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Extremum Cycle Times in Time Interval

Models

Philippe Declerck

Abstract

In this paper, we analyze the 1-periodic schedule of a class of time interval models under the form

of a polyhedron which can describe Timed Event Graphs and P-time Event Graphs. Using the duality

and Stiemke’s theorem, the main contribution is the determination of conditions where the extremum

cycle times are finite and characteristic of a class of models.

I. INTRODUCTION

In the field of discrete event systems, the consideration of time is an important topic and the

dater description can describe complex time phenomena. In this paper, we consider the class of

time interval models which includes Timed Event Graphs, P-time Event Graphs and P-time Event

Graphs with Affine-Interdependent Residence Durations (Chapter 3 in [1], [2]). Applications of

P-time Event Graphs can be found in production systems [3] [4] [5], microcircuit design [6],

transportation systems [7], and the food industry [8]. A simple application of P-time Event

Graphs is cooking a product: The cooking time must not be too long, otherwise the product will

be damaged; at the same time, the cooking time needs to be long enough. Time interval models

are useful when some tasks must compensate for the undesirable effects of other operations such

as the warming of a part or an incomplete achievement of a task [2] and a next paper will show

that it can express a specific type of time macro-places which supervise the behavior of a set

of places. A current aim is to obtain the best production of parts which is expressed by the

P. Declerck is with LISA/LARIS EA4094, University of Angers, 62 avenue Notre-Dame du Lac, 49000 Angers, France.

Tel. +33 241 226560 - Fax. +33 241 226561

E-mail. philippe.declerck@univ-angers.fr

September 29, 2017 DRAFT



2

production rate or the cycle time which is certainly one of the most important characteristics of

time models.

A classical problem is to determine a 1-period schedule starting from a possible initial state

with an optimal cycle time. In this paper, we focus on the analysis of the class of time interval

models which can follow a 1-periodic trajectory which is a steady schedule. When Timed Event

Graphs or P-time Event Graphs are considered, the determination of the extremum cycle times

can be based on the analysis of the elementary circuits of the Timed Event Graphs [9] or an

extended graph associated with the considered P-time Event Graph [10]. A main result is that

the extremum cycle times only depend on the parameters (such as the time durations and the

initial marking) and substructures of the model and do not depend on the state. It implies that the

extremum cycle times which are constant for a given system represent fundamental characteristics

of this system.

Therefore, the objective is to extend this property to the class of time interval models and we

want to know if the system (which can be a P-time Event Graphs with additional constraints)

presents extremum cycle times which are finite and characteristic of the system. In that case, the

cycle time is said to be ”intrinsic” (A formal description is given in Definition 2). If a cycle time

depends on the state, there is no guarantee that the relevant value is constant; It can lead to a

unexpected degradation of the optimal production rate and a possible loss of performance which

naturally generates a cost and it implies that the value of the production rate is not guaranteed.

The main contribution of the paper is the description of a class of models which avoids this

drawback. With this aim in mind, we explore the duality which allows a deeper analysis of the

connections between the concept of cycle time and the class of time interval models.

Let us put our contribution into a general context and give some related works. The papers

[11] [6] [12] [13] [14] consider Timed Event Graphs while this proposed paper can consider

P-time Event Graphs. Remember that P-time Event Graphs generalize Timed Event Graphs as

they can describe lower and upper bounds on the token stays contrary to Timed Event Graphs.

Considering a model named Negative Event Graph which corresponds to a P-time Event Graph,

the papers [15] [16] examine the earliest and latest feasible steady firing schedules for each

of the minimum and maximum cycle times and discuss the liveness. The analysis is based on

the paths and exploits standard algebra but also max-plus algebra which is an elegant way to

make graph theory. The article [17] analyzes a linear precedence constraints graph where the
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processing times present a minimum delay but not a maximum time duration like the P-time

Event Graphs but the labels of the arcs bring a complex form of numbering of the starting

times. This study focus on the minimization of the largest period of the tasks while we consider

a unique period which is shared by all events. Strongly connected substructures are considered

through the assumption of unitary graphs where every circuit has a weight equal to 1. Principally

in graph theory, the papers [15] [16] [17] only consider relations between two events contrary

to this proposed paper.

