resonance is carried out,
yet with information measures based on the Tsallis entropy. The
aim is two-fold: to evaluate the capabilities of general information
measures based on the Tsallis entropy to assess meaningful infor-
mational processes like stochastic resonance; and to consolidate
stochastic resonance as an informational process with broad appli-
cability and significance. The present study especially develops a
correspondence between Tsallis and Rényi information measures,
which appears specifically relevant here to the characterization of
stochastic resonance. This allows the novel analysis with the Tsal-
lis entropy here, to closely parallel the approach of [63] with the
Rényi entropy, and results in establishing that, despite the signif-
icant difference that the Tsallis entropy is nonextensive while the
Rényi entropy is extensive, relevant properties in stochastic reso-
nance are shared in common by both information measures.

Strong connections exist of the Tsallis entropy with statistical
physics and of stochastic resonance with nonlinear physics. At the
intersection, the present Letter seeks to contribute also to frontier
physics formed by the physics of information [1,2]. Two important
steps are useful to proceed in this direction: (i) to identify and
assess the capabilities and properties of quantitative measures for
information, and (ii) to involve them in the description of observ-
able processes to which informational significance can be assigned.
We perform here part (i) with Tsallis-entropy-based information
measures, and part (ii) by means of a stochastic resonance phe-
nomenon expressing a possibility of noise-aided informational sig-
nal transmission.

2. Tsallis entropy measures and properties

2.1. Tsallis entropy

The Tsallis entropy [24,25] represents a generalization of the
Boltzmann–Gibbs or Shannon entropy. For an information source
emitting symbols with probabilities Pi , for i = 1 to N , the Tsallis
entropy of order q is defined as

Hq(Pi) = 1

ln(a)

1

q − 1

(
1 −

N∑
i=1

P q
i

)
. (1)

At the limit q = 1, one has H1(Pi) = −∑N
i=1 Pi loga(Pi), i.e. the

Shannon entropy in the logarithm base a. The Tsallis entropy bears
Fig. 1. The q-logarithm lnq(x) versus x from Eq. (2) for various values of q =
−2,−1,0,1,2,5. At q = 1 is the traditional natural logarithm ln1(x) = ln(x). At
q = 0 is the linear function x �→ x − 1. All the curves intersect at point (1,0).

special importance since it has been postulated to form the ground
of a nonextensive generalization to statistical mechanics [24,26–28,
25].

It is possible to express Eq. (1) through a generalization [64,25]
of the natural logarithm, under the form of the q-logarithm de-
fined as

lnq(x) = 1 − x1−q

q − 1
, (2)

for a positive real argument x and q a real parameter. Inversion of
y = lnq(x) defines the q-exponential function

expq(y) = [
1 + (1 − q)y

]1/(1−q)
. (3)

At q = 1, one recovers the traditional natural logarithm ln1(x) =
ln(x) and exponential exp1(y) = exp(y). Interesting generalized
properties exist such as

d

dx
lnq(x) = 1

xq
and

d

dy
expq(y) = [

expq(y)
]q

, (4)

and a combination property

lnq(x1x2) = lnq(x1) + lnq(x2) + (1 − q) lnq(x1) lnq(x2). (5)

Fig. 1 depicts the graphs of lnq(x) for various q, in particular illus-
trating that lnq(x) is a monotonically increasing function for any q,
as provable from the first equation in Eq. (4).

The q-logarithm of base a is

logq
a(x) = 1

ln(a)

1 − x1−q

q − 1
. (6)

Inversion of y = logq
a(x) defines the q-exponential of base a as

expq
a(y) = [

1 + ln(a)(1 − q)y
]1/(1−q)

. (7)

At q = 1, one recovers the traditional logarithm log1
a(x) = loga(x)

and exponential exp1
a(y) = ay . The Tsallis entropy of Eq. (1) then

is an expectation of the q-logarithm as

Hq(Pi) = E
[
logq

a(1/Pi)
] =

N∑
i=1

Pi logq
a(1/Pi). (8)

The Tsallis entropy Hq(Pi) of Eq. (1) is nonnegative for any
order q. Since the q-logarithm logq

a(x) is an increasing function
of its argument x, then logq

a(1/Pi) increases for rare events with
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Fig. 2. Tsallis entropy Hq(Pi) in nats of Eq. (1), as a function of the probability P1

of a binary source {P1,1 − P1}, for several values of the order q. The value q = 1
identified by crosses (×) corresponds to the Shannon entropy, with the maximum
H1(P1 = 1/2) = Hextr

1 = ln(2) ≈ 0.693 nat.

smaller Pi , and its average value Hq in Eq. (8) keeps the status of a
nonnegative measure of incertainty for any q, much like the Shan-
non entropy H1. Also, Hq(Pi) is concave (∩) for q > 0, constant
for q = 0, and convex (∪) for q < 0. The Tsallis entropy Hq(Pi)

reaches for q > 0 its maximum (respectively for q < 0 its mini-
mum) of Hextr

q = logq
a(N) with equiprobable Pi = 1/N for all i = 1

to N . For a given probability distribution, Hq(Pi) is a decreasing
function of q.

