
Microcontrollers 3A SAGI
2019-2020 Polytech Angers

Microcontrôleurs 1/29

ARDUINO UNOARDUINO UNO
Microcontroller ATMega328Microcontroller ATMega328

B. Cottenceau B311 Polytech Angers Belle-Beille
bertrand.cottenceau@univ-angers.fr

Table des matières
1 Introduction ..3
2 Arduino UNO schematic...3
3 Microcontroller ATMEL ATMega328...4
4 Programming in the Arduino's IDE..6

4.1 Introduction..6
4.2 Langage C pour ARDUINO UNO..7

5 Internal structure of ATMega328 (excerpts from ATMEL documentations)...................................10
5.1 Status Register (SREG)...10
5.2 Digital I/O ...10

6 Interrupts for ATMega328 (Arduino UNO)..13
6.1 External Interrupts (pins PD2 and PD3)..14
6.2 "Pin Change" interrupts (possible for all logical pins)...16
6.3 Timers interrupts...19

7. Timers/Counters on ATMega328 ...19
7.1 Timer/Counter 0 (8 bits)..19
7.2 Timer/Counter 2 (comptage 8 bits)..19
7.3 Example Timer 2 with Interrupt...23
7.4 Timer/Counter 1 (16 bits)..28

Microcontrôleurs 2/29

1 Introduction

The UNO model from ARDUINO is an electronic card whose heart is an ATMEL
microcontroller of reference ATMega328. The ATMega328 is an 8-bit microcontroller of the AVR
family which can be programmed in C/C++ language.

The main interest of the ARDUINO cards (other models exist : Mega, Nano...) is their ease
of implementation. A development environment (IDE), based on open-source tools, is provided. In
addition, loading the compiled program into the memory of the microcontroller is very simple (via
USB port). Finally, a lot of function libraries are also provided for the use of common I/Os: logical
I/O, ADC converters, generation of PWM signals, operation of TWI/I2C busses, LCD displays ...

The objective of the Microcontrollers course is not only to know how to use the Arduino
UNO board. It is above all an opportunity to tackle low-level programming problems (the binary
value of the manipulated variables is very important) and to learn how to use the C language for this
low-level programming, in particular by knowing how to manage registers/variables "at bit level".
So, when you're complicating the task, when an Arduino function exists, tell yourself that it's
intentional.

The purpose of this document is to highlight some technical information concerning the
operation of integrated peripherals, especially when you don't use the "turnkey" functions of
ARDUINO, in order to understand how it works!

2 Arduino UNO schematic

The pins of the microcontroller are connected to connectors according to the diagram below.

Microcontrôleurs 3/29

Viewed from above, the picture provides the following information:

(connector) Numbers 0 to 7 <-> Pins PD0 to PD7 (microcontroller)
(connector) Numbers 8 to 13 <-> Pins PB0 to PB5 (microcontroller)
(connector) ANALOG IN 0 to 5 <-> Pins PC0 to PC5 (microcontroller)

WARNING: with the Arduino functions (pinMode, digitalRead, digitalWrite ...), the signals are
marked according to the numbering of the connectors (left part). When programming at low level,
however, the names of the registers/pins of the microcontroller are used (right-hand side).

digitalWrite(10,HIGH); //Arduino sets output PB2 of the micro. to HIGH.
analogRead(1); //Arduino reads the analog input from PC1

3 Microcontroller ATMEL ATMega328

 The microcontroller of the Arduino UNO card is an ATMega328. It is an ATMEL
microcontroller of the AVR 8bits family. The
main features are :

FLASH = program memory 32Ko
SRAM = data 2Ko
EEPROM = data (persistent) 1Ko

Digital I/O = 3 ports PortB, PortC, PortD
(23 I/O pins)

Timers/Counters : Timer0 et Timer2 (8 bits),
Timer1 (16bits)
Each timer can be used to generate PWM
signals. (6 pins OCxA/OCxB)

Microcontrôleurs 4/29

Multi-function pins: all pins have several different functions, chosen by programming. They
therefore have several names on the pinout.

For example, pins PB1, PB2, PB3, PD3, PD5, PD6 can be used as PWM (Pulse Width Modulation)
outputs, i.e. outputs that will act as analog outputs. They correspond to the pins of connectors
3,5,6,9,10 and 11. The other role is linked to the timers and these pins are then called OCxA or
OcxB in the documentation. They are the same pins, but for a different function.

PWM = 6 pins OC0A(PD6), OC0B(PD5), 0C1A(PB1), OC1B(PB2), OC2A(PB3), OC2B(PD3)

Pins from PORTC can be converted with a ADC device (Analog to Digital Converter).

Analog to Digital Converter (10bits) = 6 multiplexed inputs ADC0(PC0) à ADC5(PC5)

 I2C bus (aka TWI Two Wire Interface) = pins SDA(PC5)/SCL(PC4).

Serial port (USART) = transmit receive TXD(PD1)/RXD(PD0)

Analog Comparator = pins AIN0(PD6) and AIN1 (PD7) can trigger an interrupt

Watchdog Timer.

