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1 I N T R O D U C T I O N

ETVO is a C++ library to handle the behaviour of a class of timed Discrete Event Systems
(DES). This library contains a set of C++ classes to describe and to compute the formal series
involved in the description of ordinary Timed Event Graphs (TEGs), Weighted Timed Event
Graphs (WTEGs) and Timed Event Graphs with periodic holding times (PTEGs). The WTEGs
are the TEGs whose the arcs can be weighted with integer values that indicate how many tokens
are consumed/produced by the transition firings. The PTEGs are made of TEGs where the
holding times can be described by periodic functions.

The systems concerned by the use of ETVO belong to the theory of (max,+) linear system1.
More precisely, ETVO is relevant to handle systems that can be qualified as event-variant and
time-variant. For WTEGs, the system response to a solicitation generally varies depending
on the input event number. Not all inputs will have the same effect. It’s why we say that
the input-output behaviour of a WTEG is event-variant. In a symmetric way, for PTEGs, the
system response depends on the date of the input and the input-output behavior is said to be
time-variant. Finally, ETVO can describe systems that are simultaneously event-variant and
time-variant.

The variables of the formal series considered in this work can be assimilate to basic systems
called operators. In our context, an operator is a mapping able to transform a signal, where a
signal is a list of events distributed on a time axis. The ETVO library handles a set of elementary
operators that allow to describe event and temporal modifications.

This project builds on existing tools. Before this project, a library called MinMaxGD was
already existing [8] to handle formal series in the idempotent semiring called Max

in Jγ, δK. In Min-
MaxGD, series are well suited to describe time-invariant and event-invariant (min,+)/(max,+)
systems. It is the appropriate tool to describe and compute the behaviour of ordinary TEGs.
ETVO encompasses the library MinMaxGD as a part of it and extends its set of classes to
manage formal series for specific event-variant and time-variant systems.

However, for a user of MinMaxGD, some similarities remain in ETVO. For instance, series
are still written in a standard form with an ultimate periodic pattern

s = p⊕ q(γνδτ)∗.

1 even if afterwards there will be few equations on the (max,+) algebra itself.
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6 I N T R O D U C T I O N

But in general, the product is no longer commutative and we can exhibit two equivalent forms

s = p⊕ q(γνδτ)∗

= p′ ⊕ (γν′δτ′)∗q′.

This document gives an introduction to DES and their modelling with ETVO library. The
presentation ends with a treatment of some examples. The reader will find complementary
presentations in [5], [11], [14] and the PhD thesis of Johannes Trunk [12].



2 D I S C R E T E E V E N T S Y S T E M S

2.1 S E Q U E N C E S , C O U N T E R , DAT E R

We first recall some features related to the modelling of Discrete Event Systems (DES). A DES
is a dynamic system which is driven by the occurrence of punctual phenomena called events.
An event reflects the moment when the system operates a state evolution. In a manufacturing
system modelled as a DES, the events are for instance: the arrival of a part in a stock, the
moment when a task is starting or ending, the moment when a resource is being seized or
released etc.

More precisely, in a DES, we tend to classify events by type of event. For example, the
arrival of a new part in a production cell constitutes a specific type of event ("part arrival"), and
the start of a robot cycle another type of event. And for each type of event, there can be several
occurrences. Each arrival of a part is a new occurrence of the event type "part arrival". For
chaque type of event we use a different label. And we will distinguish the different occurences
of a type of event by a number.

Considering a system as a "Discrete Event System" means that its evolution is described by a
sequence of occurences of different event types along a time axis. For instance in Fig.1, a type
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t

Figure 1: Sequence of events and counter function.

of events labelled b is depicted. Each occurrence of b is depicted by a big dot. This sequence of
events can be described by a set of pairs (bk, tk) where k ∈N, tk, bk ∈ Z, bk denotes the k-th
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occurrence of event b and tk its occurrence time. For the sequence in Fig.1, the occurrences of
b are given by

{b} = {(b0, 2), (b1, 6), (b2, 6), (b3, 11), (b4, 17), ...}.

The first occurrence of b is at date t = 2, then two simultaneous occurrences appear at t = 6,
etc. A sequence of events can be infinite,

{a} = {(ak, 2k + 1)} = {(a0, 1), (a1, 3), (a2, 5), ...}k∈N

or finite
{b} = {(b0, 2), (b1, 6), (b2, 6), (b3, 11), (b4, 17), (b5,+∞)},

which means that the sixth occurrence of b never occurs.
For a reader familiar with the (max,+) approach [1][10], there is two alternative representa-

tions of event sequences. The first one is given by a counter function

[counter function]
b(t) : Z→ Z,

t 7→ the number of events b occurred before date t.

Fig.1 depicts the counter function b(t) associated to the occurrences of events b. Let us remark
that a counter function is naturally monotonic.

The other representation, symmetrical, is called dater function. Such a function is defined by

[dater function]
b(k) : Z→ Z,

k 7→ date of the k-th occurrence of event b.

For the sequence {b} depicted in Fig.1, the first values of b(k) are b(0) = 2, b(1) = 6, etc.
Sequences of events, counter functions and dater functions, all act as signals for DES since

they encode the history of the occurrences of a given type of event. Therefore, the generic
name "signal" will be sometimes used in place of sequence, counter or dater.

Notation 1 (Sets of signals) In this document, we will denote by

Σs : the set of event sequences, (1)

Σc : the set of counter functions, (2)

Σd : the set of dater functions. (3)
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2.2 S Y N C H R O N I Z AT I O N

In the DES considered here, the synchronization is clearly the prevailing phenomenon. The
synchronization of two sequences of events (denoted by ⊕) is a sequence of events. The
synchronization can be expressed as follows: {a}, {b} ∈ Σs, then {c} = {a} ⊕ {b} means
that each occurrence ck is as soon as possible after ak and bk.

Formally,

{(ck, τk)} = {(ak, tk)} ⊕ {(bk, t′k)} = {(ck, max(tk, t′k)}

For the sequences given in Fig.2, we have {a} = {(a0, 1), (a1, 7), (a2, 10), (a3, 10), (a4, 14)}
and {b} = {(b0, 2), (b1, 4), (b2, 8), (b3, 13)}. Therefore the synchonization of {a} and {b}
is given by

{c} = {(c0, 2), (c1, 7), (c2, 10), (c3, 13)}.

Figure 2: Synchronization of two sequences {c} = {a} ⊕ {b}

When signals are described as counter or dater functions, the synchronization is expressed as
follows. For the counter description, a, b ∈ Σc,

∀t ∈ Z, (a⊕ b)(t) = min(a(t), b(t)).

For the dater description, a, b ∈ Σd,

∀k ∈ Z, (a⊕ b)(k) = max(a(k), b(k)).

It is important to remark that the synchronization is an idempotent operation on signals :
∀a ∈ Σ, a⊕ a = a.
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2.3 O P E R ATO R S

In the ETVO library, the key feature is not on the description of signals. The core of the
library lies on the description of systems able to transform signals. A system which maps a
signal to a signal is called an operator. For example in Fig.3, the system S can be considered
as an operator able to transform the sequence {a} = {(a0, 1), (a1, 5), (a2, 9)} into another
sequence of events, namely {b} = {(b0, 3), (b1, 6), (b2, 6), (b3, 9)}. System S is an operator
s.t. S{a} = {b}.

Figure 3: Operator S mapping {a} to {b} : {b} = S{a}

Remark 1 It is important to note that changing the type of signal does not change the nature
of the operator considered. Whether the signal is a sequence in Σs or a counter function in Σc,
the operator remains the same.

The ETVO library provides a set of 6 basic operators that can be composed to describe more
complex systems. The most simple operators that are described in ETVO are the time-shift and
the event-shift operator, i.e., the operators already introduced in [4] to describe the behaviour
of the ordinary TEGs.

Time-shift operator δτ

The time-shift of τ time units is an operator denoted δτ. The δτ operator transforms a
sequence of events into a sequence where each event is time shifted. For {a}, {b} ∈ Σs,
δτ{a} = {b} is expressed as

δτ{(ak, tk)} = {(bk, tk + τ)}.

In Fig.4, δ3 operates a shift of 3 time units, say

δ3{(a0, 1), (a1, 5), (a2, 5), (a3, 9)} = {(b0, 4), (b1, 8), (b2, 8), (b3, 12)}.
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When expressed as a mapping on counter functions, the δτ operator can be defined by :

∀a ∈ Σc, ∀t, (δτa)(t) = a(t− τ).

When expressed as a mapping on dater functions, the δτ operator can be defined by :

∀a ∈ Σd, ∀k, (δτa)(k) = a(k) + τ.

Figure 4: Time-shift/Event-shift : {b} = δ3{a} and {c} = γ2{a}

Event-shift operator γν

The event-shift of ν is a basic operator denoted γν. The γν operator produces a sequence of
events where the event numbering is shifted. At any given time, the difference between the
number of output and input events is fixed and equals to ν, say γν{(ak, tk)} = {(bk+ν, tk)}.
Operator γν maps the event ak to bk+ν. In order to be consistent, even if the input sequence has
no event, ν events are produced by the γν operator at date −∞. More explicitly,

γν{(a0,+∞)} = {(b0,−∞), (b1,−∞), ..., (bν−1,−∞), (bν,+∞)}.