In this paper, since we consider a general algebraic model of a time interval model which

is a polyhedron A.x ≤ b where A is not always an incidence matrix (a row of matrix A

cannot be associated with an arc if it contains more than two entries), we cannot deduce an

associated graph as for Timed Event Graphs, linear precedence constraint graphs [17] or P-time

Event Graphs [10] [15]: It implies that the classical graph theory cannot be applied, and more

advanced tools are necessary in the resolution and analysis of the problem. A presentation of

the connections between graph theory and Linear Programming can be found in [2]. Linear

Programming is a natural technique chosen by different authors [11] [12] [18][19] [13] [14] and

some authors [6] [15] have exploited the principle of duality which provides a new possibility

allowing the calculation of the cycle time. Contrary to these studies which principally are about

the computation of the cycle time and resource optimization for Timed Event Graphs and P-time

Event Graphs, this paper considers a more general class of models and focus on the connections

between the class of time models and the concept of intrinsic cycle time. This objective implies

the use of general theorems of linear programming such as Stiemke’s theorem which seems to

be an original point at the best of our knowledge. Note that the introduction of a new algorithm

based on duality is only a necessary step in our approach.

In this paper, we assume that we can control the dates of the state. This assumption, which

corresponds to the controllability of every transition when Petri nets are considered, is different

from the assumption taken for the k-periodic case (out of the scope of the paper) where the

rule is an immediate firing of each available transition. It implies that the 1-periodic trajectory

starts without any transient period contrary to the k-periodic case where the Timed Event Graph

reaches a periodical regime after a finite transient period (that can be extremely long even for

small systems) [20]. We also make the assumption that the time model is consistent which

corresponds to the time liveness when P-time Event Graphs are considered [21]. We assume
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the feasibility of the 1-periodic trajectory which is out of the scope of the paper (See [2] for

more details). This paper generalizes [1] [2] by analyzing the finite character of the extremum

cycle times. It also contains new material such as the introduction of the notion of forward- and

backward-homogeneous system and a technique of calculation of a positive invariant.

The paper is organized as follows: Firstly, we give the algebraic model of the time interval

model and describe the problem. Then the problems of maximization and minimization of the

cycle time are rewritten under a synthetic form. The following section exploits the duality and

the Stiemke’s Theorem and analyzes the extremum cycle times. Different pedagogical examples

illustrate the main concepts. By lack of place, the model of P-time Event Graphs is not presented

and can be found in [4] [19] [21] [10] [15]. The reader is referred to [1] and [2] for a more

detailed introduction of the formulation that bases the present paper.

II. ALGEBRAIC MODEL

The notation |E| stands for the cardinality of the set E while the notation Ai,. corresponds to

row i of matrix A. The transpose of the matrix A is denoted At. In this paper, we focus on the

following algebraic model defined in the standard algebra

(
G−

G+

)
×


 x(k)

x(k + 1)


 ≤


 −T−

T+


 , (1)

for k ≥ 0 where: x(k) ∈ Rn; T− and T+ ∈ (R ∪ {−∞,+∞})q; G− =
(

G−
1 G−

0

)
and

G+ =
(

G+
1 G+

0

)
∈ Rq ×2.n. This paper uses the ”dater” representation well-known in (max,

+) algebra : Each variable xi(k) over R represents the date of the kth event associated with xi.

Remark 1: When P-time Event Graphs are considered, this event is the firing of a transition

belonging to the set of transitions TR. For the sake of simplicity, transition xi ∈ TR and the

relevant date xi(k) ∈ R are usually denoted with the same notation. The system (1) can always be

obtained and corresponds to a P-time Event Graph where the initial marking of each place is equal

to at most one. The correspondence is as follows: n = |TR| and q = |PL| where PL is the set

of places. Each entry T−
l and T+

l in column-vectors T− and T+ is respectively the lower bound

and the upper bound of a time interval [T−
l , T+

l ] associated with each place pl ∈ PL . When we

consider a place pl having a unitary (respectively, null) initial marking, the lower bound T−
l of

the time duration of place pl linking its input transition xj to its output transition xi generates the
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Fig. 1. Elementary P-Time Event Graph (Example 1)

inequality xj(k−1)−xi(k) ≤ −T−
l (respectively, xj(k)−xi(k) ≤ −T−

l ). So, (G−
1 )l,j = +1 and

(G−
0 )l,i = −1 (respectively, (G−

0 )l,j = +1 and (G−
0 )l,i = −1 ). Similarly, the upper bound T+

l of

the time duration of this place generates the inequality −xj(k − 1) + xi(k) ≤ T+
l (respectively,

−xj(k) + xi(k) ≤ T+
l ). So, (G+

1 )l,j = −1 and (G+
0 )l,i = +1 (respectively, (G+

0 )l,j = −1 and

(G+
0 )l,i = +1).