INTERRUPTS (24 possible causes (cf interrupt vectors)) : in summary

– Interrupts for inputs INT0 (PD2) and INT1 (PD3)
– Interrupts on Pin Change PCINT0 to PCINT23
– Interrupts for Timers 0, 1 et 2 (different settings)
– Interrupt for the Analag Comparator
– Interrupt for ADC
– Interrupt for the serial port USART
– Interrupt for the TWI (I2C) bus

Microcontrôleurs 5/29

4 Programming in the Arduino's IDE

4.1 Introduction

ARDUINO provides a development
environment (IDE) with a source editor,
where compiling and loading operations in the
microcontroller memory are reduced to clicks
on buttons in the IDE (very simple).

The communication between the PC and the
card is done via the USB port, by installing a
suitable driver on the PC (supplied by
ARDUINO).

Structure of an ARDUINO project

The tool requires the application to be
structured in a specific way. The compiler
used is AVR GCC (C/C++ compiler for AVR
processor).

The main program (main function) is imposed
and described below.

The customized parts are

– the setup() function: initializations (timers, interrupts...)
– the loop() function : indefinitely re-executed

// THE ARDUINO MAIN PROG
#include <WProgram.h>

int main(void)
{

init(); // initialisations for delays, PWM ...

setup();
for (;;) loop(); // indefinitely repeated

 return 0;
}

AN ARDUINO PROGRAM = 1 setup() function + 1 loop() function

Microcontrôleurs 6/29

4.2 Langage C pour ARDUINO UNO

Variables Types/size :

boolean : true/false (8 bits)
char = 8bits signed integer 8 [-128,+127]
byte / unsigned char : 8 bits unsigned integer [0,255]

Note: some constants are predefined and allow us to write byte b = B10010;
int : 16 bits signed integers [-32768,+32767]
word / unsigned int : 16 bits unsigned integers [0,65535]
long : 32 bits signed integers
unsigned long : 32 bits unsigned integers
float /double : floating-point IEEE 32 bits (float and double = same size for Arduino)

The simplest example, provided by ARDUINO, consists of flashing the LED (on the UNO board)
connected to pin PB5 of the microcontroller, pin no. 13 on the board connectors.

The setup() function configures pin PB5 (connection n°13 on the board) as an output, using the
Arduino pinMode() function. The loop() function then describes what will be repeated indefinitely:
set PB5 to 1 for 200ms then set PB5 to 0 for 1s, and so on.

Some functions from the API ARDUINO.

Constants : HIGH, LOW, INPUT, OUTPUT, INPUT_PULLUP

Digital I/O
pinMode(pin,mode) : pin, mode = INPUT/OUTPUT/INPUT_PULLUP
digitalWrite(pin,value) : pin, value= HIGH/LOW
int digitalRead(pin) : pin, returns the value

Timers
delay(unsigned long ms) : ms milliseconds (ms encoded with 32 bits)
delayMicroseconds(unsigned int ms) : ms microseconds (ms 16 bits)
unsigned long micros() : time in microseconds from the startup. Reset every 70mn.
unsigned long millis() : time in milliseconds from the startup. Reset every 50 days.

Microcontrôleurs 7/29

//Blink (Arduino)
void setup()
{
 pinMode(13, OUTPUT); //pin PB5 as output
}

void loop()
{
 digitalWrite(13,HIGH); // set PB5
 delay(200); // 200 ms
 digitalWrite(13,LOW); // clear PB5
 delay(1000); // 1 s
}

Serial communication : sends/receives data : allows the Arduino card to communicate with the
connected computer

Serial.begin(9600); // setting : speed = 9600 bits/s
Serial.println(v,f); // sends v with format f (DEC, HEX, BIN)

Use of ATMega328 registers in programs

If you want to control the Arduino peripherals at the lowest level, i.e. without using the - yet very
nice - Arduino functions, you have to read/write to internal registers of the microcontroller. These
registers are detailed, for some devices, in the rest of this document. Note that the complete
technical documentation of this microcontroller is several hundred pages long. This is therefore a
very partial presentation.

For example, making the LED on the Arduino board (PB5) flash, without using the ARDUINO
functions, requires access to the I/O port configuration registers (see section 5.2). For pin PB5, the
registers involved are DDRB, PORTB and PINB. In the C program, the registers are referred to by
their name in UPPERCASE.

Microcontrôleurs 8/29

//Example :
// prints the duration (millis) when the signal
// on PC5 is equal to 0. This duration is sent
// to the computer via USB and can be displayed
// with the serial monitor

void setup()
{
 Serial.begin(9600); // UART microC 9600 bauds
 pinMode(A5,INPUT_PULLUP); // PC5 as input (with pull-up)
 pinMode(13,OUTPUT); // PB5 (LED) as output
 digitalWrite(13,LOW); // PB5 set to 0 (LED off)
}

void loop()
{
 unsigned long t1,t2,duree; // local variables
 while(digitalRead(A5)==1);
 // PC5 goes from 1->0 (falling edge)
 t1=millis();
 digitalWrite(13,HIGH); // sets LED ON
 while(digitalRead(A5)==0);
 // PC5 0->1 (rising edge)
 t2=millis();
 digitalWrite(13,LOW); // resets LED
 duree = t2-t1;
 Serial.print("Duree="); //duration=
 Serial.println(duree,DEC); // sends the duration
}

Low-level control of PB5.