It is why in Fig.4, the first two occurrences of b are at date −∞,

γ2{(a0, 1), (a1, 5), (a2, 5), (a3, 9)} = {(b0,−∞), (b1,−∞), (b2, 1), (b3, 5), (b4, 5), (b5, 9)}.

Operator γν can be expressed as well as a mapping on counter or dater functions. When
expressed as a mapping on counter functions:

∀a ∈ Σc, ∀k, (γνa)(t) = a(t) + ν.

When expressed as a mapping on dater functions : a ∈ Σd,

∀a ∈ Σd, ∀k, (γνa)(k) = a(k− ν).
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2.4 S E M I R I N G O F O P E R ATO R S

The set of operators introduced in ETVO has an idempotent semiring1 structure recalled now.
This algebraic context gives properties to addition and multiplication operations.

The main feature is that all the basic operators handled in ETVO are additive. For a, b being
two signals, an operator S is said to be additive if,

∀a, b ∈ Σ, S(a⊕ b) = Sa⊕ Sb.

Clearly, operators γν and δτ have this property. But hereafter we will introduce four other
operators satisfying this property as well.

The set of additive operators can be endowed with an idempotent semiring structure as
follows [5].

Notation 2 (Idempotent semiring of additive operators) The set O of additive operators,
endowed with the sum and the product given below, is an idempotent semiring: h1, h2 ∈ O,
x ∈ Σ,

h1 ⊕ h2 , ∀x, (h1 ⊕ h2)(x) = h1x⊕ h2x (4)

h1.h2 , ∀x, (h1.h2)(x) = h1(h2x) (5)

In this semiring, the neutral element for the addition is an operator denoted ε and the neutral
element for the product is the identity operator denoted e, ∀x ∈ Σ, e(x) = x. The semiring O
is not commutative, h1.h2 6= h2.h1.

Remark 2 The idempotent semiring structure is the characteristic shared by all the algebraic
structures used in the (max,+) system theory. The difference between the (max,+) algebra, that
is a semiring, and the algebra of operators denoted O is the nature of their elements. The
(max,+) algebra is an algebra of numbers whereas the semiring O is an algebra of mappings.

Notation 3 (Semiring Max
in Jγ, δK) The set of operators obtained by composing γν, δτ and ε is

a subsemiring of O denoted Max
in Jγ, δK. The identity operator of Max

in Jγ, δK can be expressed
by e = γ0 = δ0 and the null operator by ε = γ+∞δ−∞.

The semiring Max
in Jγ, δK is introduced in [4] and also detailed in [1]. It gives an algebraic

framework to formally handle TEGs. The next theorem recalls some well-known facts on
Max

in Jγ, δK. The software library called MinMaxGD [8] is dedicated to handle rational compu-
tations in Max

in Jγ, δK and is totally included in ETVO.

1 This algebraic structure is also called dioid in [1]
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Theorem 1 In Max
in Jγ, δK, we have

γnδt = δtγn (6)

γnγn′ = γn+n′ (7)

δtδt′ = δt+t′ (8)

γn ⊕ γn′ = γmin(n,n′) (9)

δt ⊕ δt′ = δmax(t,t′) (10)

Because of (6), Max
in Jγ, δK is a commutative idempotent semiring.

Event-variant operators µm and βb

In addition to γn and δt, ETVO library introduces two event-variant operators denoted µm
(multiplier) and βb (batch). The µm operator multiplies events. Each input event produces
instantaneously m output events. For the example depicted in Fig.5, {a} ∈ Σs, {b} = µ2{a},

µ2{(a0, 1), (a1, 4), (a2, 7), ...} = {(b0, 1), (b1, 1), (b2, 4), (b3, 4), (b4, 7), (b5, 7), ...}

Conversely, for the batch operator βb, b input events are needed to produce one output event.
In Fig.5, we have, {a} ∈ Σs, {c} = β3{a},

β3{(a0, 1), (a1, 4), (a2, 7), ...} = {(c0, 7), (c1, 15), ...}.

Figure 5: Event Muliplier/Batch : {b} = µ2{a} and {c} = β3{a}

Operators µm and βb can be expressed as mapping on counter functions as follows: a ∈ Σc

∀a, ∀t ∈ Z, (µma)(t) = a(t)×m, (βba)(t) = ba(t)/bc.
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Remark 3 To be exact, only the βb operator is event-variant. We can see that not all inputs
produce the same effect. Only one input event every b inputs leads to an output event.

Time-variant operators νv and ωw

Finally, the ETVO library introduces two time-variant operators denoted νv (time multiplier)
and ωw (time division). The νv operator multiplies the dates by v. For the example depicted in
Fig.6, {a} ∈ Σs, {b} = ν2{a},

ν2{(a0,−1), (a1, 1), (a2, 1), (a3, 4), ...} = {(b0,−2), (b1, 2), (b2, 2), (b3, 8), ...}

50
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clock rate � 2 
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Figure 6: Time multiplication/division : {b} = ∆3{a}

Conversely, for the operator ωw, dates are divided by w. Since the result must be integer, the
division of a date t is expressed by dt/we.

In Fig.6, we have, {a} ∈ Σs, {c} = ω3{a},

ω3{(a0,−1), (a1, 1), (a2, 1), (a3, 4), ...} = {(c0, 0), (c1, 1), (c2, 1), (c3, 2), ...}.

Operators νv and ωw can be expressed as mapping on dater functions as follows: a ∈ Σd

∀a, ∀k ∈ Z, (νva)(k) = a(k)× v, (ωwa)(k) = da(k)/we.

Remark 4 An effort of interpretation is required to keep these operators practical. As shown
in Fig.6, the operators νv and ωw should be interpreted as time-basis modifiers. This means
that the dates are possibly expressed with different time units (different clock intervals). In
Fig.6, three time basis denoted C1 to C3 are used to describe the dates of events a, b and c.
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Even if operators νv and ωw are quite hard to interpret, the composed operator obtained by
∆T = νTωT can be seen as a specific synchronization on dates which are a multiple of T. For
instance, the ∆3 operator delays all the input events up to the next date in 3Z. All the output
events are then synchronized on dates in 3Z.

Figure 7: Date synchronization : {b} = ∆3{a}

In the example given Fig.7, we have {b} = ∆3{a},

∆3{(a0, 1), (a1, 4), (a2, 6), (a3, 9), ...} = {(b0, 3), (b1, 6), (b2, 6), (b3, 9), ...}.

The operator ∆T can be expressed as a mapping on dater functions as follows: a ∈ Σd,

∀a, (∆Ta)(k) = da(k)/Te × T.

It is worth noticing that this operator can be also interpreted as a time-variant time-shift
operator. For instance in Fig.7, the gap between a0 and b0 is 2 time units whereas the gap is 0
time unit between a2 and b2. In [14], this feature is denoted ∆3 = δ〈0,2,1〉 to underline the fact
that operator ∆3 behaves like a time-varying delay.

In summary, the ETVO library introduces the 6 basic operators recalled below. Three of
them correspond to a modification in the event domain and are called E-operators (γ, µ, β).
The three others implie modification in the time domain and are called T-operators (δ, ν, ω).

E-operators T-operators
γν : event-shift δτ : time-shift
µm : event-multiplier νv : date-multiplier
βb : event-batch ωw : date-divider
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By considering only some subsets of these operators, we obtain four different idempotent
semirings, which are subsemirings of O, that are usefull for DES modelling

Max
in Jγ, δK : semiring of sums and products in {ε, γν, δτ}
EJδK : semiring of weight-balanced sums and products in {ε, γν, δτ, µm, βb}
T JγK : semiring of weight-balanced sums and products in {ε, γν, δτ, νv, ωw}
ET : semiring of weight-balanced sums and products in{ε, γν, δτ, µm, βb, νv, ωw}

The semiring Max
in Jγ, δK is detailed in [4], [1] and the MinMaxGD toolbox to handle periodic

series is presented in [8].
The semiring EJδK is presented in [5],[6],[11],[13].
The semiring T JγK is introduced in [14].
All these algebraic structures are also recalled and detailed in the PhD thesis of Johannes

Trunk.

Proposition 1 In semiring O, operators γn, δt, µm, βb, ∆T satisfy:

γ1δ1 = δ1γ1 γnγn′ = γn+n′ δtδt′ = δt+t′ ( f 1)
γn ⊕ γn′ = γmin(n,n′) δt ⊕ δt′ = δmax(t,t′) ( f 2)

µmδ1 = δ1µm βbδ1 = δ1βb βmµm = e ( f 3)
∆Tγ1 = γ1∆T ∆TδT = δT∆T ( f 4)

µmµm′ = µm×m′ βbβb′ = βb×b′ ( f 5)
µmγ1 = γmµm γ1βb = βbγb ( f 6)
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ETVO has been developed in order to assist ourself in the computation of the behaviour of
DES. This section is devoted to the practical way calculations should be organized with ETVO.