Example 1.

Let us consider the elementary P-time Event Graph of Fig. 1. We obtain n = |TR| = 2 ,

q = |PL| = 2, T− =


 T−

1

T−
2


 , T+ =


 T+

1

T+
2


 , G−

1 =


 1 0

0 1


 , G−

0 =


 0 −1

−1 0


 ,

G+
1 = −G−

1 and G+
0 = −G−

0 . Other examples can be found in [2] and Chapter 3 of [1].

Remark 2: The study [4] gives an algebraic model named implicit discrete model which is

close to model (1). Indeed, assuming that G+ = −G−, model (1) becomes T− ≤ G+.


 x(k − 1)

x(k)


 ≤

T+ which is equivalent to T− ≤ q′(k) ≤ T+ where q′(k) = G+.


 x(k − 1)

x(k)


 which is system

(3) in [4]. Model (1) is more general since it permits to consider the case G+ 6= −G− as in [2].

Remark 3: As illustrated by Example 1, an inequality relevant to a row in System (1) involves

only two variables when an ordinary P-time Event Graph is considered. The model (1) is actually

more general and also permits to handle affine inter-dependance where a residence duration of a

token in a place determines the time duration of another place as explained in [2]. In that case,

each inequality in model (1) can involve more than two variables and contains three or four

variables; The components of G− and G+ depend not only on the elements of the incidence
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matrix in {−1, 0, 1} but also on the coefficients of the affine inter-dependance over R.

The problems solved in this paper directly consider model (1) without being specific to

particular Time Petri nets.

III. EXTREMUM CYCLE TIMES

A. Objective 1

The aim in this section is to determine the minimum or maximum cycle time (if it exists)

and the initial state x(0) (i.e. the first firing dates of the transitions when time Petri nets are

considered), such that the system (1) follows a 1-periodic behavior defined as follows.

Definition 1: System (1) follows a 1-periodic behavior when its trajectory satisfies equality

x(k) = λ.u + x(k− 1) for k ≥ 1 where λ is the cycle time and u = (1 . . . 1)t with |u| = |x(k)|.

Let M =


 G−

1 + G−
0

G+
1 + G+

0


 , N =


 G−

0 .u

G+
0 .u


 and θ =


 −T−

T+


 . The dimensions of these

matrices are respectively (2.q × n), (2.q × 1) and (2.q × 1). So, the System (1) following a

1-periodic behavior is described by

M.x(k) ≤ θ −N.λ . (2)

We write below the two initial problems of minimization and maximization of the cycle time

under a single form which is more synthetic than the description given in [1].

B. Problem I

The problems of maximization and minimization of the cycle time λ can be rewritten under

a synthetic form if we consider min ρ.λ where the minimization of λ is given by ρ = +1 and

the maximization by ρ = −1. As a finite optimal solution yields a realistic trajectory, we must

start from a finite initial starting point x(0) which is limited by the addition of the constraint

x(0) ≥ L in the problem of minimization (x(0) ≤ L in the problem of maximization). A more

synthetic form is the constraint

−ρ.x(0) ≤ −ρ.L (3)

where vector L is a lower bound of x(0) when ρ = 1 (x(0) ≥ L) and an upper bound when

ρ = −1 (x(0) ≤ L).
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Let us note that this relation describes a practical problem as we can consider the example

of a company where the working day starts at 8.00. A current rule is that each task i must start

after 8.00 as the company is closed before: We have xi(0) ≥ Li with Li = 8.00. We can also

imagine a symmetrical rule where each task i must start before 8.00 and we have xi(0) ≤ Li.

Therefore, the resolution of the above linear programming problems denoted Problem I gen-

erates an initial state and an optimal cycle time:

Problem I

min ρ.λ under constraint

 −ρ.I 0

M N


 .


 x(0)

λ


 ≤


 −ρ.L

θ


 (4)

where the minimization of λ is given by ρ = +1 and the maximization by ρ = −1.