Remarks :

The C language examples found on the internet use sometimes confusing writing "styles".
Especially when it comes to managing I/O ports, one often has to perform logical operations
(&,|,~,^) to set bits to 0, 1 or invert bits, i.e. to modify or read one or more bits of an 8-bit register.

Confusing example:

 PORTB &= ~(1<<PORTB5); // resets bit 5 of PORTB

Explanation : PORTB5 is a constant equal to 5.

1<<PORTB5 means "shift of (0000 0001)b (5 bits towards the left)"

Therefore, (1<<PORTB5) is equal to (0010 0000)b

Then ~(1<<PORTB5) is the complement say (1101 1111)b

Finally, PORTB &= ~(1<<PORTB5) means PORTB = PORTB & ~(1<<PORTB5)

The logical AND operation leaves all PORTB bits unchanged except bit 5 which is set to 0 (due to
the bit at 0 of the binary value (1101 1111)b = ~(1<<PORTB5)).

In short, the following expressions achieve the same treatment
 PORTB &= ~(1<<PORTB5);
 PORTB &= ~0x20; // (20)h=(100000)b
 PORTB &= 0xDF; // (DF)h is the complement of (20)h
 PORTB &= ~B00100000; // B00100000 (constant) is equal to 0x20
 PORTB &= B11011111; // B11011111 (constant)

Microcontrôleurs 9/29

// Example BLINK: pin control without Arduino's functions

// LED <- PB5 : LED ON when PB5=1

void setup() {
 // setting : PB5 as output (see section 5.2)
 DDRB |= 0x20; // DDRB.5 <- 1

// or DDRB|=B100000; // B100000 = 0x20
// ou DDRB|=32; // 0x20 = 32

 PORTB &= 0xDF; // PORTB.5 <- 0
// or DDRB&= ~0x20; // 0xDF is the complement to 0x20

}

void loop() {
 PORTB |= 0x20; // PORTB.5 <- 1
 delay(200); // 200 ms
 PORTB &= 0xDF;; // PORTB.5 <- 0
 delay(1000); // 1s (only Arduino's function used here)
}

5 Internal structure of ATMega328 (excerpts from ATMEL documentations)

The use of integrated peripherals (digital inputs and outputs, timers, ...) is based on the use
(read/write) of internal registers. These registers, mainly 8 bits, are described by an UPPERCASE
name in C programs. This section provides some important details about the internal registers of the
ATMega328 microcontroller involved in the operation of peripherals. Some parts are excerpts from
the Atmel documentation.

For the complete documentation (442p): search with keywords ATMega328 datasheet

 Notation : thereafter, for a register named R, the notation R.n designates the nth bit of register
R. Be careful, it is only a notation. The C compiler cannot exploit this notation.

Ex: PORTB.5 means "bit number 5 of the register called PORTB".

PORTB.5=1; // KO, not a C language expression !
 PORTB |= 0x20; // OK: bit PORTB.5 set to 1

5.1 Status Register (SREG)

The SREG register contains flags and the general interrupt authorization bit. The bits in this register
are : Z (Zero), C (Carry), S (Sign) ... The general interrupt enable bit is bit I (SREG.7).

Note : in C language, bit I is modified with functions sei() (set IT) cli() (Clear IT)

5.2 Digital I/O

The microcontrollers have logical input/output pins, just like on a PLC. To set the state of an output
to 0 or 1, or to read the state of an input, internal registers described below must be used.

The inputs/outputs are divided into 3 groups of pins called ports. Port B groups the pins marked
PBx, port C the PCx pins and port D the PDx pins (see pinout). Each port is operated by means of 3
registers.

Microcontrôleurs 10/29

Ex: PORTB, DDRB et PINB registers for controlling pins PB0 à PB7

PORTx = for WRITING output values
DDRx = Determines the DIRECTION of each pin of the port (1-Output 0-Input).
PINx = for READING the input value

DDRx = Direction of port x

Ex: if bit DDRB.6 is equal to 1 then pin PB6 is a logical output

PORTx for writing digital outputs: if a pin is configured as an output (DDRx.n=1) then writing
the PORTx.n bit defines the state of the output (0 or 1).

PINx for reading logical inputs :if a pin is configured as an input (DDRx.n=0) then reading the
PINx.n bit allows knowing the status of the input.

In the documentation, the registers involved are described below (example for pins PB0 to PB7).