3.1 T I M E D E V E N T G R A P H S

The formal series handled in ETVO are well suited to describe the behaviour of some subclasses
of timed Petri nets. First, we give here a very short description of the subclass of Timed Event
Graphs. This graphical model is presented in more detail in other references such as [1,
chap.2],[3], [10, chap.7],[9].

A Timed Event Graph (TEG) is a timed Petri net - with P the set of places, T the set of
transitions and A ⊂ (P× T) ∪ (T× P) the set of edges - such that each place has exactly one
upstream and one downstream transition.

Each place pk ∈ P can have a positive holding time value τ ∈ N and an initial marking
denoted M0(pk) ∈ N. The holding time is the minimal time a token must stay in the place
before being able to cross the downstream transition.

We denote by p• (resp. •p) the downstream (resp. upstream) transition of place p, and we
denote by t• (resp. •t) the set of downstream (resp. upstream) places of transition t. When
a TEG runs according to the earliest firing rule1, a transition tj fires as soon as each place
pl ∈ •tj contains at least n (n > 0) available tokens. Then n tokens are removed from each
place pl, and n tokens are added to each place pk ∈ t•j .

Timed Event Graphs provide a graphical representation of different dynamical phenomena.
For a TEG, signals (sequence, counters, daters) are attached to transitions. A transition is linked
to an event type and each of its firings is an occurrence of that event type.

In Fig.8 we see the main phenomena arising in TEGs. A transition with two upstream places
describes the synchronization of events. A place with a holding time leads to a time-shift
between the upstream and the downstream transitions. Finally, the initial marking acts as a
shift in the event numbering.

1 also called As Soon As Possible (ASAP) functioning

17
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Figure 8: Elementary Timed Event Graphs

Therefore, the structure of a TEG can be translated into a block-diagram where only γν

and δτ operators are involved, as well as the synchronization of signals (denoted ⊕ in the
block-diagram). For TEGs, the semiring considered is Max

in Jγ, δK and the computations can be
made by the MinMaxGD library included into ETVO.

Figure 9: TEG decomposition into basic operators
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In Fig.9, a TEG is depicted. Its decomposition in γν and δτ operators is given as a block-
diagram. The input corresponds to the signal u and the output is given by the signal y. All the
signals are related to each other by the next relations,

x1 = u⊕ γ2x4,
x2 = δ2x1,
x3 = x2,
x4 = δ3x3,
y = x2 ⊕ γ1x4.

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)′ is a vector of
signals, and A, B and C are matrices whose entries are operators{

x = Ax⊕ Bu
y = Cx

with

A =


ε ε ε γ2

δ2 ε ε ε

ε e ε ε

ε ε δ3 ε

 , B =


e
ε

ε

ε

 , C =
(
ε e ε γ1) .

Theorem 2 In a complete idempotent semiring, equation x = ax ⊕ b admits x = a∗b =
(e⊕ a⊕ a2 ⊕ a3 ⊕ . . .)b as least solution.

Since Max
in Jγ, δK is a complete idempotent semiring and according to Th.2, the input-output

behaviour of this system can be described by

y = CA∗Bu = (CB⊕ CAB⊕ CA2B...)u.

For this example and with the help of ETVO/MinMaxGD, the computation gives

y = (δ2 ⊕ γ1δ5)(γ2δ5)∗u.

This rational expression is an operator that describes how the input signal is transformed into
the ouput signal by the system. By analogy with the classical system theory, we say that this
operator is the transfer function of the TEG.

For this short example, the C++ script using ETVO is given below.



20 M O D E L L I N G W I T H E T VO

Listing 3.1: TEG transfer with ETVO/C++
#include "etvo.h"
using namespace std; // namespace for cout object
using namespace etvo; // namespace for ETVO classes
int main(){

// series is a type for MinMaxGD series
matrix<series> A(4,4), B(4, 1), C(1, 4);
// all entries of A,B,C are initially set to epsilon
B(0,0)= gd(0,0); //g0.d0=e
C(0,1)= gd(0,0);
C(0,3)= gd(1,0); //g1.d0=g1
A(0,3)= gd(2,0);
A(1,0)= gd(0,2); //g0.d2=d2
A(2,1)= gd(0,0);
A(3,2)= gd(0,3);

matrix<series> H = C * A.star() * B;
cout << H(0,0) << endl;
// output : (g0.d2+g1.d5).[g2.d5]*

}

ETVO interpreter/calculator

ETVO also comes with a rudimentary interpreter/calculator. It is a program in which series
can be entered in the form of rational expressions. The intermediate results are always reduced
to an ultimate periodic form. No programming skills are required to use this rudimentary tool.
Another advantage of this tool is that the results provided also satisfy the grammatical rules
of the interpreter. The results can therefore be saved in text files and used again later in the
calculator 2.

With this tool, the script is as follows:

Listing 3.2: ETVO calculator
SA=eps(4,4)
SB=eps(4,1)
SC=eps(1,4)
SA(0,3)=g2
SA(1,0)=d2
SA(2,1)=g0

2 Let us note that a version of this interpreter is also available via a web page.
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SA(3,2)=d3
SB(0,0)=g0
SC(0,1)=g0
SC(0,3)=g1
SH=SC.[SA]*.SB
[output] SH(0,0)=(g0.d2+g1.d5).[g2.d5]*

3.2 W E I G H T E D T I M E D E V E N T G R A P H S

A Weighted Timed Event Graph is a Timed Event Graph the edges of which have an integer
weight (see [7]). For pk ∈ P a place, the edge ti → pk (resp. pk → to) is valued by a
strictly positive integer denoted wi(pk) (resp. wo(pk)) (the weights of the edges). In order to
avoid confusion with holding times, weights of edges are denoted between brackets, e.g. 〈2〉.
Moreover, ti → pk → to defines an elementary path denoted πk the gain of which is given by
Γ(πk) , wi(pk)/wo(pk) ∈ Q.

The weights describe how many tokens are consumed/produced by each transition firing.
When one considers the earliest firing rule, a transition tj fires as soon as each input place pl of
tj contains at least wo(pl) available token(s). Then wo(pl) token(s) is(are) removed from each
input place pl of tj, and wi(pk) token(s) is(are) added to each output place pk of tj.

Fig.10 considers weights as basic operators. A weight on the output edge of a transition
describes a multiplication of events. The µm operator can model this phenomenon. Conversely,
a weight on the input edge of a transition describes a batch operation which is modeled by a βb
operator.

Figure 10: Elementary Weighted Timed Event Graphs
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In Fig.11, a Weighted TEG is depicted. Its decomposition in basic operators is given as a
block-diagram. All the relation between signals are expressed below :

x1 = β2u⊕ β3γ5µ2x4

x2 = δ2µ3x1

x3 = x2

x4 = β2δ5x3

y = β2x2 ⊕ γ1x4

Figure 11: WTEG decomposition into basic operators

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)′ ,{
x = Ax⊕ Bu
y = Cx

with

A =


ε ε ε β3γ5µ2

δ2µ3 ε ε ε

ε e ε ε

ε ε β2δ5 ε

 , B =


β2
ε

ε

ε

 , C =
(
ε β2 ε γ1)
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The input-output behaviour of this system can be described by y = CA∗Bu. For this example,
the computation with the ETVO library gives

y =
(
(µ3β4γ2 ⊕ γ1µ3β4)δ

2 ⊕ (γ1µ3β4γ2 ⊕ γ2µ3β4)δ
7
)
(γ2δ7)∗u

For this short example, the C++ script is given below.

Listing 3.3: WTEG transfer with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main(){
matrix<seriesEd> A(4,4), B(4,1), C(1,4);
B(0, 0) = eb(2); //b2
C(0, 1) = eb(2);
C(0, 3) = eg(1); //g1
A(0, 3) = eb(3)*eg(5)*em(2); //b3.g5.m2
A(1, 0) = em(3)*ed(2); //m3.d2
A(2, 1) = eg(0); //g0=e
A(3, 2) = eb(2)*ed(5); //b2.d5
matrix<seriesEd> H=C*A.star()*B;
H(0, 0).toRight();
cout << H(0,0) << endl;

//output=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
}

In ETVO/C++, the basic operators are coded by some global functions: eg(n) for γn, em(w)
for µw, eb(v) for βv and ed(t) for δt.

The same computation with the interpreter/calculator is given below.