For the sake of clarity, the rows corresponding to infinite time durations are kept. When a

classical algorithm of linear programming is applied, the relevant rows can be removed or the

infinite values can be replaced by an arbitrary large real number.

C. Objective 2 and preliminary analysis

As the relation (2) shows that the cycle time depends on the initial state x(0), an aim is the

elimination of x(0) in the expression of the cycle time: An algebraic expression of the extremum

cycle time which does not depend on x(0) must be obtained. Therefore, the following definition

highlights this possibility.

Definition 2: An extremum cycle time is said to be intrinsic to the System (1) when it only

depends on the matrices G−, G+, T−and T+ and not the initial state x(0).

An intrinsic extremum cycle time is a characteristic of System (1) which can be reused

as a known constant in any problem. Clearly, the minimum cycle time (the minimum and

maximum cycle time, respectively) is intrinsic for Timed Event Graphs (for P-time Event Graphs,

respectively) as the optimal cycle time only depends on the circuits, initial marking and time

durations of the model [9] (of the associated graph, respectively [10]) if the relevant circuits

exist. The following example shows that the elimination is not always possible.

Example 2. The matrices of the time interval model are as follows:
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G−
1 =


 1 0

0 1


 , G−

0 =


 0 −2

−1 0


 , G+

1 = 0, G+
0 = 0, (T−)t =

(
T−

1 T−
2

)

=
(

1 2
)

and T+ = +∞. We denote x(0) =
(

x1 x2

)t

and L =
(

L1 L2

)t

. Let us

apply the well-known Fourier-Motzkin algorithm to system composed of inequality (2) which is



x1 − 2.x2 ≤ −T−
1 + 2.λ

−x1 + x2 ≤ −T−
2 + λ

and x(0) ≥ L. It is equivalent to max(L1, x2 + T−
2 −λ) ≤ x1 ≤

2.x2−T−
1 +2.λ with L2 ≤ x2. As the existence of an interval on x1 allows its elimination which

gives





L1 ≤ 2.x2 − T−
1 + 2.λ

T−
1 + T−

2 ≤ x2 + 3.λ
, we finally obtain max(L2, (L1+T−

1 −2.λ)/2, T−
1 +T−

2 −3.λ) ≤

x2. The elimination of x2 is not possible as the relations do not define an interval. We finally

obtained max((L1+T−
1 −2.x2)/2, (T

−
1 +T−

2 −x2)/3) ≤ λ and the minimum cycle time depends

on x2.

Let us consider the linear programming problem I. Its aim is not to eliminate x(0) but to

compute an optimal cycle time where x(0) must satisfy the additional constraint (3) which

reduces the space defined by (2). As the constraint (3) can possibly have an effect on the computed

cycle time, the question is now if the limitation of the state space modifies the optimality: The

computed cycle time is optimal for problem I for a given L but is not the best possible cycle time.

If the optimal cycle time is intrinsic, it does not depend on x(0) and a fortiori on a limitation

of the state space. Therefore, the resolution of Problem I gives a unique optimal cycle time for

any variation of L and, the computed value can be reused as a known constant in any problem.

The following example illustrates the difficulty.

Example 3.

The matrices of the time interval model are as follows:

G−
1 =




1 0 0

0 0 3

0 0 2

0 1 0




, G−
0 =




0 0 −2

−1 0 0

0 −2 0

0 0 −1




, G+
1 = 0, G+

0 = 0, (T−)t =
(

T−
1 T−

2 T−
3 T−

4

)

=
(

1 2 3 4.5
)

and T+ = +∞.

Table I gives the minimum cycle time and relevant initial state denoted xopt and λopt computed

by the linear programming problem I for different L. The tests show that the computed cycle

time is finite but varies with L when the minimization of the linear programming problem I

is applied. As the optimal cycle time depends on the lower bound L, it is not intrinsic to the

September 29, 2017 DRAFT



9

System (1).