Microcontrôleurs 11/29

// Example ports
void setup()
{
 DDRB |= 0x40; // DDRB.6 <- 1 <-> PB6 as output
 DDRD &= ~0x08; // DDRD.3 <- 0 <-> PD3 as input
}

// Example : writing an output
void setup()
{
 DDRB |= 0x40; // PB6 as an output
 PORTB &= ~0x40; // PORTB.6 <-0 (set PB6 to 0)
}

// Example : reading an input
void setup()
{
 DDRD &= ~0x08; // PD3 as input
}
void loop()
{

if((PIND&0x08)!=0) // if PD3 equals 1
{

...
}

}

Activation of internal pull-up resistors (important)

In MOS technology, a not-connected input has an undetermined state. Also, when you want to use
push buttons/switches, you connect them in such a way as to bring the input back to 0 when you
close the contact. Conversely, when the contact is open, the state of the input must be brought to 1
by pull-up resistors. These internal resistors are activated (or not) by programming:

PORTx.n=1 AND DDRx.n=0  internal pull-up activated
PORTx.n=0 OR DDRx.n=1  internal pull-up of Pxn not activated

Microcontrôleurs 12/29

// Input PIN with internal PULL-UP resistor
void setup()
{
 DDRD &= ~0x02; // DDRD.1 <-0 (PD1 as input)
 PORTD |= 0x02; // PORTD.1<-1 (internal pull-up on PD1)
}

6 Interrupts for ATMega328 (Arduino UNO)

Interrupt (IT) = suspension of the program to carry out a particular treatment. But this is different
from a function or a subprogram: it is not explicitly called by the program. You don't write the call
of this specific task. It is the processor that, following the detection of a particular cause, triggers
the interrupt processing. The function related to interrupt processing is called an interrupt function
or interrupt service routine (ISR).

Peripherals can lead to interruptions. This mechanism ensures very short response times between
the cause of the interrupt and its processing.

Important: ISR calls are inserted asychronically (it is not known in advance when they will be
called) into the program execution. For example, an Arduino program is interrupted every
millisecond by an ISR linked to Timer 0. This ISR Timer 0 routine updates the time variables used
by the delay() millis() etc. functions. An Arduino program is therefore cyclically suspended
(interrupted) for the ISR Timer 0, which slows down its execution by about 6%.

Below is the interrupt vector, i.e. all sources (possible causes) on ATMEGA238.

Microcontrôleurs 13/29

6.1 External Interrupts (pins PD2 and PD3)

These are interrupts where the causes are related to levels or changes of state of pins PD2 (INT0) or
PD3 (INT1) of the microcontroller. Please note the name INT0/INT1 in reference to this alternative
function of pins PD2/PD3. For this external interrupt role, the pins must be configured as inputs
(see 5.2 DIGITAL I/O).

Pins INT0 (PD2)/INT1(PD3): Configurable to trigger interrupts (no. 2 and 3 in the vector or
INT0_vect/INT1_vect). The possible causes (selected by programming) are

detection of a level 0 on the input (low level),
falling/rising edge
any logical change

Choosing the cause of interruption: what is written in the EICRA register

the EICRA.1-EICRA.0 bits for INT0 (see table 12.2)
EICRA.3-EICRA.2 bits for INT1 (same table for ISC11-ISC10)

Enable interrupts INT0/INT1 = bit SREG.7 to 1 and set EIMSK.0/EIMSK.1 to 1

Microcontrôleurs 14/29

// INT0/INT1
void setup()
{
 cli(); // no IT
 EICRA &= 0xF0; // reset bits EICRA.3-EICRA.0
 EICRA |=0x09; // ISC11=1 ISC10=0 (falling edge INT1)

 // ISC01=0 ISC00=1 (pin change on INT0)
 EIMSK |=0x03; // INT0/INT1 enabled
 sei(); // IT allowed
}

Detail : internal Flags = when the ISR starts, a flag in EIFR is set

Interrupts for Arduino (interrupt vector)