Listing 3.4: WTEG transfer with ETVO/calculator
EA=eps(4,4)
EB=eps(4,1)
EC=eps(1,4)
EA(0,3)=b3.g5.m2
EA(1,0)=m3.d2
EA(2,1)=g0
EA(3,2)=b2.d5
EB(0,0)=b2
EC(0,1)=b2
EC(0,3)=g1
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EH=EC.[EA]*.EB
eH=right(EH(0,0))
[output]eH=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*

3.3 T I M E D E V E N T G R A P H S W I T H P E R I O D I C H O L D -
I N G T I M E S

ETVO can handle the basic T-operators denoted δt, νv, ωw and ∆T = νTωT. As said before,
the ∆T operator describes a synchronization on dates in TZ. With this operator, we can
model delays changing as time changes. For instance, the ∆3 operator can be considered as a
delay δτ the value of which is time-variant. The ∆3 operator adds no delay for input events
occuring at dates in 3Z. For instance, ∆3{(a0, 0), (a1, 6)} = {(b0, 0), (b1, 6)}. For an input
event occuring at dates in 3Z + 1, the delay is 2 time units : ∆3{(a0, 1), (a1, 1), (a2, 4)} =
{(b0, 3), (b1, 3), (b2, 6)}. And the delay is only 1 time unit for input events occuring at dates
in 3Z + 2. We summarize this with the notation ∆3 = δ〈0,2,1〉. The time-variant delays thus
obtained are necessarily with a periodic sequence of values.

By considering DES with time-variant delays, we can model Timed Event Graphs with
periodic holding times. This class of models is called Periodic Time-variant Event Graphs
(PTEGs) in the thesis of J.Trunk. Each periodic time-variant delay can be obtained as a finite
composition of fixed delays δτ and ∆T operators.

In Fig.12, a PTEG is depicted as well as its decomposition in time-variant operators. As said
before, δ〈0,2,1〉 = ∆3. For the others time-variant holding times, we have the equivalence:

δ〈1,0〉 = δ1∆2δ−1

δ〈2,3,2〉 = δ2∆3δ−2 ⊕ δ1∆3

We can describe this system in a matrix form where x =
(
x1 x2 x3 x4

)′ ,{
x = Ax⊕ Bu
y = Cx

with

A =


ε ε ε γ2

δ1 ε ε ε

ε e ε ε

ε ε δ〈2,3,2〉 ε

 , B =


∆3
ε

ε

ε

 , C =
(
ε δ〈1,0〉 ε γ1

)
.
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Figure 12: PTEG decomposition into operators

The behaviour of this system can be described by a rational expression y = Gu = CA∗Bu.
For this example, the computation with the ETVO library gives

y = δ〈1,4,3,2,3,2〉γ0 ⊕ (δ〈4,6,5〉γ1 ⊕ δ〈5,8,7,6,7,6〉γ2)(δ3γ2)∗u.

For this short example, the C++ script is given below.

Listing 3.5: PTEG transfer with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;
int main(){

matrix<seriesTg> A(4, 4), B(4, 1), C(1, 4);
B(0, 0) = tD(3); //D3=d<0,2,1>
C(0, 1) = td({1,0}); //d<1,0>
C(0, 3) = tg(1); //g1
A(0, 3) = tg(2);
A(1, 0) = td(1); //d1
A(2, 1) = tg(0);
A(3, 2) = td({2,3,2});
matrix<seriesTg> G=C*A.star()*B;
G(0,0).toRight();
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cout << G(0,0).toStringAsDeltaVar() << endl;
//output=((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2]*
}

Listing 3.6: PTEG tranfser with the calculator
TA=eps(4,4)
TB=eps(4,1)
TC=eps(1,4)
TA(0,3)=g2
TA(1,0)=d1
TA(2,1)=g0
TA(3,2)=d<2,3,2>
TB(0,0)=v3.w3
TC(0,1)=d<1,0>
TC(0,3)=g1
TG=TC.[TA]*.TB
tG=right(TG(0,0))
asDeltaVar(tG)
[output] ((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2]*

3.4 C Y C L OW E I G H T E D T I M E D E V E N T G R A P H S

In [6], a model of Weighted TEGs with variable (cyclic) weights is introduced. This model is
directly inspired by the Cyclostatic Synchronous Dataflow model [2]. One must then introduce
E-variant operators capable of describing variable-weight multiplication and division operators.
These operators actually have an equivalent expression with fixed weight operators. Said
differently, this does not allow to describe additional dynamic phenomena. On the other hand,
the notion of cyclic routing is then expressed quite simply.

In Figure 13, the behavior of the two operators µ<1,3,2> and β<1,2> is illustrated on a
sequence of events. The ETVO tool integrates the management of these operators and translates
them into a combination of µ and β operators with fixed weight.

Listing 3.7: Cycloweighted operators in ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;
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Figure 13: Cyclo-weighted operators

int main()
{

seriesEd mvar,bvar;
mvar=em({1,3,2}); // m<1,3,2>
bvar=eb({1,2}); // b<1,2>
cout << "mvar=" << mvar << endl;
cout << "bvar=" << bvar << endl;
//output mvar=((m6.b3.g2+g1.m6.b3.g1+g4.m6.b3).d0)
//output bvar=((m2.b3.g2+g1.m2.b3).d0)

}

The same calculation performed this time within the interpreter gives:

Listing 3.8: Cycloweighted operators in the interpreter/calculator
->eMvar=m<1,3,2>
eMvar=((m6.b3.g2+g1.m6.b3.g1+g4.m6.b3).d0)
->eBvar=b<1,2>
eBvar=((m2.b3.g2+g1.m2.b3).d0)

By attaching variable weights to the transitions of a TEG, we obtain a Cycloweighted TEG
for which we obtain an operator-based model. An example from [6] is given in Figure 14.

Listing 3.9: Computation with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{
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u2

x1

4

1 y1u1
<1,0,2>

<2,1,1>
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u1

u2
y1

x1
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Figure 14: Cycloweighted TEG and its block diagram description

matrix<seriesEd> A(2,2), B(2,2),C(1,2),H(1,2);
A(0,1)=eg(2);
A(1,0)=ed(1)*em({1,0,2});
B(0,0)=ed(4)*em({2,3});
B(0,1)=eb({2,1,1})*eg(1);
C(0,1)=eg(0);
H=C*A.star()*B;
H(0,0).toRight();
H(0,1).toRight();
cout << H << endl;
/*output

[0,0]=((m15.b6.g5+g1.m15.b6.g4+g4.m15.b6.g3+g7.m15.b6.g2+g10.m15.
b6.g1+g12.m15.b6).d5+(g1.m15.b6.g5+g3.m15.b6.g4+g6.m15.b6.g3+g9
.m15.b6.g2+g12.m15.b6.g1+g13.m15.b6).d6+(g3.m15.b6.g5+g4.m15.b6
.g4+g7.m15.b6.g3+g10.m15.b6.g2+g13.m15.b6.g1+g15.m15.b6).d7+(g4
.m15.b6.g5+g6.m15.b6.g4+g9.m15.b6.g3+g12.m15.b6.g2+g15.m15.b6.
g1+g16.m15.b6).d8+(g6.m15.b6.g5+g7.m15.b6.g4+g10.m15.b6.g3+g13.
m15.b6.g2+g16.m15.b6.g1+g18.m15.b6).d9+(g7.m15.b6.g5+g9.m15.b6.
g4+g12.m15.b6.g3+g15.m15.b6.g2+g18.m15.b6.g1+g19.m15.b6).d10+(
g9.m15.b6.g5+g10.m15.b6.g4+g13.m15.b6.g3+g16.m15.b6.g2+g19.m15.
b6.g1+g21.m15.b6).d11+(g10.m15.b6.g5+g12.m15.b6.g4+g15.m15.b6.
g3+g18.m15.b6.g2+g21.m15.b6.g1+g22.m15.b6).d12+(g12.m15.b6.g5+
g13.m15.b6.g4+g16.m15.b6.g3+g19.m15.b6.g2+g22.m15.b6.g1+g24.m15
.b6).d13+(g13.m15.b6.g5+g15.m15.b6.g4+g18.m15.b6.g3+g21.m15.b6.
g2+g24.m15.b6.g1+g25.m15.b6).d14).[g6.d10]*

[0,1]=((m3.b4.g3+g1.m3.b4.g1).d1).[g2.d1]*
*/
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}

The same example, this time calculated in the interpreter. In order to be more concise, the
result is expressed here using the cycloweighted operators.

Listing 3.10: Computation with the calculator
EA=eps(2,2)
EB=eps(2,2)
EC=eps(1,2)
EA(0,1)=g2
EA(1,0)=d1.m<1,0,2>
EB(0,0)=d4.m<2,3>
EB(0,1)=b<2,1,1>.g1
EC(0,1)=g0
EH=EC.[EA]*.EB
eH1=right(EH(0,0))
eH2=right(EH(0,1))
asMuVar(eH1)
asMuVar(eH2)
[output]eH1=(g0.m<1,3,3,3,2,3>.d5+g1.m<2,3,3,3,1,3>.d6+g3.m<1,3,3,3,2,3>.

d7+g4.m<2,3,3,3,1,3>.d8+g6.m<1,3,3,3,2,3>.d9+g7.m<2,3,3,3,1,3>.d10+g9.m
<1,3,3,3,2,3>.d11+g10.m<2,3,3,3,1,3>.d12+g12.m<1,3,3,3,2,3>.d13+g13.m
<2,3,3,3,1,3>.d14).[g6.d10]*

[output] eH2=(g0.m<1,0,2,0>.d1).[g2.d1]*

Thanks to the cycloweighted operators, it is quite natural to express cyclic routings. We take
another example from [6] where demuliplexing and multiplexing operators allow to describe a
routing in parallel branches of a production workshop. In this example, the inputs are processed
by the H1 and H2 systems according to the following cyclicity: [H1, H2, H1, H2, H2].