TABLE I

COMPUTED SOLUTIONS BY PROBLEM (I) FOR EXAMPLE 3

Lt xt
opt λopt(

0 0 0
) (

8 0 1.5
)

3(
20 0 0

) (
20 5.25 7.125

)
3.375(

0 20 0
) (

48 20 17.625
)

6.875(
0 0 20

) (
54.333 13.833 20

)
7.666

Therefore, the optimal solution naturally depends on System (1) but can also depend on the

values of L which have been introduced with constraint −ρ.x(0) ≤ −ρ.L. We can conclude that

problem I for a given L can compute an optimal solution where the optimal cycle time does

not correspond to the best cycle time for any L. In the following sections, the analysis of the

intrinsic characteristic is based on duality.

D. Dual Problem II

In the previous approach, the used variables are the cycle time λ and the initial state x(0). As a

consequence, a trajectory starting from x(0) is generated. In this section, we apply the principle

of duality which allows the replacement of the variables x(0) and λ by a variable denoted y.

The references [22] [23] (Corollary 7.1g page 91) describe the following two dual forms:

Problem P: min
y∈Rn

y.b under y.A = c and y ≥ 0

and

Problem D: max
x∈Rm

c.z under A.z ≤ b .

Therefore, we have a correspondence between Problem I and the second Problem D if we

take z =


 x(0)

λ


 , A =


 −ρ.I 0

M N


, b =


 −ρ.L

θ


 and c =

(
0 −ρ

)
where 0 is a

zero row-vector with |0|=n . Similarly, Problem II is Problem P with the same matrix A and

vectors b, c .
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The following theorem makes the connection between the two problems and the corresponding

optimal solutions. The set Zad = {z ∈ Rm|A.z ≤ b} is the set of the admissible solutions to the

dual problem. In the same way, Y ad = {y ∈ (R+)n|y.A = c}. Let yopt and zopt be the optimal

solutions to problems P and D, respectively.

Lemma 1: [22] (Chapter 4 in [24]).

1) If y ∈ Y ad and z ∈ Zad then y.b ≥ c.z

2) If problem P (respectively, D) presents a finite optimal solution, then the same assertion

holds for problem D (respectively, P) and the optimal criteria are equal: yopt.b = c.zopt

3) If problem P (respectively, D) presents an infinite optimal solution, then Y ad = ∅ (respec-

tively, Zad = ∅).

Example 2 continued. The last inequality shows that min(λ) → −∞ if x2 → +∞. So, the

occurrence of an infinite solution for the optimization means that the concept of minimum cycle

time is not pertinent to the problem under consideration and is not intrinsic. As the resolution of

y.A = c with y ≥ 0 for ρ = 1 leads to incoherent results (Algebraically, it yields 1/4 ≥ y3 ≥ 1/3

where y3 is the third component of y), it shows that this system has no solution: Y ad = ∅ for

ρ = 1. The admissibility can also be checked by linsolve() of Scilab. As the minimum cycle

time is infinite, this result is coherent with the point 3 of Theorem 1. The same conclusion holds

for the maximum cycle time which is clearly infinite and set Y ad = ∅ for ρ = −1.

Remark 4: The non-decrease of the trajectories (guaranteed by the addition of the relation

x(k + 1) ≥ x(k) in the model) leads to a finite minimum cycle time as it implies λ ≥ 0.

Note that, as the maximum cycle time of a Timed Event Graph is infinite, it implies that

Y ad = ∅ for ρ = −1 which can also be proved by analyzing the matrices. Used in the proof of

Theorem 2, the point 3 of the following theorem focus on the finite aspect of the optimal cycle

times.

Theorem 1: 1) If y ∈ Y ad and z ∈ Zad then −ρ.λ ≤ y.b

2) If zopt (respectively, yopt) is finite, then yopt (respectively, λopt) is finite and −ρ.λopt =

yopt.b.

3) If Y ad 6= ∅, then zopt and yopt are finite.

Proof. As c =
(

0 −ρ
)

, the first point of the duality theorem 1 indicates that −ρ.λ ≤ y.b

. The second point is directly deduced from point 2 of the same theorem 1 which also implies

that the relevant criteria are equal. The third point is based on the negation of point 3 in theorem
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1: Problem P does not present an infinite optimal solution, if Y ad 6= ∅ . As we assume the

feasibility of the 1-periodic trajectory in the paper, the optimal solution zopt exists and must be

finite. Point 2 implies that yopt is finite as zopt is finite. ¥
As the minimization of λ is expressed by ρ = 1, we have : −y.b ≤ λ and λmin = −ymin.b.

Similarly, as the maximization of λ is expressed by ρ = −1, we have λ ≤ y.b and λmax =

+ymax.b .