For two sets A and B of independent events, the joint events
(A, B) are involved in a nonadditive relation for the Tsallis en-
tropies, following from Eq. (5),

Hq(A, B) = Hq(A) + Hq(B) + (1 − q) ln(a)Hq(A)Hq(B), (9)

which forms the basis of the nonextensive character of the Tsallis
entropy, and which takes part in a nonextensive generalization of
statistical mechanics [24,26–28,25].

For illustration, Fig. 2 shows the Tsallis entropy Hq(Pi) of
Eq. (1) for a binary source (of interest to us in the sequel). Es-
pecially, Fig. 2 depicts a general property of Hq , that for q < 0
the entropy Hq is not always bounded and can diverge to infinity
in the presence of rare events with vanishing probabilities. Mean-
while, for q > 0 the Tsallis entropy Hq always remains a finite
bounded measure of incertainty, much like the Shannon entropy,
and it will be studied essentially in this regime of q > 0 in the
sequel.

2.2. Tsallis relative entropy

It is possible to associate to the Tsallis entropy, a Tsallis rel-
ative entropy or divergence generalizing the Kullback–Leibler rel-
ative entropy; it refers to two probability distributions {Pi} and
{Q i}, i = 1 to N , over the same alphabet, and is defined as [25]

Dq(Pi‖Q i) = −
N∑

i=1

Pi logq
a

(
Q i

Pi

)

= 1

ln(a)

1

1 − q

N∑
i=1

Pi

[
1 −

(
Q i

Pi

)1−q]
, (10)

which is also

Dq(Pi‖Q i) = 1

ln(a)

1

1 − q

(
1 −

N∑
P q

i Q 1−q
i

)
. (11)
i=1
At the limit q = 1, one has D1(Pi‖Q i) = ∑N
i=1 Pi loga(Pi/Q i),

i.e. the Kullback–Leibler relative entropy [65]. For any order q 	= 0,
the Tsallis relative entropy Dq(Pi‖Q i) of Eq. (10) vanishes if and
only if Pi = Q i for all i = 1 to N . For any q > 0, the Tsallis relative
entropy Dq(Pi‖Q i) is always nonnegative. In this regime of q > 0,
the Tsallis relative entropy Dq(Pi‖Q i) therefore behaves much like
the conventional Kullback–Leibler relative entropy, yet in a gen-
eralized form realized by the additional parameterization by q.
Especially, the generalized family of relative entropy Dq(Pi‖Q i) al-
lows one to obtain at q = 1/2 a symmetric divergence

D1/2(Pi‖Q i) = 2

ln(a)

(
1 −

N∑
i=1

√
Pi Q i

)
, (12)

which is directly (monotonically) related to the Bhattacharyya dis-
tance B(Pi‖Q i) = − log(

∑
i

√
Pi Q i ) = − log(1 − D1/2/2) of two

probability distributions. Additionally, when q < 0, the Tsallis rel-
ative entropy Dq(Pi‖Q i) of Eq. (10) is always nonpositive; and
when q = 0, Dq=0(Pi‖Q i) is identically zero.

By choosing the reference probabilities {Q i} as the uniform dis-
tribution {Q i = 1/N} for all i = 1 to N , one obtains

Dq(Pi‖Q i = 1/N) = Nq−1[Hext
q − Hq(Pi)

]
, (13)

expressing a connection between entropy and relative entropy at
any Tsallis order q.

2.3. Tsallis transinformation

One now considers an input alphabet with N symbols, an out-
put alphabet with M symbols, and over those two a joint probabil-
ity distribution {Pij}, for (i, j) ∈ {1, . . . , N} × {1, . . . , M}, as would
occur between the emitting and receiving ends of a communica-
tion channel. The N input symbols, indexed by i, have marginal
probabilities Pi = ∑M

j=1 Pij . The M output symbols, indexed by j,

have marginal probabilities Q j = ∑N
i=1 Pij . A Tsallis transinforma-

tion or mutual information follows as

Iq = Dq(Pij‖Pi Q j)

= 1

ln(a)

1

1 − q

N∑
i=1

M∑
j=1

Pij

[
1 −

(
Pij

P i Q j

)q−1]
. (14)

At the limit q = 1, the Tsallis transinformation I1 from Eq. (14) is
the Shannon transinformation.

When the input and output symbols are independent, the
probabilities factorize as Pij = Pi Q j , for all (i, j) ∈ {1, . . . , N} ×
{1, . . . , M}. As a result, the Tsallis transinformation Iq of Eq. (14)
is identically zero, for any order q.