This example is treated only with the help of the interpreter. Each branch of the system is a
linear (max,+) system described by a rational expression. The two branches are synchronized
using operators describing demultiplexing and multiplexing.

Listing 3.11: Cycloweighted operators with the calculator
eH1=d1.d3.[g2.d3]*
eH2=d4.[g4.d4]*.d1.[g2.d1]*
eG=b<1,0,1,0,0>.eH1.m<1,0,1,0,0>+b<0,1,0,1,1>.eH2.m<0,1,0,1,1>
asMuVar(eG)
[output]
eH1=(g0.d4).[g2.d3]*
eH2=(g0.d5+g2.d6).[g4.d4]*
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Figure 15: Demux/Mux operations

eG=[g20.d12]*.(g0.d4+(g1.m5.b5.g3+g3.m5.b5.g1+g4.m5.b5).d5+(g4.m5.b5.g3+g6
.m5.b5.g1+g8.m5.b5).d6+(g5.m5.b5.g4+g7.m5.b5.g2+g9.m5.b5.g1).d7+(g8.m5.
b5.g3+g9.m5.b5.g1+g11.m5.b5).d9+g10.d10+(g14.m5.b5.g3+g16.m5.b5.g1+g18.
m5.b5).d13+(g18.m5.b5.g3+g19.m5.b5.g1+g21.m5.b5).d14)

[expressed with cycloweighted operators]
[g20.d12]*.(g0.m<1>.d4+g1.m<0,2,0,1,2>.d5+g4.m<0,2,0,2,1>.d6+g5.m

<2,0,2,1,0>.d7+g8.m<0,1,0,2,2>.d9+g10.m<1>.d10+g14.m<0,2,0,2,1>.d13+g18
.m<0,1,0,2,2>.d14)

3.5 M U LT I - C L O C K T I M E D E V E N T G R A P H

T-operators are also used to describe time basis changes. In the example Figure 16, the two
subsystems do not use the same time unit value. Between the two systems, the operator ν2ω3
indicates that the time unit is changed at the junction of the systems.

ETVO can be used to express the transfer function of such a system. In this case, there is a
temporal gain between the input and the output. The time basis to describe the input events is
then not the same as the one to describe the output events.

Listing 3.12: T-variant operators with the calculator
tH1=d<0,2,1>.d1.d1.[g1.d1]*
tH2=d1.d4.[g2.d4]*
tG=tH2.v2.w3.tH1
[output] tG=(d7.v2.w3.d-1.g0+d7.v2.w3.g1).[d6.g2]*
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Figure 16: TEG with two different time units (clock rate change)





4 S Y S T E M R E S P O N S E A N D
C O N T R O L

4.1 S Y S T E M R E S P O N S E

An input-output model obtained with ETVO describes the dynamics of a system. It can also
be used to know the response of a system to which an input signal is submitted since y = Hu
where u is an input signal and y the associate response.

4.1.1 Response of a TEG

Let’s go back to the example discussed in the section 3.1. It is a TEG whose the transfer
function is given by H = (δ2 ⊕ γ1δ5)(γ2δ5)∗.

We encode an input signal in a series of Max
in Jγ, δK. For instance, for a signal given by

{u} = {(u0, 4), (u1, 8), (u2, 8), (u3, 8), (u4, 8), (u5, 11), (u6,+∞)},

its description in Max
in Jγ, δK is

u = γ0δ4 ⊕ γ1δ8 ⊕ γ2δ8 ⊕ γ3δ8 ⊕ γ4δ8 ⊕ γ5δ11 ⊕ γ6δ+∞.

In Max
in Jγ, δK, it is equivalent to

u = γ0δ4 ⊕ γ1δ8 ⊕ γ5δ11 ⊕ γ6δ+∞.

This signal describes a finite sequence of input events. Nevertheless, ETVO does not handle
infinite values to describe the absence of the u6 event. As an alternative, we can describe this
by a date of arbitrarily large value, compared to the other dates. The following C++ script
provides the result of this calculation. The interpretation of the result gives:

y = Hu = γ0δ6 ⊕ γ1δ10 ⊕ γ2δ13 ⊕ γ3δ15 ⊕ γ4δ18 ⊕ γ5δ20 ⊕ γ6δ+∞

Listing 4.1: Computation with ETVO/C++
#include "etvo.h"

33
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using namespace std;
using namespace etvo;

int main()
{
series H;
H=series(gd(0,2)+gd(1,5))*series(gd(2,5)).star();
series U=gd(0,4)+gd(1,8)+gd(5,11)+gd(6,10000);
cout << H << endl;
series Y=H*U;
cout << Y << endl;
/* output H=(g0.d2+g1.d5).[g2.d5]*

output Y=g0.d6+g1.d10+g2.d13+g3.d15+g4.d18+g5.d20
+(g6.d10002+g7.d10005).[g2.d5]*

= g0.d6+g1.d10+g2.d13+g3.d15+g4.d18
+g5.d20+g6.d10002+g7.d10005 + ....

*/
}

The same calculation can be executed with the interpreter/calculator.

Listing 4.2: Computation with the interpreter
sH=(g0.d2+g1.d5).[g2.d5]*
sU=g0.d4+g1.d8+g5.d11+g6.d10000
sY=sH.sU
[output]
sH=(g0.d2+g1.d5).[g2.d5]*
sU=g0.d4+g1.d8+g5.d11+(g6.d10000)
sY=g0.d6+g1.d10+g2.d13+g3.d15+g4.d18+g5.d20+(g6.d10002+g7.d10005).[g2.d5

]*

4.1.2 Response of a Weighted TEG

For WTEGs, the result is less immediate (see the thesis of J.Trunk for further explanations).
Let’s consider the example discussed in the section 3.2. It is a Weighted TEG whose the transfer
function is given by H =

(
(µ3β4γ2 ⊕ γ1µ3β4)δ

2 ⊕ (γ1µ3β4γ2 ⊕ γ2µ3β4)δ
7) (γ2δ7)∗.

Once again, one can describe an input signal by a series in Max
in Jγ, δK, for instance

u = γ0δ4 ⊕ γ1δ8 ⊕ γ5δ11 ⊕ γ6δ13 ⊕ γ7δ15 ⊕ γ8δ16 ⊕ γ9δ+∞.
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To obtain the associate response, we use the zero-slice mapping introduced in [12, section
3.2]. Formally, the corresponding output y ∈Max

in Jγ, δK is obtained by

y = Ψ3|4(Hu) (where Hu ∈ EJδK).

The computation with ETVO gives

y = γ0δ10 ⊕ γ1δ17 ⊕ γ2δ22 ⊕ γ3δ24 ⊕ γ4δ31 ⊕ γ5δ36 ⊕ γ6δ+∞.

Let us note that in this case, the gain is (3/4), in average 4 input events lead to 3 output events.

Listing 4.3: Computation with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{

seriesEd H;
H=Ed(0,3,4,2,2)+Ed(1,3,4,0,2)+Ed(1,3,4,2,7)+Ed(2,3,4,0,7);
H=H*seriesEd(Ed(0,1,1,2,7)).star();
series U=gd(0,4)+gd(1,8)+gd(5,11)+gd(6,13)+gd(7,15)

+gd(8,16)+gd(9,100000);
seriesEd Um=seriesEd::toSeriesEd(U);
seriesEd Y=H*Um;
series y = Y.toSeries();

cout << "H=" <<H << endl;
cout << "y=" <<y << endl;
/* output
H=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
y=g0.d10+g1.d17+g2.d22+g3.d24+g4.d31+g5.d36+(g6.d100002+ ...

*/

}

The same calculation can be executed with the interpreter/calculator.

Listing 4.4: Computation with the interpreter
eH=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
eU=g0.d4+g1.d8+g5.d11+g6.d13+g7.d15+g8.d16+g9.d100000
sY=EdToMM(eH.eU)
[output]
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eH=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
eU=(g0.d4+g1.d8+g5.d11+g6.d13+g7.d15+g8.d16+g9.d100000)
sY=g0.d10+g1.d17+g2.d22+g3.d24+g4.d31+g5.d36+g6.d100002+ ...

4.1.3 Response of a TEG with periodic holding times

Let’s consider the example discussed in the section 3.3. It is a TEG with periodic holding times
whose the transfer function is given by

H = δ〈1,4,3,2,3,2〉γ0 ⊕ (δ〈4,6,5〉γ1 ⊕ δ〈5,8,7,6,7,6〉γ2)(δ3γ2)∗u.