The condition Y ad 6= ∅ of point 3 of Theorem 1 is now named Condition 1. Contrary to

Condition 1 which does not depend on b which contains L, Point 2 shows that the optimal cycle

time can depend on L and more results are necessary.

IV. EXTREMUM CYCLE TIMES INTRINSIC TO SYSTEM (1)

We now show that the concept of extremum cycle time is intrinsic to a large class of models

under some general conditions. This result is based on Stiemke’s theorem which also allows for

a reduction of the size of Problem II.

A. General case: Model (1)

Lemma 2: (Stiemke Theorem [25] [23]). For a matrix Ω, the following cases are mutually

exclusive from each other.

• case 1. Ω.κ = 0, κ > 0 has a solution κ.

• case 2. y.Ω ≥ 0 and y.Ω 6= 0 has a solution y.

The following theorem defines a large class of models where the extremum cycle time is

intrinsic. We denote y =
(

y1 y2

)
where y1 and y2 are two row-vectors such that y1 =

y1,...,n and y2 = yn+1,...,n+2.q. This theorem generalizes Property 3.3 in [1]: The Condition 1 of

admissibility of a finite optimal cycle time is added; It simultaneously considers the minimization

and the maximization, and specifies (y1)opt.

Theorem 2: Let us assume that there exists a vector κ> 0 such that M.κ= 0 (Condition 2).

If Y ad 6= ∅ for a given ρ (Condition 1), then,

• The optimal cycle time is intrinsic to System (1).

• (y1)opt = 0 and (y2)opt is the optimal solution to the problem min
y∈Rn

y2.θ such that

y2.
(

M N
)

=
(

0 −ρ.
)

with y2 ≥ 0 (5)
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and

λopt = (−ρ).(y2)opt.θ . (6)

Proof. If Y ad 6= ∅, then there is a vector y ≥ 0 satisfying system y.A = c which gives


−ρ.y1 + y2.M =

(
0 . . . 0

)

y2.N = −ρ.
or





y2.M = ρ.y1

y2.N = −ρ.
with y1 ≥ 0 and y2 ≥ 0. It implies

that y2.M ≥ 0 for the minimization problem ( ρ = 1), and that y2.M ≤ 0 for the maximization

problem ( ρ = −1). Considering the minimization, we shall prove that actually y2.M is equal

to zero if the Condition 2 of Theorem 2 holds true.

Indeed, we can deduce from Stiemke’s theorem that Case 2 has no solution as Case 1 holds:

M.κ = 0, κ > 0 has a solution by assumption of the theorem (Condition 2). Therefore, the

system composed of y2.M ≥ 0 and y2.M 6= 0 has no solution y2. In other words, it means

that it is not possible to find y2 whereby there is no entry i of the row-vector y2.M satisfying

(y2.M)i > 0. Since the condition y2.M ≥ 0 must be satisfied, the remaining possibility is

y2.M = 0. The same result can be said for the maximization: The assumption of the theorem

is equivalent to ”−M.κ = 0, κ > 0 has a solution” and the reasoning is identical if we replace

matrix M by −M .

Finally, equality ρ.y1 = y2.M is equivalent to y1 = ρ.y2.M as ρ2 = 1. As y2.M = 0, we have

y1 = 0 and only the optimization min
y∈Rn

y2.θ is necessary. Moreover, points 2 and 3 of Theorem 1

imply that zopt, yopt are finite and −ρ.λopt = yopt.b = (y2)opt.θ. Therefore, λopt = (−ρ).(y2)opt.θ

which means that the optimal cycle time does not depend on bound L and is intrinsic. If the

Condition 2 of Theorem 2 is not satisfied, there is an entry i of the row-vector y2.M satisfying

(y2.M)i > 0 in system y2.M ≥ 0, and the optimal cycle time can possibly depend on bound L.

¥
So, expression (6) shows that the optimal cycle time does not depend on a limitation of the

state space produced by L and is intrinsic to model (1). We now make the connection between

the intrinsic property and general properties of the trajectories of System (1). The notion of

homogeneous function [26] is extended to System (1) as follows.