When applied to a communication channel with input X and
output Y , transmission over the channel is characterized by the
N × M conditional probabilities P j|i = Pr{Y = j | X = i}, for (i, j) ∈
{1, . . . , N} × {1, . . . , M}. The N × M joint input–output probabili-
ties result as Pij = P j|i P i , and the M output probabilities Q j =
Pr{Y = j} = ∑N

i=1 P j|i P i . The Tsallis information capacity Cq of the
channel characterized by the {P j|i} is defined by the input proba-
bilities {P∗

i } that maximize the Tsallis input–output transinforma-
tion Iq from Eq. (14) as

Cq = max{Pi}
Iq. (15)

3. Relation to Rényi entropy measures

Another important generalization to the traditional Shannon
entropy is provided by the Rényi entropy. For a probability dis-
tribution Pi , for i = 1 to N , the Rényi entropy of order q is defined
as [16]
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Hq(Pi) = 1

1 − q
loga

(
N∑

i=1

P q
i

)
. (16)

At the limit q = 1, the traditional Shannon entropy H1(Pi) =
−∑N

i=1 Pi loga(Pi) is recovered.
From Eq. (16) one can extract the factor

N∑
i=1

P q
i = a(1−q)Hq(Pi) (17)

and replacing in Eq. (1), a relation between Tsallis Hq and Rényi
Hq entropies is obtained as

Hq = 1

ln(a)

1

q − 1

[
1 − a(1−q)Hq

]
. (18)

From Eq. (6), another form is accessible for the relation of Eq. (18),
as

Hq = logq
a
(
aHq

)
. (19)

The function Hq(Hq) in Eq. (19), similar to logq
a(·), is a monotonic

increasing function for any order q. At q = 1, this function reduces
to the identity function, when the two entropies H1 and H1 in
Eq. (19) coincide with the Shannon entropy. A relation between
Hq and Hq similar to Eq. (18) is also given for instance in [25,66],
although not written with the q-logarithm as in Eq. (19). When
written with the q-logarithm as in Eq. (19), we have a formulation
vividly manifesting the monotonic increasing character of the rela-
tion between Hq and Hq , for any q. And such a character will play
an important role in the sequel for the present study. Before, we
extend here the relation between Tsallis and Rényi forms to other
important information measures.

A Rényi relative entropy exists which generalizes the Kullback–
Leibler relative entropy [65]. For two probability distributions {Pi}
and {Q i}, i = 1 to N , over the same alphabet, the Rényi relative
entropy or divergence is defined as [16,23]

Dq(Pi‖Q i) = 1

q − 1
loga

(
N∑

i=1

P q
i Q 1−q

i

)
. (20)

At the limit q = 1, one gets D1(Pi‖Q i) = ∑N
i=1 Pi loga(Pi/Q i), i.e.

the Kullback–Leibler relative entropy [65]. For any order q 	= 0, the
Rényi relative entropy Dq(Pi‖Q i) of Eq. (20) vanishes if and only
if Pi = Q i for all i = 1 to N [23]. For any q > 0, the Rényi relative
entropy Dq(Pi‖Q i) is always nonnegative.

From Eq. (20) one can extract the factor

N∑
i=1

P q
i Q 1−q

i = a(q−1)Dq(Pi‖Q i) (21)

and replacing in Eq. (11), a relation between Tsallis Dq and Rényi
Dq relative entropies is obtained as

Dq = 1

ln(a)

1

1 − q

[
1 − a(q−1)Dq

]
, (22)

or equivalently,

Dq = log2−q
a

(
aDq

)
. (23)

The function Dq(Dq) in Eq. (23), similar to log2−q
a (·), is a mono-

tonic increasing function for any order q. At q = 1, this function
reduces to the identity function, when the two relative entropies
D1 and D1 in Eq. (23) coincide with the Kullback–Leibler relative
entropy.

The Rényi transinformation or mutual information Iq , parallel-
ing Iq of Eq. (14), is
Iq = Dq(Pij‖Pi Q j), (24)

and it is therefore related to the Tsallis transinformation Iq by the
same monotonic increasing relation

Iq = log2−q
a

(
aIq

)
. (25)

Due to the monotonic increasing character of Eq. (25), the Rényi
channel capacity Cq realizing the maximum of Iq is related to the
Tsallis capacity Cq in Eq. (15) similarly by

Cq = log2−q
a

(
aCq

)
, (26)

and is achieved by the same input probabilities {P∗
i } as in Eq. (15).

These relations between the Tsallis and Rényi information mea-
sures will be useful to us in the sequel. Both types of measures
stand as possible generalizations that include the conventional
Shannon information measures as a special case. As a useful ap-
plication, these properties have formed the basis of an interesting
generalization to the Shannon source coding theorem asserting an
average coding length lower bounded by the Shannon entropy of
the source. The work of [17] established an extended coding theo-
rem where the Rényi entropy of the source forms a lower bound to
some generalized average coding length. Based on the correspon-
dence of Eq. (19), the possibility of another extended coding theo-
rem based on the Tsallis entropy was announced in the publication
of [21]. The theorem was explicitly worked out in [67], showing
another generalized coding length lower bounded by the Tsallis
entropy of the source. The correspondence of this section between
Tsallis and Rényi information measures will appear specially sig-
nificant also in the characterization of stochastic resonance.