#define INT0_vect _VECTOR(1) /* External Interrupt Request 0 */
#define INT1_vect _VECTOR(2) /* External Interrupt Request 1 */
#define PCINT0_vect _VECTOR(3) /* Pin Change Interrupt Request 0 */
#define PCINT1_vect _VECTOR(4) /* Pin Change Interrupt Request 1 */
#define PCINT2_vect _VECTOR(5) /* Pin Change Interrupt Request 2 */
#define WDT_vect _VECTOR(6) /* Watchdog Time-out Interrupt */
#define TIMER2_COMPA_vect _VECTOR(7) /* Timer/Counter2 Compare Match A */
#define TIMER2_COMPB_vect _VECTOR(8) /* Timer/Counter2 Compare Match B */
#define TIMER2_OVF_vect _VECTOR(9) /* Timer/Counter2 Overflow */
#define TIMER1_CAPT_vect _VECTOR(10) /* Timer/Counter1 Capture Event */
#define TIMER1_COMPA_vect _VECTOR(11) /* Timer/Counter1 Compare Match A */
#define TIMER1_COMPB_vect _VECTOR(12) /* Timer/Counter1 Compare Match B */
#define TIMER1_OVF_vect _VECTOR(13) /* Timer/Counter1 Overflow */
#define TIMER0_COMPA_vect _VECTOR(14) /* TimerCounter0 Compare Match A */
#define TIMER0_COMPB_vect _VECTOR(15) /* TimerCounter0 Compare Match B */
#define TIMER0_OVF_vect _VECTOR(16) /* Timer/Couner0 Overflow */
#define SPI_STC_vect _VECTOR(17) /* SPI Serial Transfer Complete */
#define USART_RX_vect _VECTOR(18) /* USART Rx Complete */
#define USART_UDRE_vect _VECTOR(19) /* USART, Data Register Empty */
#define USART_TX_vect _VECTOR(20) /* USART Tx Complete */
#define ADC_vect _VECTOR(21) /* ADC Conversion Complete */
#define EE_READY_vect _VECTOR(22) /* EEPROM Ready */
#define ANALOG_COMP_vect _VECTOR(23) /* Analog Comparator */
#define TWI_vect _VECTOR(24) /* Two-wire Serial Interface */

Example :

ISR(name) { ... } = ISR for a source in this list

Microcontrôleurs 15/29

// Example : External Interrupt 0
ISR(INT0_vect) // ISR INT0
{

PORTB ^= 0x20; // toggle PORTB.5
}
void setup(){ //

cli();
Serial.begin(9600);
DDRB |= 0x20; // PB5 as an output
PORTB &= ~0x20; // PORTB.5 <-0
DDRD &= ~0x04; // PD2 as an input

 PORTD |= 0x04; // PORTD.2=1 <-> pull-up
EICRA = 0x02; //  on INT0 (table 12-2)
EIMSK |= 1; // INT0 enabled
sei();

}
int cpt=0; // global variable
void loop() { // this function can be suspended for the ISR

Serial.println(cpt,DEC);
cpt++;
delay(1000);

}

 For the previous program, a push-button is connected between PD2(/INT0) and ground GND.
When the push button is pressed, the level of input PD2 is set to 0. Here, the internal pull-up
resistor is used to set the level to 1 when the button is released.

Principle: Each time the pushbutton changes the level on input INT0(PD2) from 1 to 0, the
interrupt function associated with INT0 is executed. This action has the effect of reversing the state
of the LED and returning to the main program. It is important to understand that the interrupt only
lasts a few microseconds. Apart from these interrupts, the main program (loop() function) sends the
value of the cpt variable to the serial port every second.

Note: this way of decoupling the processing of the push button from that of the main program is
similar to task parallelization.

[Technical point] Set EIFR register flag to 0: EIFR register bits indicate (flags) that an INT0/INT1
interrupt request is pending: a flag of 1 in this register means that the cause of IT has been detected
but the ISR routine is not yet executed. If you want to cancel an int. request (before it is executed),
you must reset these flags to 0. Strange: To cancel a request (clear flag), you must write 1 (not 0) in
the EIFR register for the flag concerned.

EIFR|=1; // cancel IT request INT0
EIFR|=2; // cancel IT request INT1

6.2 "Pin Change" interrupts (possible for all logical pins)

Pin Change interrupts (PCINT0_vect, PCINT1_vect, PCINT2_vect) are used to associate a task
(ISR) with a cause which is the change of state of an input. Each edge, rising or falling, leads to an
interruption. This mechanism can be used for any binary input. On the other hand, the same ISR is
used for a set of pins. It is therefore sometimes difficult to detect which specific input is causing the
interrupt, compared to INT0/INT1 where it is known exactly what the cause of the interrupt is.

Pins PCINT0 to PCINT23 (alternative name for PBx, PCx and PDx): Configurable to trigger
interrupts (#4, #5 and #6 or PCINT0_vect, PCINT1_vect, PCINT2_vect) following pin changes
(configured as DDRx.n=1 input). The pins are separated into 3 subgroups, there is one interrupt
source per subgroup, and for each pin the "Pin Change Interrupt" system can be activated or not.

Pin Change 3 groups of pins (linked to ports B, C and D)

PCINT0 - PCINT7 <-> pins PB0 to PB7 group linked to IT PCINT0_vect
PCINT8 - PCINT15 <-> pins PC0 to PC7 group related to IT PCINT1_vect
PCINT16 - PCINT23 <-> pins PD0 to PD7 group linked to IT PCINT2_vect

Registers PCMSK0, PCMSK1 and PCMSK2 control, for each of these groups (i.e. for each port B,
C D), which pin(s) can lead (or not) to a "pin change" type interrupt.