Definition 3: System (1) is said to be forward-homogeneous (respectively, backward-homogeneous)

if any trajectory of System (1) is invariant by shifting with any positive delay (respectively,

negative delay), that is: If a trajectory x(k) satisfies (1), then the trajectory x(k) + ω.∆.u with
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ω = 1 (respectively, ω = −1) satisfies (1) for any ∆ > 0. System (1) is said to be strictly-

homogeneous when it is forward-homogeneous and backward-homogeneous.

Theorem 3: System (1) is forward-homogeneous (respectively, backward-homogeneous) if

and only if M.ω.u ≤ 0 with ω = 1 (respectively, ω = −1) . System (1) is strictly-homogeneous

if and only if M.u = 0 .

Proof. Considering a trajectory x(k) + ω.∆.u, we obtain


 G−

G+


 .×


 x(k)

x(k + 1)


 + M.ω.∆.u ≤ θ (7)

As System (1) is satisfied by assumption, a sufficient condition of feasibility of (7) is M.ω.u ≤
0 as ∆ > 0. The condition is also necessary as a positive component (M.ω.u)i > 0 implies that

it is always possible to find a positive value of ∆ such that the relevant row in (7) is not satisfied.

The second part of the theorem is deduced from the equivalence: M.u = 0 ⇔ M.ω.u ≤ 0 for

ω = 1,−1. ¥
Example 2 continued.

As M.u ≤ 0, the model is forward-homogeneous.

Example 3 continued

The model is not forward-homogeneous as trajectory x(0) + ∆.u → x(1) + ∆.u with x(0) =

0 and x(1) =
(

2 1.5 4.5
)

satisfies System (1) for ∆ = 0 but not for ∆ > 0. Also, M.u � 0.

If we consider P-time Event Graphs (respectively, Timed Event Graphs), we have G−
1 +G−

0 =

−(G+
1 + G+

0 ) = W (respectively, G−
1 + G−

0 = W ) where W is the classical incidence matrix

of an event graph (See relation (3) in Section III.A of [2]). As M.u = 0, these systems are

clearly strictly-homogeneous. The following Corollary makes the connection with the intrinsic

property.

Corollary 1: In a strictly-homogeneous system, the optimal cycle time is intrinsic if Y ad 6= ∅.

B. Checking Condition 2

We below sketch two techniques which allows the checking of Condition 2 of Theorem 2.

• Vector κ can be obtained from an algorithm to compute a set of generators, usually named

”minimal support invariants”, such that any right-invariant κ ≥ 0 satisfying M.κ = 0 with

the appropriate dimensions can be written as a linear combination of these generators [27]
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[28] [29] [30]. Therefore, a positive κ > 0 satisfying Condition 2 can be generated by a

positive linear combination of the generators if the union of the set of indices corresponding

to nonzero entries in each generator covers the set of indices of M . Note that the tests show

that the application of the Martı́nez and Silva’s algorithm [27] can be costly in terms of

time and memory space.

• As a unique vector κ > 0 must be determined, a more efficient technique is as follows:

1) Compute the kernel of M, denoted ker M (the set of solutions to M.κ′ = 0); 2) Take

κ = Q.δ, where δ is an arbitrary vector of adequate dimension and Q is a generating matrix

of the kernel, so that Im Q = ker M . Therefore, M.κ = M.Q.δ = 0. The kernel can be

efficiently obtained by the gaussien elimination which gives a basis of the kernel. In addition,

the condition κ > 0 must be satisfied and the vectors of the basis can contain negative and

null components. Under the assumption that the basis is non-empty otherwise Condition 2

is not satisfied, the determination of a positive κ can be made by solving Q.δ ≥ ξ where

ξ > 0 with |ξ| = |κ| is an arbitrary positive column vector. Typically, this resolution can

be made by the Fourier-Motzkin algorithm but this approach is limited to small systems

(The complexity is double exponential). We can also apply a standard algorithms of linear

programming where an arbitrary criterion ς.δ is optimized. The convergence needs the

boundedness of the space which is guaranteed by the addition of the constraints −Φ ≤ δ ≤ Φ

where the bounds are taken sufficiently large, so that the space is non-empty. This second

technique is strictly more efficient than the above adaptation of the Martı́nez and Silva’s

algorithm and can consider practical problems as the application of this second technique

with the function Karmarkar() or Linpro() (Simplex Algorithm) of Sclilab 5.5.2 on an Intel