We describe first the input signal by a series in Max
in Jγ, δK. For instance, we choose here

u = γ0δ4 ⊕ γ1δ8 ⊕ γ5δ11 ⊕ γ6δ13 ⊕ γ7δ15 ⊕ γ8δ16 ⊕ γ9δ+∞.

Then, to obtain the associate response, we use the zero-slice mapping introduced in [12, section
4.4]. Formally, the corresponding output y ∈Max

in Jγ, δK is obtained by

y = Ψ6|6(Hu) (where Hu ∈ T JγK).

The computation with ETVO gives

y = γ0δ7 ⊕ γ1δ11 ⊕ γ2δ13 ⊕ γ3δ15 ⊕ γ4δ16 ⊕ γ5δ17 ⊕ γ6δ19 ⊕ γ7δ21 ⊕ γ8δ22 ⊕ γ9δ+∞.

Listing 4.5: Computation with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{

seriesTg H;
H=(td({4,6,5})*tg(1)+td({5,8,7,6,7,6})*tg(2))*(seriesTg(Tg(3,2)).

star());
H=H+td({1,4,3,2,3,2});
series u=gd(0,4)+gd(1,8)+gd(5,11)+gd(6,13)+gd(7,15)

+gd(8,16)+gd(9,100000);
seriesTg Um=seriesTg::toSeriesTg(u);
seriesTg Y=H*Um;
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series y = Y.toSeries();
H.toRight();
cout << "H=" << H << endl;
cout << "H=" << H.toStringAsDeltaVar() << endl;
cout << "u=" << u << endl;
cout << "y=" << y << endl;

/* output
H= (((d-1.D6+d1.D6.d-3).g0))+(d4.D3.g1+(d3.D6+d5.D6.d-3).g2).[d3.

g2]*
H=((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2]*
u=g0.d4+g1.d8+g5.d11+g6.d13+g7.d15+g8.d16+(g9.d100000)
y=g0.d7+g1.d11+g2.d13+g3.d15+g4.d16+g5.d17+g6.d19+g7.d21+g8.d22+g9

.d100003+...

*/
}

The same calculation can be executed with the interpreter/calculator.

Listing 4.6: Computation with the interpreter
tH=((d<1,4,3,2,3,2>.g0))+(d<4,6,5>.g1+d<5,8,7,6,7,6>.g2).[d3.g2]*
tH=right(tH)
tu=g0.d4+g1.d8+g5.d11+g6.d13+g7.d15+g8.d16+(g9.d100000)
sy=TgToMM(tH.tu)
[output]

tH=(((d-1.v6.w6+d1.v6.w6.d-3).g0))+(d4.v3.w3.g1+(d3.v6.w6+d5.v6.w6
.d-3).g2).[d3.g2]*

tu=(d4.g0+d8.g1+d11.g5+d13.g6+d15.g7+d16.g8+d100000.g9)
sy=g0.d7+g1.d11+g2.d13+g3.d15+g4.d16+g5.d17+g6.d19+g7.d21+g8.d22+

g9.d100003+...

4.2 O P T I M A L C O N T R O L

The first control problem solved for the (max,+) systems consisted in searching for the input
signal u allowing the output of the system, y = Hu, to be as close as possible to a reference
signal denoted z. Thanks to the residuation theory, we know that for a given signal z, the
following equation has an optimal solution,

Hu � z ⇐⇒ u � H◦\z,
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where H◦\z =
⊕{x s.t. Hx � z}. The optimality means here that the input events are as late

as possible while, for the associated output, the events y are before the reference output z. We
say that this input is optimal according to the "just-in-time" criterion.

Both operations a◦\b =
⊕{x s.t. ax � b} and b◦/a =

⊕{x s.t. xa � b} are implemented
in ETVO.

4.2.1 Optimal control for TEGs

Let’s consider again the example discussed in the section 3.1 where H = (δ2 ⊕ γ1δ5)(γ2δ5)∗.
We need to choose an output reference, for instance

z = γ0δ10 ⊕ γ3δ13 ⊕ γ5δ19 ⊕ γ6δ+∞.

Again, to compensate for the lack of infinite value management in ETVO, we must code this
trajectory as an ultimate periodic series (with the same slope as H) as follows

z = γ0δ10 ⊕ γ3δ13 ⊕ γ5δ19 ⊕
(

γ6δlargeValue(γ2δ5)∗
)

.

The optimal output is then

yopt = Huopt = γ0δ3 ⊕ γ1δ6 ⊕ γ2δ8 ⊕ γ3δ11 ⊕ γ4δ13 ⊕ γ5δ19 ⊕ γ6δ+∞.

Events 4 and 5 perfectly match the reference and the other outputs are before the reference.

Listing 4.7: Computation with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{

series H;
H=series(gd(0,2)+gd(1,5))*series(gd(2,5)).star();
series z(poly::Epsilon(),gd(6,10000),gd(2,5));
z=z+gd(0,10)+gd(3,13)+gd(5,19);
series uopt=z.frac(H);
series yopt=H*uopt;
cout << "uopt=" << uopt << endl;
cout << "yopt=" << yopt << endl;
//uopt=g0.d1+g1.d3+g2.d6+g3.d8+g4.d11+g5.d17+(g6.d9995+...
//yopt=g0.d3+g1.d6+g2.d8+g3.d11+g4.d13+g5.d19+(g6.d9997+...

}
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The same calculation can be executed with the interpreter/calculator.

Listing 4.8: Computation with the interpreter
sH=(g0.d2+g1.d5).[g2.d5]*
sZ=g0.d10+g3.d13+g5.d19+g6.d10000.[g2.d5]*
sUopt=frac(sZ,sH)
sYopt=sH.sUopt
[output]

sH=(g0.d2+g1.d5).[g2.d5]*
sZ=g0.d10+g3.d13+g5.d19+(g6.d10000).[g2.d5]*
sUopt=g0.d1+g1.d3+g2.d6+g3.d8+g4.d11+g5.d17+g6.d9995+...
sYopt=g0.d3+g1.d6+g2.d8+g3.d11+g4.d13+g5.d19+g6.d9997+...

4.3 C O N T R O L L E R S Y N T H E S I S

We focus here on two types of control. The precompressor control, and the output feedback
control.

For a given system H, there is a greatest neutral precompensator and a greatest neutral output
feedback. Based on the theory of residuation, we obtain P̂ = H◦\H and F̂ = H◦\H◦/H. P̂ is
the greatest solution to Hx = H and F̂ is the greatest solution to H(xH)∗ = H.

To obtain a realizable system, we must project the result in the set of causal series.

4.3.1 Controller synthesis for a TEG

Let’s consider again the example discussed in the section 3.1 where H = (δ2 ⊕ γ1δ5)(γ2δ5)∗.
Using the interpreter, we obtain the expression of the greatest precompensator. We also check
that the system with the control keeps the same transfer as the system without control.

Listing 4.9: Computation with the interpreter
sH=(g0.d2+g1.d5).[g2.d5]*
sPopt=frac(sH,sH)
sFopt=pr+(frac(frac(sH,sH),sH))
sC1=sH.sPopt
sC2=sH.[sFopt.sH]*
[output]

sH=(g0.d2+g1.d5).[g2.d5]*
sPopt=(g0.d0+g1.d2).[g2.d5]*
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sFopt=(g1.d0+g2.d2).[g2.d5]*
sC1=(g0.d2+g1.d5).[g2.d5]*
sC2=(g0.d2+g1.d5).[g2.d5]*

4.3.2 Controller synthesis for a Weighted TEG

Let’s consider the example discussed in the section 3.2 where the transfer function is given by
H =

(
(µ3β4γ2 ⊕ γ1µ3β4)δ

2 ⊕ (γ1µ3β4γ2 ⊕ γ2µ3β4)δ
7) (γ2δ7)∗.

Listing 4.10: Computation with the interpreter
eH=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
ePopt=lfrac(eH,eH)
eFopt=pr+(rfrac(lfrac(eH,eH),eH))
eCL1=eH.ePopt
eCL2=right(eH.[eFopt.eH]*)
[output]

eH=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
ePopt=[g2.d7]*.(m2.b2.d0)
eFopt=[g2.d7]*.((g2.m4.b3.g2+g4.m4.b3).d0+(g2.m4.b3.g2+g4.m4.b3.g1

).d5)
eCL1=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
eCL2=((m3.b4.g2+g1.m3.b4).d2+(g1.m3.b4.g2+g2.m3.b4).d7).[g2.d7]*
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In this part, we propose to treat some examples using the ETVO tool.

5.1 E X A M P L E 1

For the example in Figure 17, each machine M1/M2 can be described by a transfer function.

x2 = δ6(γ5δ6)∗δ4u,

x4 = δ5(γ4δ5)∗δ1x2.