Microcontrôleurs 16/29

Enable interrupts PCINT0 to PCINT23 if bit SREG.7=1 and set PCIEx to 1

PCICR Registry: IT Pin Change activation for a group

PCICR.0: Activation of IT Pin Change for the pins of port B (PB0 to PB7)
PCICR.1: Activation of IT Pin Change for the pins of port C (PC0 to PC6)
PCICR.2: Activation of IT Pin Change for the pins of port D (PD0 to PD7)

Activation within a group: the PCMSKx register determines which pins in the group are taken into
account for the "pin change" interrupt

Example : IT Pin Change for Port B and Port D

Microcontrôleurs 17/29

// Pin Change Interrupt
void setup()
{
 cli();
 PCICR |= 0x05; // Pin Change enabled port D and port B
 DDRB&=~0x03; // PB1/PB0 inputs
 DDRD&=~0x0A; // PD7/PD5 inputs
 PCMSK0=0x03; // Pin Change enabled on PB0/PB1
 PCMSK2=0xA0; // Pin Change enabled on PD7/PD5
 sei();
}

ISR(PCINT0_vect){ ... } // called for a pinchange on PB1 or PB0

ISR(PCINT2_vect){ ... } // called for a pinchange on PD7 or PD5

Flags for ISR "Pin Change"

Other example "PIN CHANGE"

Note: On AVR, by default, an interrupt function cannot itself be interrupted. The CPU prevents ISR
from being suspended.

Microcontrôleurs 18/29

//Pin Change for PC4,PC5,PD2 and PD3

void setup()
{
 Serial.begin(9600);
 cli();
 PCICR |= 0x06; // Pin Change enabled port D/port C
 PCMSK2=0x0C; // Pin Change PD3/PD2
 PCMSK1=0x30; // Pin Change PC5/PC4
 DDRD&=~0x0C; // PD2/PD3 inputs
 PORTD|=0x0C; // pull-up for PD2 PD3
 DDRC&=~0x30; // PC4 PC5 inputs
 PORTC|=0x30; // pull-up for PC4 PC5
 sei();
}

volatile int cpt1=0;
volatile int cpt2=0;

ISR(PCINT1_vect) // Pin change port C
{
 cpt1++;
}

ISR(PCINT2_vect) // Pin Change port D
{
 cpt2++;
}

void loop()
{
 delay(2000);
 Serial.print("cpt1=");
 Serial.println(cpt1,DEC);
 Serial.print("cpt2=");
 Serial.println(cpt2,DEC);
}

6.3 Timers interrupts

Built-in timers can trigger interruptions. A complete section on configuring the built-in timers and
operating the associated interrupts is provided.

7. Timers/Counters on ATMega328

 The ATMega328 microcontroller has several internal timer/counter modules (Timers), some with 8-
bit count registers and others with 16-bit count registers. In all cases, each counting event leads to a
change in the count register (+1). The count event can be a "tick" of the microcontroller clock,
which is equivalent to measuring the passage of time. The count event can also be an edge on an
input pin of the microcontroller (pins T0 and T1 can be used as count input).

Timer function: When counting "ticks" of the clock that clocks the microcontroller, the time
elapsed is measured. The Timer/Counter modules provide this function. It is also possible to count
the ticks of a lower frequency signal obtained by dividing the clock frequency by a prescaler.

Note: on the Arduino UNO board, the clock is at 16MHz, or 16,000,000 clock cycles per second, or
16 clock cycles per microsecond. These are the cycles that are counted as a timer function.
16000000 cycles = one second.

Counter function: when counting edges on a counter input (pins T0 or T1), the "counter" function
of the module (not studied here) is used.

The choice between timer function (with prescaler or not) and counter function is made by
configuring registers dedicated to the management of Timer/Counter modules. You will see, it's
technical.

Generating periodic signals: the Timer/Counter modules are quite complex and each of these
modules can generate two PWM (Pulse Width Modulation) signals whose duty cycle can be easily
modified. In this case, use the Arduino analogWrite() function which generates a PWM signal. This
PWM signal is only managed on the outputs linked to integrated Timers i.e. PD6,PD5,PD3,
PB1,PB2 and PB3.

Arduino analogWrite() = generates a PWM signal managed by a Timer module.

Note: timers are complex embedded devices (about 70 pages of the ATMega datasheet). Only a
simplified view is provided here.

7.1 Timer/Counter 0 (8 bits)

It is a Timer/Counter module with 8-bit count register. When using the Arduino IDE, timer 0
(and the associated interrupt) is implicitly used by the time management functions
(delay(),millis() ...). This Timer/Counter module cannot therefore be used directly with the
ARDUINO Uno board. Unless you accept to do without the Arduino time management functions.

Microcontrôleurs 19/29

7.2 Timer/Counter 2 (comptage 8 bits)

It is a Timer/Counter module with 8-bit count register. The general structure of the Timer/Counter 2
module is shown in the following diagram. The counter register is TCNT2 (8-bit register).

Important points (Timer 2) :
detection and IT overflow (TIMER2_OVF_vect)
count input = clock signal with prescaler or not
possibility to compare TCNT2 with two OCR2A/OCR2B comparison registers
the equality TCTN2=OCR2A can trigger an IT (TIMER2_COMPA_vect)
the equality TCTN2=OCR2B can trigger an IT (TIMER2_COMPB_vect)
Pins OC2A(PB3) and OC2B (PD3) can be activated by Timer/Counter 2 for generating

periodic signals (PWM).