4. A binary information channel

An information channel emits discrete input symbols X from
the binary alphabet {0,1}. The successive input symbols are in-
dependent and identically distributed with the probabilities P1 =
Pr{X = 1} and P0 = 1 − P1 = Pr{X = 0}. At the receiving end of the
channel, the discrete output symbols Y are in the binary alphabet
{0,1}. Transmission over the channel is characterized by the four
conditional probabilities P j|i = Pr{Y = j | X = i}, for (i, j) ∈ {0,1}2.
The joint input–output probabilities result as Pij = P j|i P i , and the
output probabilities Q j = Pr{Y = j} = ∑1

i=0 P j|i P i . For this dis-
crete binary channel, the input–output Tsallis transinformation of
Eq. (14) follows as

Iq(X; Y ) = 1

1 − q

1∑
j=0

[
P0 P j|0

(
1 −

(
P j|0
Q j

)q−1)

+ P1 P j|1
(

1 −
(

P j|1
Q j

)q−1)]
. (27)

Eq. (27) is the input–output Tsallis transinformation for any
(memoryless) discrete binary channel characterized by the four
transmission probabilities P j|i . We now specify concrete physical
conditions that determine a definite channel and its probabilities
P j|i . We consider the binary input X in the transmission corrupted
by a white noise W to yield X + W , and then at the receiver
X + W is compared to a fixed response threshold θ to determine
the binary output Y of the channel according to:

If X + W > θ then Y = 1,

else Y = 0. (28)

The noise W has the cumulative distribution function F (w) =
Pr{W � w}. The input X and the noise W are statistically inde-
pendent.
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Fig. 3. Input–output Tsallis transinformation Iq(X; Y ) from Eq. (27), as a function
of the rms amplitude σ of the zero-mean Gaussian noise W , for an information
channel with input probability P1 = 0.45 and threshold θ = 0.8. The order q goes
from 0.2 to 2.6 with step 0.2. The crosses (×) identify q = 1 when Iq=1(X; Y ) is
the Shannon transinformation. At σ = 0 is Iq(X; Y ) = H2−q(P0, P1).

The input–output transmission probabilities of this discrete bi-
nary channel are readily derived. For instance, the probability
P0|1 = Pr{Y = 0 | X = 1} is also Pr{X + W � θ | X = 1} which
amounts to Pr{W � θ − 1} = F (θ − 1). With similar rules one ar-
rives at

P0|1 = Pr{Y = 0 | X = 1} = F (θ − 1), (29)

P1|1 = Pr{Y = 1 | X = 1} = 1 − F (θ − 1), (30)

P0|0 = Pr{Y = 0 | X = 0} = F (θ), (31)

P1|0 = Pr{Y = 1 | X = 0} = 1 − F (θ). (32)

These transmission probabilities P j|i , (i, j) ∈ {0,1}2, define an
asymmetric binary channel. We shall study on this channel the
impact of the level of the noise W measured by its rms ampli-
tude σ . Throughout the study, the level of signal is kept constant,
only the level σ of the noise is varied. So this amounts to a signal-
to-noise ratio which is a constant divided by σ ; and the evolutions
of the information measures we will study as a function of σ , as in
Figs. 3, 4 and 6, can equivalently be seen as evolutions as a func-
tion of the signal-to-noise ratio. Also, as a classic picture inherent
to the model of discrete channel, the bandwidth is not changed
when the noise is varied. Bandwidth would come into play based
on further assumptions on the rate at which discrete symbols are
applied and transmitted through the channel. This aspect is decou-
pled and not addressed in the classic model of discrete channel,
and assumed invariant in this respect.

For this asymmetric binary channel resulting from Eqs. (29)–
(32), a typical evolution of the Tsallis transinformation Iq(X; Y )

of Eq. (27) is shown in Fig. 3, with the binary input X = 0 or 1
evolving on both sides of the response threshold θ = 0.8. In such
condition, the presence of the channel noise W in Eq. (28) hin-
ders the recovery of the information signal at the receiving end.
It results that the performance of the transmission, as measured
by the input–output Tsallis transinformation Iq(X; Y ), decreases as
the level of the noise W increases, as visible in Fig. 3.

In Fig. 3, a similar decreasing evolution of the Tsallis transin-
formation Iq(X; Y ) as the level of noise increases, is observed for
any order q, especially, but not only, in the Shannon case q = 1. In
this respect, this shows that the Tsallis transinformation Iq(X; Y )

at any order q, is capable of manifesting the detrimental action of
the noise in the transmission of information through the channel.
Fig. 4. Input–output Tsallis transinformation Iq(X; Y ) from Eq. (27), as a function
of the rms amplitude σ of the zero-mean Gaussian noise W , for an information
channel with input probability P1 = 0.45 and threshold θ = 1.2. The order is q = 0
then from q = 0.1 to 5.5 with step 0.2. In addition, the blue curve marked by the
cross (×) corresponds to q = 1 when Iq=1(X; Y ) is the Shannon transinformation.
On each curve the maximum is indicated by a circle (◦), except for q = 1 where the
maximum is at the cross (×). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this Letter.)

We will now consider another regime of operation of the channel
of Eq. (28), and show the possibility of a constructive action of the
noise in the transmission of information assessed with the Tsallis
transinformation Iq(X; Y ).

5. Noise-improved information transmission

5.1. Noise-improved Tsallis transinformation

For an information channel with a response threshold θ = 1.2
in Eq. (28), the evolution of the input–output Tsallis transinforma-
tion Iq(X; Y ) from Eq. (27) is presented in Fig. 4.