Globally, the input-output transfer is y = δ4 (δ5(γ4δ5)∗δ1) (δ6(γ5δ6)∗δ4) u. With ETVO, we
obtain the transfer function y = Hu with:

H = δ20 ⊕ γ4δ25 ⊕ γ5δ26 ⊕ γ8δ30 ⊕ γ9δ31 ⊕ γ10δ32

⊕
(

γ12δ35 ⊕ γ13δ36 ⊕ γ14δ37 ⊕ γ15δ38
)
(γ4δ5)∗

u

x1 x2

5

x4x3

6

y
5

4

4

1

M1

M2

Figure 17: TEG (example 1)
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Listing 5.1: Example 1 with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{

series H;
series M1(poly::Epsilon(),gd(0,6),gd(5,6));
series M2(poly::Epsilon(),gd(0,5),gd(4,5));
H=series(gd(0,4))*M2*gd(0,1)*M1*gd(0,4);
cout << "H=" << H << endl;
// H=g0.d20+g4.d25+g5.d26+g8.d30+g9.d31+g10.d32+(g12.d35+g13.d36+

g14.d37+g15.d38).[g4.d5]*
}

Listing 5.2: Example 1 with ETVO/interpreter
sM1=d6.[g5.d6]*
sM2=d5.[g4.d5]*
sH=d4.sM2.d1.sM1.d4

5.2 E X A M P L E 2

This is the same example, this time we are interested in the synthesis of an output feedback.
The greatest neutral output feedback is given by

F̂ = H◦\H◦/H.

It is the greatest feedback such that the closed-loop behavior be the same as the open-loop one,
say H = H(F̂H)∗.

For the system taken in the example 1, the ETVO tool computes the transfer function of the
greatest feedback.

F =
(

γ16 ⊕ γ17δ1 ⊕ γ18δ2 ⊕ γ19δ3
)
(γ4δ5)∗.

Note that, for example, a feedback with 19 tokens and a delay of 3 time units is also neutral.
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Listing 5.3: Example 2 with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;
int main()
{

series H, F;
series M1(poly::Epsilon(),gd(0,6),gd(5,6));
series M2(poly::Epsilon(),gd(0,5),gd(4,5));
H=series(gd(0,4))*M2*gd(0,1)*M1*gd(0,4);

// F=H\H/H
F=H.frac(H).frac(H);
// causal projection
F=F.prcaus();
cout << "F=" << F << endl;
series Fs=series(gd(19,3));
cout << "Fs=" << Fs << endl;
cout << "H.(Fs.H)*=" << H*(Fs*H).star() << endl;
/* output
F=(g16.d0+g17.d1+g18.d2+g19.d3).[g4.d5]*
Fs=(g19.d3)
H.(Fs.H)*=g0.d20+g4.d25+g5.d26+g8.d30+g9.d31+g10.d32+(g12.d35+g13.

d36+g14.d37+g15.d38).[g4.d5]*
*/

}

Listing 5.4: Example 2 with ETVO/interpreter
sM1=d6.[g5.d6]*
sM2=d5.[g4.d5]*
sH=d4.sM2.d1.sM1.d4
sF=pr+(frac(frac(sH,sH),sH))
sCL=sH.[g19.d3.sH]*

5.3 E X A M P L E 3

For the example in Figure 19, each machine M1/M2 can be described by a transfer function,

H1 = δ2(γ1δ2)∗,
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Figure 18: TEG (example 2) with an output feedback

H2 = δ1(γ2δ1)∗.

Globally, it is a weighted TEG, some E-variant operators are involved. The input-output
transfer is given by y = Gu,

y = δ1
(

δ2µ3H1β2δ2 ⊕ β2γ1δ1H2δ2µ3δ1
)

δ2u.

Using the ETVO tool, we obtain the following ultimate periodic expression:

G = µ3β2δ9 ⊕ (γ2µ3β2γ1 ⊕ γ3µ3β2)δ
10 ⊕ γ3µ3β2δ11

⊕(γ4µ3β2γ1 ⊕ γ6µ3β2)δ
12 ⊕ (γ5µ3β2γ1 ⊕ γ6µ3β2)δ

13

⊕(γ1δ1)∗(γ6µ3β2γ1 ⊕ γ8µ3β2)δ
14

Listing 5.5: Example 3 with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{
seriesEd G;
series H1(poly::Epsilon(),gd(0,2),gd(1,2));
series H2(poly::Epsilon(),gd(0,1),gd(2,1));
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Figure 19: Weighted TEG (example 3)

G=ed(2)*em(3)*seriesEd::toSeriesEd(H1)*eb(2)*ed(2);
G=G+eb(2)*eg(1)*ed(1)*seriesEd::toSeriesEd(H2)*ed(2)*em(3)*ed(1);
G=ed(1)*G*ed(2);
cout << "G=" << G << endl;

/* output
G=((m3.b2.d9+(g2.m3.b2.g1+g3.m3.b2).d10+g3.m3.b2.d11
+(g4.m3.b2.g1+g6.m3.b2).d12+(g5.m3.b2.g1+g6.m3.b2).d13))
+[g1.d1]*.((g6.m3.b2.g1+g8.m3.b2).d14) */

}

Listing 5.6: Example 3 with ETVO/interpreter
eH1=d2.[g1.d2]*
eH2=d1.[g2.d1]*
eG=d1.(d2.m3.eH1.b2.d2+b2.g1.d1.eH2.d2.m3.d1).d2

5.4 E X A M P L E 4

For the example in Figure 20, we can decompose into subsystems.

H1 = δ1(γ2δ1)∗

H2 = δ3(γ2δ3)∗

H3 = δ4(γ3δ4)∗
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Then, the global transfer function is written y = Gu with

G = δ1
(

β<1,0,0,1,0>H2δ2µ<0,1,0,1,0> ⊕ β<0,1,1,0,1>H3δ2µ<1,0,1,0,1>

)
δ3H1δ3.

3

3

1

2 3

2

1

<0,1,0,1,0>

<1,0,1,0,1>

<1,0,0,1,0>

<0,1,1,0,1>4

machine

demux

machine

machine

Conveyor

mux

Conveyor

Conveyor

Conveyor
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Figure 20: Weighted TEG (example 4) with mux/demux

Listing 5.7: Example 4 with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{
seriesEd G;
series H1(poly::Epsilon(),gd(0,1),gd(2,1));
series H2(poly::Epsilon(),gd(0,3),gd(2,3));
series H3(poly::Epsilon(),gd(0,4),gd(3,4));

G=eb({1,0,0,1,0})*seriesEd::toSeriesEd(H2)*ed(2)*em({0,1,0,1,0});
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G=G+eb({0,1,1,0,1})*seriesEd::toSeriesEd(H3)*ed(2)*em({1,0,1,0,1});
G=ed(1)*G*ed(3)*seriesEd::toSeriesEd(H1)*ed(3);
cout << "G=" << G << endl;
cout << "G=" << G.toStringAsMuVar() << endl;
/* output
G=(((m5.b5.g3+g2.m5.b5.g2+g3.m5.b5.g1+g4.m5.b5).d13+(g1.m5.b5.g4+g2.m5.b5

.g2+g4.m5.b5).d14
+(g2.m5.b5.g4+g4.m5.b5.g2+g6.m5.b5.g1).d15+(g4.m5.b5.g4+g5.m5.b5.g3+g7.m5

.b5.g1).d16))
+[g5.d4]*.((g6.m5.b5.g4+g7.m5.b5.g2+g9.m5.b5).d18+(g7.m5.b5.g4+g9.m5.b5.

g2+g11.m5.b5.g1).d19
+(g9.m5.b5.g4+g11.m5.b5.g3+g12.m5.b5.g1).d20)
G=((g0.m<0,2,1,1,1>.d13+g1.m<1,0,2,0,2>.d14+g2.m<2,0,2,1,0>.d15+g4.m

<1,2,0,2,0>.d16))
+[g5.d4]*.(g6.m<1,0,2,0,2>.d18+g7.m<2,0,2,1,0>.d19+g9.m<2,1,0,2,0>.d20)

*/
}

Listing 5.8: Example 4 with ETVO/interpreter
eH1=d1.[g2.d1]*
eH2=d3.[g2.d3]*
eH3=d4.[g3.d4]*
eG=d1.(b<1,0,0,1,0>.eH2.d2.m<0,1,0,1,0>+b<0,1,1,0,1>.eH3.d2.m<1,0,1,0,1>).

d3.eH1.d3
asMuVar(eG)

5.5 E X A M P L E 5

For the example in Figure 21, we can decompose into subsystems.