Registers Timer/Counter 2

Microcontrôleurs 20/29

Operating Modes (Table 17-8) :

Normal: Register TCNT2 is incremented by 1 for each counting event. The register only returns to
0 after an overflow (0xFF to 0x00).

CTC (Clear Timer on Compare): Register TCNT2 is incremented at each counting event AND is
reset to 0 if TCNT2=OCR2A.

Other non-detailed modes, especially for PWM management.

The choice of the mode is made via the bits WGM22:20 (bits TCR2A and TCR2B).

Microcontrôleurs 21/29

Clear Timer on Compare Match (CTC) Mode

In CTC mode (WGM22:0 = 2), register OCR2A sets the resolution. The counter TCTN2 is reset to
zero after the match TCTN2=OCR2A. Register OCR2A defines the maximum value for the counter
and thus its resolution.

Prescaler : as a timer function, the counter register TCNT2 is incremented according to the clock
cycles. The increment can be at each clock cycle (no prescaling) or at a lower frequency. Remember
that the clock cycle is 1/16 microseconds. The prescaler indicates how many clock cycles are
required for a TCNT2 increment.

prescaler Timer 2 settings

Microcontrôleurs 22/29

7.3 Example Timer 2 with Interrupt

Enabling of interrupts on Timer 0 (3 sources n°14, 15 et 16)

Note: for Timers 1 and 2, the configurations are similar.

Example: It is desired that each overflow of Timer 0 should lead to an interruption.

SREG.7=1 (general bit for IT activation, without it no IT)
TIMSK0.0 (TOIE0)=1 (interrupt on timer 0 overflow)

For Timer 2, a TIMER2_OVF_vect interrupt can be triggered for each TCNT2 overflow
(change from 0xFF to 0x00). This mechanism has to be activated

TIMSK2=0x01; // IT Timer2 Over Flow Active

Provide IT routine: ISR(TIMER2_OVF_vect){ ... } //ISR of the IT overflow Timer2
and set up Timer 2.

Note (volatile variables): When global variables are shared (read/write) between the main
program and an ISR function, it is recommended to label them as volatile. Without this
keyword, the compiler is likely to make code optimizations that would cause variable
sharing to fail.

Microcontrôleurs 23/29

Settings Timer 2
Mode 0 (Normal) : WGM2=0 WGM1=0 WGM0=0 [TCCR2A=0]
Prescaler = 1024 : CS22=1 CS21=1 CS20=1 [TCCR2B=0x07=(111)b]

Interrupts
Interruption if Overflow = TIMSK2.0 =1

Principle: after the setup() function, the TCNT2 register (8bits) is incremented at each tick of the
periodic clock/1024 signal. Each time register TCNT2 overflows, the overflow triggers interrupt
n°10 called "Timer 2 Over Flow". Every 60 calls of this function, pin PB5 (LED) changes state. The
LED therefore blinks.

How often does it blink?

Clock = 16MegaHz periodic signal (1600000 cycles per second)
Preset = 1024 -> TCNT2 increment frequency = (16/1024) MegaHz
Overflow frequency: TCNT2 only overflows every 256 increments

i.e. at the frequency of 16/(1024*256) MegaHZ ≈ 61 Hz
There is 1 Timer2 Over Flow interruption every 1/61 seconds.
It takes 61 Interruptions for the LED to change state.

The LED changes state (0->1 1->0) at intervals of about 1 second.

Microcontrôleurs 24/29

// ARDUINO UNO - IT Timer 2 Overflow

volatile unsigned char cpt=0; // counter of ISR executions

// ISR n°9 = Timer 2 OverFlow
ISR(TIMER2_OVF_vect){
 cpt++;
 if(cpt==61){

 PORTB ^=0x20;
 cpt=0;
 }
}

void setup(){

 DDRB |= 0x20; // PB5 as output
 PORTB &= ~0x20; // PORTB.5 <-0

cli();
// settings Timer 2

 TCCR2A=0; // Normal
 TCCR2B=0x07; // Prescaler 1024 (Clock/1024)
 TIMSK2=0x01; // Timer2 Over Flow Enabled

sei();
}

void loop() { /* nothing */ }

Another example: timer2 in CTC mode and interrupts

The CTC mode of Timer 2 is used here. Each time TCNT2=OCR2A, TCNT2 is reset to 0 and the
equality triggers an interrupt. Autre exemple : timer2 en mode CTC et interruptions

How often does it blink?

Clock = 16MegaHz periodic signal (16 million ticks per second)
Preset = 1024 -> TCNT2 increment frequency = (16/1024) MegaHz
Overflow frequency :

TCNT2 only overflows every 156 increments (OCR2A value).
i.e. at the frequency of 16/(1024*156) MegaHZ ≈ 100 Hz

There is 1 Timer2 On Compare A interruption approximately every 1/100 seconds.