The results of Fig. 4 clearly demonstrate a nonmonotonic ac-
tion of the noise in the transmission. With the conditions of Fig. 4,
the binary input X by itself is always below the response thresh-
old θ = 1.2 on the output. As a consequence, in the absence of
noise at σ = 0 in Fig. 4, the channel output permanently stays at
Y = 0. No information is transmitted through the channel, as ex-
pressed by the Tsallis transinformation Iq(X; Y ) which remains at
zero when σ = 0, for any finite order q. However, as the noise level
σ is progressively raised above zero in Fig. 4, a cooperative effect
can take place, with the noise W assisting the subthreshold input
X to overcome the response threshold θ . This elicits transitions in
the output Y carrying statistical dependence with the input X . As
a consequence, a nonzero input–output transmission of informa-
tion occurs, as registered by the Tsallis transinformation Iq(X; Y )

which starts to increase in Fig. 4 as the noise level σ rises above
zero. There exists a nonzero amount of noise for which the infor-
mation transfer measured by Iq(X; Y ) is maximized, and such a
maximum of Iq(X; Y ) occurs for any finite order q as visible in
Fig. 4. This is the effect of stochastic resonance or noise-aided in-
formation transmission, registered by the Tsallis transinformation
Iq(X; Y ) in Fig. 4 at any finite order q.

In Fig. 4, the order q = 1 corresponds to the situation where
Iq=1(X; Y ) is the Shannon transinformation, and Iq=1(X; Y ) in
Fig. 4 culminates at a maximum for a nonzero level of noise σ ,
as also reported in [60,63].

It is visible in Fig. 4 that the maximum of the Tsallis transinfor-
mation Iq(X; Y ) occurs at an optimal level σopt of the noise which
varies with the Tsallis order q. This variation of σopt with q, i.e.
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Fig. 5. Optimal noise rms amplitude σopt maximizing the input–output Tsallis
transinformation Iq(X; Y ) of Fig. 4, as a function of the order q.

σopt(q) = arg max
σ

Iq(X; Y ), (33)

is depicted in Fig. 5 for the binary channel of Fig. 4.
A remarkable property observed in Fig. 5 is that the optimal

noise level σopt maximizing Iq(X; Y ), experiences a nonmonotonic
evolution with the order q. There exists in Fig. 5 an optimal value
qopt ≈ 2.3 of the Tsallis order where σopt is maximized. The non-
monotonic evolution of σopt maximized at qopt in Fig. 5, demon-
strates that the stochastic resonance effect selects a specific order
qopt of the Tsallis transinformation Iq(X; Y ). This optimal order
qopt identifies the Tsallis transinformation Iqopt(X; Y ) that is capa-
ble of drawing the most pronounced benefit from the added noise
in stochastic resonance, since Iqopt(X; Y ) stands as the measure
of input–output information transfer that gets maximized by the
largest optimal noise level σopt.

An interesting connection is that σopt defined by Eq. (33) is also
the optimal noise level that maximizes the Rényi transinformation
Iq(X; Y ) with same order q. This is ensured by the monotonic in-
creasing relation of Eq. (25) connecting Tsallis Iq(X; Y ) and Rényi
Iq(X; Y ) transinformations. Although the measures Iq(X; Y ) and
Iq(X; Y ) do not culminate at the same maximum value in stochas-
tic resonance, they do so for the same optimal noise level σopt.
And since the curve σopt(q) is the same and unique for the Tsallis
and Rényi measures, the optimal order qopt selected by stochastic
resonance is the same also. In this respect, such properties ob-
tained in [63] when exploiting the Rényi entropy for characterizing
stochastic resonance, are shared in common with the Tsallis en-
tropy evaluated here.

5.2. Noise-improved Tsallis information capacity

The optimal Tsallis order qopt selected by the stochastic reso-
nance as in Fig. 5, is usually related to a given information source
characterized by the input probability P1. A point of view not im-
pacted by this dependence with P1 is accessible by considering the
Tsallis information capacity of the channel, as defined in Eq. (15).
For the binary channel according to Eq. (28), the Tsallis informa-
tion capacity Cq is shown in Fig. 6, for different Tsallis orders q
including the Shannon case q = 1.

Compared to the Tsallis transinformation Iq(X; Y ) at fixed P1
as in Fig. 4, the same remarkable properties related to stochastic
resonance are observed for the Tsallis information capacity Cq in
Fig. 6. At any order q, the Tsallis information capacity Cq under-
goes a nonmonotonic evolution as the noise level σ increases. In
the regime θ > 1 of a subthreshold binary input X , when no noise
Fig. 6. Input–output Tsallis information capacity Cq , as a function of the rms am-
plitude σ of the zero-mean Gaussian noise W , for an information channel with
response threshold θ = 1.2. On each curve the maximum is indicated by a circle (◦),
except for q = 1 identified by a cross (×) when Cq=1 is the Shannon information
capacity. The order q goes from 0 to 2.2 with step 0.1.