H1 = δ6(γ5δ6)∗

H2 = δ5(γ4δ5)∗

H3 = δ7(γ1δ7)∗

H4 = δ8(γ2δ8)∗

Then, the global transfer function is written y = Gu with

G = δ1
(

β<0,1>δ1µ2H3δ1µ<0,1,0> ⊕ β<1,0>δ1H4δ1µ<1,0,1>

)
β2δ3H2δ1H1δ1.
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Figure 21: Weighted TEG (example 5)

Listing 5.9: Example 5 with ETVO/C++
#include "etvo.h"
using namespace std;
using namespace etvo;

int main()
{
seriesEd G;
series H1(poly::Epsilon(),gd(0,6),gd(5,6));
series H2(poly::Epsilon(),gd(0,5),gd(4,5));
series H3(poly::Epsilon(),gd(0,7),gd(1,7));
series H4(poly::Epsilon(),gd(0,8),gd(2,8));

G=eb({0,1})*ed(1)*em(2)*seriesEd::toSeriesEd(H3)*ed(1)*em({0,1,0});
G=G+eb({1,0})*ed(1)*seriesEd::toSeriesEd(H4)*ed(1)*em({1,0,1});
G=ed(1)*G*eb(2)*ed(3)*seriesEd::toSeriesEd(H2);
G=G*ed(1)*seriesEd::toSeriesEd(H1)*ed(1);
cout << "G=" << G << endl;
cout << "G=" << G.toStringAsMuVar() << endl;
/* partial output
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((g0.m<0,1,0,1,0,2>.d26+g0.m<0,2,0,0,0,2>.d27+g2.m<0,2,0,1,0,1>.d31
+g2.m<0,2,0,1,1,0>.d32+g2.m<2,0,1,1,0,0>.d33+g4.m<0,2,0,0,0,2>.d35
+g5.m<0,1,0,2,0,1>.d36+g5.m<1,0,0,2,0,1>.d37+g6.m<0,0,2,0,1,1>.d38
+g6.m<0,2,0,1,1,0>.d39+g6.m<0,2,0,2,0,0>.d40+g6.m<2,0,1,1,0,0>.d41
+g8.m<0,1,1,0,0,2>.d42+g8.m<0,2,0,0,0,2>.d43+g9.m<1,0,0,2,0,1>.d44
+g10.m<0,0,0,2,0,2>.d45+g10.m<0,0,2,0,1,1>.d46+g10.m<0,2,0,1,1,0>.d47
+g10.m<0,2,0,2,0,0>.d48+g10.m<2,0,2,0,0,0>.d49+g12.m<0,2,0,0,0,2>.d51
+g13.m<1,0,0,2,0,1>.d52))
+[g4.d8]*.(g14.m<0,0,0,2,0,2>.d53+g14.m<0,0,2,0,2,0>.d54

+g14.m<0,2,0,2,0,0>.d56+g14.m<2,0,2,0,0,0>.d57
+g16.m<0,2,0,0,0,2>.d59)

*/
}

Listing 5.10: Example 5 with ETVO/interpreter
eH1=d6.[g5.d6]*
eH2=d5.[g4.d5]*
eH3=d7.[g1.d7]*
eH4=d8.[g2.d8]*
eG=d1.(b<0,1>.d1.m2.eH3.d1.m<0,1,0>+b<1,0>.d1.eH4.d1.m<1,0,1>)
eG=eG.b2.d3.eH2.d1.eH1.d1
asMuVar(eG)

5.6 E X A M P L E 6

The example in Figure 22 is a TEG with a periodic holding time. First, we can isolate the
transfer functions of the two machines.

H1 = δ6(γ5δ6)∗

H2 = δ5(γ4δ5)∗

Then, the transfer function becomes y = Gu with

G = δ3H2δ1δ<2,1,0,0,1>δ1H1δ1.

Listing 5.11: Example 6 with ETVO/C++
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Figure 22: TEG with a periodic holding time

#include "etvo.h"
using namespace std;
using namespace etvo;
int main()
{
seriesTg G;
series H1(poly::Epsilon(),gd(0,6),gd(5,6));
series H2(poly::Epsilon(),gd(0,5),gd(4,5));

G=td(3)*seriesTg::toSeriesTg(H2)*td(1);
G=G*td({2,1,0,0,1})*td(1)*seriesTg::toSeriesTg(H1)*td(1);
cout << "G=" << G << endl;
cout << "G=" << G.toStringAsDeltaVar() << endl;
/* partial output
G=((d<17,18,19,18,17>.g0+d<22,23,24,23,22>.g4+d<24,25,24,23,23>.g5
+d<27,28,29,28,27>.g8+d<29,30,29,28,28>.g9+d<31,30,29,29,30>.g10))
+[d5.g4]*.(d<32,33,34,33,32>.g12
+d<34,35,34,33,33>.g13+d<36,35,34,34,35>.g14+d<36,35,35,36,37>.g15)

*/
}

Listing 5.12: Example 6 with ETVO/interpreter
tH1=d6.[g5.d6]*
tH2=d5.[g4.d5]*
tG=d3.tH2.d1.d<2,1,0,0,1>.d1.tH1.d1
asDeltaVar(tG)
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5.7 E X A M P L E 7

The example in the Figure 23 combines Event-variant and Time-variant operators. This model
describes the behavior of a system where two paths cross and the crossing is managed by a
traffic light.

H1 = δ2(γ3δ2)∗

H2 = δ4(γ3δ4)∗

H3 = δ3(γ2δ3)∗

H4 = δ4(γ3δ4)∗

Then, the transfer function becomes y = δ1Gδ2u with

G =
(

β<0,1>H3δ1δ<0,0,2,1>δ1H2µ<0,1> ⊕ β<1,0>H4δ1δ<2,1,0,0>δ1H1µ<1,0>

)
Using the ETVO tool, we can find another expression for this transfer function.

Listing 5.13: Example 7 with ETVO/interpreter
sH1=d2.[g3.d2]*
sH2=d4.[g3.d4]*
sH3=d3.[g2.d3]*
sH4=d4.[g3.d4]*
sG=d1.(b<0,1>.sH3.d1.d<0,0,2,1>.d1.sH2.m<0,1>+b<1,0>.sH4.d1.d<2,1,0,0>.d1.

sH1.m<1,0>).d2

The transfer function can be written, for example, in the following form

G = Haµ2β2γ1 ⊕ Hbµ2β2,

with Ha, Hb ∈ T JγK.

Ha = (((δ8∆4δ−3 ⊕ δ7∆4)⊕ (δ9∆4δ−3 ⊕ δ8∆4)γ
1))

⊕[δ3γ4]∗((δ12∆4δ−3 ⊕ δ11∆4)γ
5 + (δ13∆4δ−3 ⊕ δ12∆4)γ

7)

Hb = (((δ9∆4δ−3 ⊕ δ8∆4)γ
1))⊕ [δ3γ4]∗((δ12∆4δ−3 ⊕ δ11∆4)γ

5 ⊕ (δ13∆4δ−3 ⊕ δ12∆4)γ
7)
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Figure 23: Weighted TEG with periodic holding times.

5.8 E X A M P L E 8

This last example is based on a more complex system. It is a production cell (see Figure 24)
with a conveyor system. There is a periodic routing system in order to process the parts in two
different workplaces (M1 and M2). In addition, the crossing of intersections C1 and C2 is only
allowed within time windows (comparable to a traffic light).

The flow of parts is as follows:

• from A to B in 8 time units (the number of parts between A and the crossing C1 is limited
to 8).

• at B, parts can cross C1 (1 time unit) only on dates in 4Z and 4Z + 1.

• from C1 to C in 13 time units

• at C, the first part is assigned to M1, the next two to M2, this assignment is then repeated
cyclically. If a part is assigned to M1, the path is C → D → E → G. If a part is
assigned to M2, the path is C → E→ F → G.

• The parts going from C to E (M1) cross the parts going from D to G (M2) at C2. 2 time
units are assigned to each path.

• at G, parts from M1 and M2 are recombined with a multiplexer.

• at H, parts can cross C1 (1 time unit) only on dates in 4Z + 2 and 4Z + 3.
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Figure 24: Production cell (example 8)

• from I to J in 10 time units

The system as a whole is both E-variant and T-variant. We can decompose into subsystems
as follows:

HCA = δ13
(
(δ<3,2,1,1>γ1)∗δ<3,2,1,1>δ8[γ8(δ<3,2,1,1>γ1)∗δ<3,2,1,1>δ8]∗

)
HGDC = β<1,0,0>δ7δ<0,0,2,1>δ4δ8(γ1δ8)∗δ10µ<1,0,0>

HGFC = β<0,1,1>δ4δ5(γ1δ5)∗δ12δ<2,1,0,0>δ3µ<0,1,1>

HJG = δ10(δ<1,1,3,2>γ1)∗δ<1,1,3,2>δ4

Overall, we obtain the transfer function y = Gu with

G = HJG(HGFC ⊕ HGDC)HCA.

Listing 5.14: Example 8 with ETVO/interpreter
sJG=d10.[d<1,1,3,2>.g1]*.d<1,1,3,2>.d4
sGDC=b<1,0,0>.d7.d<0,0,2,1>.d4.d8.[g1.d8]*.d10.m<1,0,0>
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Figure 25

sGFC=b<0,1,1>.d4.[d5.g1]*.d5.d12.d<2,1,0,0>.d3.m<0,1,1>
sCA=d13.[d<3,2,1,1>.g1]*.d<3,2,1,1>.d8.[g8.[d<3,2,1,1>.g1]*.d<3,2,1,1>.d8

]*
sG=sJG.(sGDC+sGFC).sCA
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