The LED lights up 1/10 of a second and then goes out 4/10 of a second. It lights up
briefly twice a second.

Microcontrôleurs 25/29

// ARDUINO UNO - IT Timer 2
// Mode Clear Timer On Compare

volatile unsigned char cpt;

//ISR IT n°7 = Timer 2 COMPA
ISR(TIMER2_COMPA_vect){
 cpt++;
 if(cpt==40) PORTB|=0x20;
 if(cpt==50){
 PORTB &=~0x20;
 cpt=0;
 }
}

void setup(){

 DDRB |= 0x20; // PB5 output
 PORTB &= ~0x20; // PORTB.5 <-0

// Settings Timer 2
 TCCR2A=0x02; // Mode CTC (Clear Timer On Compare)
 OCR2A=156; // comparison reg A = 156
 TCCR2B=0x07; // Prescaler 1024 (Clock/1024)
 TIMSK2=0x02; // IT when TCNT2=OCR2A

sei();
}

void loop() { /* */ }

Timer2 configuration function in CTC mode

The SetTimer2CTC(CSB,period) function provided below allows you to configure Timer 2 in
CTC mode with a given period (on 8 bits) between two resets.

For example:

SetTimer2CTC(2,50); // prescaler = /8 period=50

In the example below :

presscaler /256 = TCNT2 incremented 62500 times per second
period 100 = the TIMER2_COMPA_vect interruption occurs 625 times per second

Microcontrôleurs 26/29

/* Config. Timer2 en Mode CTC
CSB(Clock Select)= 0(timer2 stop),1(=/1),2(=/8),3(=/32),
4(=/64),5(=/128),6 (=/256),7(=/1024)
period =
*/
void SetTimer2CTC(byte CSB,byte periode)
{
 TCCR2A=B010; // Mode CTC (Clear Timer On Compare)
 OCR2A=periode; // comparison OCR2A (8bits)
 TCCR2B&=0xF0;
 TCCR2B|=(CSB&0x07); // prescaler choice
}

volatile unsigned int cpt=0;

ISR(TIMER2_COMPA_vect) // IT when TCNT2==OCR2A
{
 cpt++;
}

void setup()
{
 Serial.begin(9600);
 cli();
 SetTimer2CTC(6,100); // prescaler /256 periode 100
 TIMSK2|=0x02; //IT Timer2 when TCNT2==OCR2A
 sei();
}

void loop()
{
 delay(1000);
 Serial.println(cpt,DEC);
}

7.4 Timer/Counter 1 (16 bits)

The TCNT1 count register, as well as the comparison registers OCR1A and OCR1B, are 16 bits this
time.

Note: in assembly language, two 8-bit accesses are required to read/write these 16-bit registers. In C
language, 16-bit data can be manipulated symbolically via TCNT1, OCR1A and OCR1B without
worrying about how the code will be generated.

Registers Timer/Counter 1

Microcontrôleurs 27/29

Depending on the mode selected by bits WGM10:3, the following options are available (PWM
mode Correct phase not described)

Microcontrôleurs 28/29

Prescaler Timer 1

In the example below

prescaler /256 = 62500 TCNT1 increments per second
period 10,000 = 6.25 interruptions TIMER1_COMPA_vect per second

Microcontrôleurs 29/29

/* Timer1 en Mode CTC
CSB = 0 (timer1 stop), 1(/1),2(/8),3(/64),4(/256),5(/1024)
period = */
void SetTimer1CTC(byte CSB,unsigned int period)
{

TCCR1A=0;
OCR1A=periode; // comparison OCR1A (16bits)
TCCR1B=0x08;
TCCR1B|=(CSB&0x07);

}

volatile unsigned int cpt=0;

ISR(TIMER1_COMPA_vect) // IT when TCNT2==OCR2A
{
 cpt++;
}

void setup()
{
 Serial.begin(9600);
 cli();
 SetTimer1CTC(4,10000); // prescaler /256 periode 10000
 TIMSK1|=0x02; //IT Timer1 when TCNT1==OCR1A
 sei();
}

void loop()
{
 delay(1000);
 Serial.println(cpt,DEC);
}

	1 Introduction
	2 Arduino UNO schematic
	3 Microcontroller ATMEL ATMega328
	4 Programming in the Arduino's IDE
	4.1 Introduction
	4.2 Langage C pour ARDUINO UNO

	5 Internal structure of ATMega328 (excerpts from ATMEL documentations)
	5.1 Status Register (SREG)
	5.2 Digital I/O

	6 Interrupts for ATMega328 (Arduino UNO)
	6.1 External Interrupts (pins PD2 and PD3)
	6.2 "Pin Change" interrupts (possible for all logical pins)
	6.3 Timers interrupts

	7. Timers/Counters on ATMega328
	7.1 Timer/Counter 0 (8 bits)
	7.2 Timer/Counter 2 (comptage 8 bits)
	7.3 Example Timer 2 with Interrupt
	7.4 Timer/Counter 1 (16 bits)