Fig. 7. Optimal noise rms amplitude σopt maximizing the Tsallis information capac-
ity Cq , as a function of the order q. The information channel is with zero-mean
Gaussian noise W and threshold θ .

is present no information is transmitted, as marked by a vanish-
ing Tsallis capacity Cq at any order q when σ = 0 in Fig. 6. Adding
noise then modifies the channel, in a way where the subthresh-
old input X = 1 has more chance to get across and be correctly
decoded as Y = 1 at the output. This constructive action of the
noise induces a capacity Cq rising above zero in Fig. 6. Moreover,
a nonzero level of noise exists where the capacity Cq is maximized
in Fig. 6. This is again a manifestation of stochastic resonance with
a Tsallis information capacity Cq maximized at a nonzero optimal
level of noise on the channel. Also, as in Fig. 4, the optimal noise
level σopt maximizing Cq in Fig. 6, is found dependent upon the
Tsallis order q, yet with a nonmonotonic dependence. This depen-
dence of σopt with q is represented in Fig. 7.

The nonmonotonic dependence of σopt with q in Fig. 7, iden-
tifies an optimal Tsallis order qopt = 1.44 at which the optimal
noise level σopt of stochastic resonance assumes its largest value.
This optimal order qopt = 1.44 is observed in Fig. 7 invariant
with the response threshold θ of the channel. The stochastic res-
onance selects a nontrivial Tsallis order qopt = 1.44 through the
Tsallis information capacity Cqopt that exploits stochastic resonance
in the most pronounced way since Cqopt gets maximized by the
largest possible optimal noise level σopt. The optimal Tsallis order
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qopt = 1.44 selected by stochastic resonance in the capacity Cq , is
now intrinsic to the binary channel and insensitive to the input
probability. And the optimal order qopt, selected by stochastic reso-
nance in the Tsallis information capacity, differs from the Shannon
order q = 1.

It is interesting to notice also optimal orders q ≈ 1.4 reported
in other studies [68,69] concerned with nonextensivity in complex
phenomena. It is known that the Tsallis entropy of order q is max-
imized by a probability distribution consisting in the q-Gaussian
density [25,70]. The studies of [68,69] also find orders q ≈ 1.4 as
providing the best fits for describing fluctuations in financial data
with q-Gaussian densities. There is at least in common with the
results of Fig. 7 the exposition of specific processes that single out
nontrivial orders q in relation to the Tsallis entropy.

Also, regarding the results of Fig. 7, an interesting connection is
again established by the monotonic increasing relation of Eq. (26)
between the Tsallis Cq(X; Y ) and Rényi Cq(X; Y ) information ca-
pacities. Both capacities are simultaneously achieved by the same
input probability P∗

1 , and although Cq(X; Y ) and Cq(X; Y ) do not
assume the same values, they culminate for the same optimal
noise level σopt in stochastic resonance as in Fig. 6. As a conse-
quence, the evolutions of σopt with q shown in Fig. 7, are common
to both Cq(X; Y ) and Cq(X; Y ). And the nontrivial optimal order
qopt 	= 1 selected by stochastic resonance is the same for both the
Tsallis and the Rényi information measures. This justifies that in
this respect, the characterization of stochastic resonance from the
Tsallis entropy accomplished here, reproduces the results obtained
in [63] from the Rényi entropy.

6. Discussion

The present results demonstrate that the Tsallis-entropy-based
measures are able to register stochastic resonance taking place in
a basic informational model formed by a binary channel. Quantita-
tively, the optimal noise level maximizing the Tsallis information
measure is found to depend upon the order q of the measure.
This confirms a general picture emerging from stochastic resonance
studies that there is no one single noise condition adapted to all
measures, but that the optimal noise level has to be determined
depending upon the measure being optimized. Still, beyond the
specific quantitative values of the optimal noise level, our study
also reveals that, qualitatively, the feasibility of stochastic reso-
nance identified by a nonzero optimal noise level, is preserved
with all Tsallis measures, of any order q. At order q = 1, our anal-
ysis retrieves the traditional Shannon condition, where stochastic
resonance was previously observed in [60], and where the chan-
nel is optimized in the sense of the standard (Shannon) measure
of transmission efficacy. The extended conditions where stochastic
resonance is obtained here consolidate the position of a general-
ized framework offered by the Tsallis entropy for quantitative mea-
sure of information. We come back in the last paragraph of this
section on possible interpretations for such extended measures of
transmission efficacy. Another outcome is that the observation of
stochastic resonance allows us to single out optimal Tsallis order q.
In definite conditions, when seeking the Tsallis measures that best
exploit stochastic resonance, then nontrivial orders usually emerge,
identifying in this context optimal information measures differing
from the classic Shannon one. Stochastic resonance, with its intrin-
sic informational significance, acts here as a benchmark to assess
quantitative information measures.

A previous paper [71] also proposed an evaluation of stochastic
resonance with generalized measures based on the Tsallis entropy.
This study of [71] considered stochastic resonance under its early
form, for the transmission of a deterministic sinusoidal signal by
a dynamic system governed by a double-well quartic potential, i.e.
the original setting under which stochastic resonance was first in-
troduced [29]. Since then, stochastic resonance has been extended
to other forms of signals and systems for information transmis-
sion [31]. By contrast with [71], the form of stochastic resonance
analyzed here concerns the transmission of a random information-
carrying signal by a standard reference model of binary channel.
The study of [71] assessed the noise-assisted transmission of the
sinusoidal signal by means of the traditional measures of signal-
to-noise ratio in the frequency domain, and spectral amplification
factor, and also by means of generalized measures based on the
Tsallis entropy, which especially were shown to allow enhanced
sensitivity in specific conditions. The Tsallis measures that we used
here are slightly different from those tested in [71], and stand as a
direct generalization based on the Tsallis entropy, of the standard
Shannon-entropy-based analysis of the reference model of com-
munication formed by the binary information channel. Another
connection with concepts from nonextensive statistical physics
was discussed in [72–74], where for the early form of stochastic
resonance with a sinusoidal signal transmitted by a double-well
dynamics, the impact of non-Gaussian and especially q-Gaussian
noises [70,25], was examined, with traditional measures like the
signal-to-noise ratio in the frequency domain. Together with the
present study, all these results contribute to substantiate the con-
nections between Tsallis-entropy-based measures of information,
and the emerging paradigm with strong informational significance
constituted by stochastic resonance. Further elements in relation
to stochastic resonance could be obtained by applying Tsallis infor-
mation measures to more elaborate communication channels, for
instance under the form of arrays of threshold devices supporting
suprathreshold stochastic resonance and offering models for the
transmission of information in neural networks [59,31].

The present study also involves a correspondence between Tsal-
lis and Rényi information measures. This correspondence in Sec-
tion 3 starts with the relation between the entropies expressed by
Eq. (19), and is developed to all other quantities relevant for infor-
mation measure, namely the divergence in Eq. (23), the transin-
formation in Eq. (25), and the information capacity in Eq. (26).
These correspondence equations in Section 3, written using the q-
logarithm, clearly manifest the monotonic increasing character of
the relations between the Tsallis and Rényi information measures.
The correspondence and its monotonic character are both specif-
ically meaningful in the characterization of stochastic resonance
worked out here. The essential step for characterizing stochastic
resonance is to examine the evolution of the information measures
as the level of noise is increased, and to identify conditions of a
nonmonotonic peaky evolution where an information measure cul-
minates at a maximum for a nonzero optimal level of noise. This
step is passed in the same way by both the Tsallis and Rényi infor-
mation measures connected by the monotonic increasing relations
of Section 3. Stochastic resonance is then registered in the same
conditions by both the Tsallis and Rényi information measures. And
when stochastic resonance is observed, it occurs for an optimal
noise level which simultaneously maximizes both the Tsallis and
Rényi information measures. Moreover, owing again to the mono-
tonic increasing relations of Section 3, the optimal orders that are
singled out by stochastic resonance are found the same for the
Tsallis and Rényi measures. In this respect, a strong parallel is es-
tablished between the present study of stochastic resonance with
Tsallis information measures and that of [63] with Rényi measures.

In a larger prospect, an essential difference is that the Rényi
entropy of Eq. (16) is known to be extensive or additive for two
independent sets of events, while the Tsallis entropy of Eq. (1)
is nonextensive or nonadditive. This is consistent with the rela-
tion of Eq. (19) between the two entropies; since this relation
is nonlinear in general, if the Rényi entropy is additive, then the
Tsallis one cannot be. Nonextensivity of the Tsallis entropy is a
specific feature, important to its implication in the nonextensive
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generalization of statistical mechanics. If a specific connection can
be made of stochastic resonance with the nonextensive character
of such generalization to statistical mechanics, then the charac-
terization realized here with Tsallis measures could take special
significance in this direction. Conversely, the present characteriza-
tion of stochastic resonance with Tsallis-entropy-based information
measures could enlarge the inventory of complex phenomena usu-
ally associated with the development of a nonextensive general-
ization to statistical mechanics. For this direction of development,
the present study places a special emphasis at the intersection
between statistical physics and the physics of information, since
the Tsallis-entropy-based measures are here exploited and consol-
idated for primarily their informational significance. This suggests
to envisage the possibility of a nonextensive generalization to sta-
tistical physics to include also some “nonextensive” generalization
to statistical information theory.

As an illustration based on recent advances, a specific direction
where the Tsallis entropy acquires additional significance at the
intersection with information theory goes as follows. In traditional
source coding, the overall coding cost is directly measured as the
length of each codeword averaged according to the probability of
occurrence of this codeword. Such an overall (linear) coding cost
is lower bounded by the Shannon entropy of the source. A gen-
eralized approach to source coding exists that uses more flexible
nonlinear coding costs. The coding cost can be taken as a non-
linear (nondecreasing) function of the length of each codeword
averaged according to its probability of occurrence. This expresses
that longer codewords are costly to encode in a way that is not
linear with their length. With such a nonlinear way of measuring
coding efficiency, it has been shown recently [21,67] that the Tsal-
lis entropy of order q forms a lower bound to an overall coding
cost based on a specific family, parameterized by q, of general-
ized (nonlinear) functions of the codeword length. This generalized
source coding theorem based on the Tsallis entropy of order q,
contains as a special case at q = 1, the traditional Shannon source
coding theorem ruling the linear coding cost. Such generalized ap-
proach providing additional significance to the Tsallis entropy at
the occasion of a source coding problem, could possibly be ex-
tended to a channel coding problem. In traditional channel coding,
the rate of error-free information transmission over a channel is
upper bounded by the input–output Shannon information capac-
ity of the channel. This is based on a “linear” definition of the
transmission rate as the ratio of the number of source symbols to
the number of code symbols. A generalized rate could be envis-
aged based on nonlinear functions of the length of the codewords
to measure the transmission cost. This would express for instance
that longer codewords may be costly to transmit in a way that
is not linear with their length. The Tsallis channel capacity could
emerge as a bound to a generalized transmission rate in channel
coding, much as the Tsallis entropy acts as a bound to a general-
ized coding length in source coding. If such conditions are realized,
addition of noise would directly serve to improve the generalized
transmission rate over the binary channel studied here, and differ-
ent optimal levels of noise, as in Figs. 4–7, would maximize the
generalized rates associated with different q. Such possibilities re-
main to be explored explicitly, but represent possible directions
in which the Tsallis entropy could receive additional significance
in relation to information science, especially in extended contexts
with unconventional properties such as the beneficial role of noise
in stochastic resonance.
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[69] S. Drożdż, J. Kwapień, P. Oświȩcimka, R. Rak, New Journal of Physics 12 (2010)

105003.
[70] W.J. Thistleton, J.A. Marsh, K. Nelson, C. Tsallis, IEEE Transactions on Informa-

tion Theory 53 (2007) 4805.
[71] C.J. Tessone, A. Plastino, H.S. Wio, Physica A 326 (2003) 37.
[72] H.S. Wio, Europhysics News 36 (2005) 197.
[73] M.A. Fuentes, R. Toral, H.S. Wio, Physica A 295 (2001) 114.
[74] F.J. Castro, M.N. Kuperman, M. Fuentes, H.S. Wio, Physical Review E 64 (2001)

051105.



References with the titles of the cited papers:

[1] F. A. Bais and J. D. Farmer, “The physics of information,” in Philosophy of Information (Handbook of the Philosophy of
Science) (P. Adriaans and J. van Benthem, eds.), ch. 5b, Amsterdam: North Holland, 2008. (also arXiv:0708.2837v2).

[2] R. Landauer, “The physical nature of information,” Physics Letters A, vol. 217, pp. 188–193, 1996.

[3] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing. Oxford: Oxford University Press, 2001.
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[17] L. L. Campbell, “A coding theorem and Rényi’s entropy,” Information and Control, vol. 8, pp. 423–429, 1965.

[18] P. A. Humblet, “Generalization of Huffman coding to minimize the probability of buffer overflow,” IEEE Transactions on
Information Theory, vol. 27, pp. 230–232, 1981.
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[23] I. Csiszár, “Generalized cutoff rates and Rényi’s information measures,” IEEE Transactions on Information Theory, vol. 41,
pp. 26–34, 1995.

[24] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” Journal of Statistical Physics, vol. 52, pp. 479–487, 1988.

[25] C. Tsallis, Introduction to Nonextensive Statistical Mechanics. New York: Springer, 2009.

[26] S. Abe, S. Mart́ınez, F. Pennini, and A. Plastino, “Nonextensive thermodynamic relations,” Physics Letters A, vol. 281,
pp. 126–130, 2001.

[27] A. S. Parvan, “Microcanonical ensemble extensive thermodynamics of Tsallis statistics,” Physics Letters A, vol. 350, pp. 331–
338, 2006.

[28] A. S. Parvan, “Extensive statistical mechanics based on nonadditive entropy: Canonical ensemble,” Physics Letters A, vol. 360,
pp. 26–34, 2006.

[29] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Reviews of Modern Physics, vol. 70, pp. 223–
287, 1998.

[30] F. Chapeau-Blondeau and D. Rousseau, “Noise improvements in stochastic resonance: From signal amplification to optimal
detection,” Fluctuation and Noise Letters, vol. 2, pp. L221–L233, 2002.

[31] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochastic Resonance: From Suprathreshold Stochastic
Resonance to Stochastic Signal Quantization. Cambridge: Cambridge University Press, 2008.

[32] B. M. Jost and B. E. A. Saleh, “Signal-to-noise ratio improvement by stochastic resonance in a unidirectional photorefractive
ring resonator,” Optics Letters, vol. 21, pp. 287–289, 1996.

[33] M. Misono, T. Kohmoto, Y. Fukuda, and M. Kunitomo, “Stochastic resonance in an optical bistable system driven by colored
noise,” Optics Communications, vol. 152, pp. 255–258, 1998.

[34] S. Blanchard, D. Rousseau, D. Gindre, and F. Chapeau-Blondeau, “Constructive action of the speckle noise in a coherent
imaging system,” Optics Letters, vol. 32, pp. 1983–1985, 2007.
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