Core2 Duo 2.93 GHz needs approximately 1.2 seconds when a full integer matrix M with

n = 500 is considered. Indeed, using well-known polynomial algorithms, it presents the

complexity of the used algorithm of linear programming, that is, O(n4×U)and O(n3.5×U)

in the worst case for the ellipsoid algorithm of Khashiyan and the interior point algorithm

of Karmarkar where n is the number of variables and U is the number of bits necessary in

the storage of the data [23] [31]). The simplex can also be used: Although some artificial

examples show exponential running times, the simplex is efficient in practice as it has

polynomial-time average-case complexity in some general cases [23].
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C. Examples

Example 3 continued

We have G−
1 + G−

0 =




1 0 −2

−1 0 3

0 −2 2

0 1 −1




and G+
1 + G+

0 = 0. For ρ = 1, we can check that

Condition 1 is satisfied as y1 =
(

0 0 0 0 0 1/4 1/2
)
∈ Y ad : The minimum cycle

time is finite. For ρ = −1, as Y ad = ∅ (N.y2 = 1 with y2 ≥ 0 is not possible as N < 0), the

maximum cycle time is infinite. The application of the techniques of Section IV-B on M shows

that there is no solution κ satisfying Condition 2. Therefore, the optimal cycle times are not

intrinsic to the considered model.

Let us verify these results with the analysis of inequality (2). Following the Fourier-Motzkin

approach, the successive elimination of x1, x2 and x3 gives the following inequalities



3.x3 + T−
2 − λ ≤ x1 ≤ 2.x3 − T−

1 + 2.λ

x3 + T−
3 /2− λ ≤ x2 ≤ x3 − T−

4 + λ

x3 ≤ −T−
1 − T−

2 + 3.λ

(T−
3 + 2.T−

4 )/4 ≤ λ

Let λ− = (2.T−
4 +T−

3 )/4 . So, the minimum cycle time is finite and, a priori the best minimum

cycle time is λ− if the relations of the three first rows are satisfied for λ = λ−. In fact, the space

of the initial state x(0) presents an upper bound for a given cycle time and we can choose a

lower bound L such that the space of initial states is empty for the case λ = λ−: Therefore, the

minimum solution is modified as a greater cycle time λ > λ− must be taken.

Example 4.

Example 4 is Example 3 where the second row of the matrices G−
1 , G−

0 and T− are re-

moved. As in Example 3, the minimum cycle time is finite (Y ad 6= ∅ for ρ = 1 as y1 =(
0 0 0 0 1/4 1/2

)
∈ Y ad) and the maximum cycle time is infinite (Y ad = ∅ for

ρ = −1). The Condition 2 of Theorem 2 is satisfied: κ =
(

2 1 1
)t

> 0 gives M.κ =(
0 0 0 0

)t

. We can conclude that the concept of minimum cycle time is intrinsic to the

considered model.

Let us verify this assertion. From inequality (2), the successive elimination of x1, x2 and x3

gives the following inequalities
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x1 ≤ 2.x3 − T−
1 + 2.λ

x3 + T−
3 /2− λ ≤ x2 ≤ x3 − T−

4 + λ

(T−
3 + 2.T−

4 )/4 ≤ λ

Let λ− = (2.T−
4 + T−

3 )/4. Therefore, the minimum cycle time is finite and, a priori the best

minimum cycle time is λ− if the initial state satisfies the relations of the two first rows for

λ = λ−. As the space is unbounded, we can add the constraint L ≤ x(0) without restriction

on the consistency for λ = λ−. Indeed, contrary to Example 3, the system of example 4 is

forward-homogeneous (Condition M.u ≤ 0 is satisfied): Any trajectory of System (1) such as

an 1-periodic trajectory is invariant by shifting with a positive delay.

V. CONCLUSION

In this paper, we analyze the extremum cycle times for a large class of time interval models

which includes Timed Event Graphs and P-time Event Graphs with some extensions. The study

of the extremum cycle times leads to the writing of the primal and dual problems. Condition

1 in Theorem 1 implies that the extremum cycle time is finite. This theorem is reinforced by

Theorem 2 based on Stiemke’s theorem which shows that the concept of extremum cycle time

is intrinsic to an important subclass of time interval models: Condition 2 guarantees that the

computed cycle time can be reused as a known constant in any problem. We finally make

the connection between the intrinsic property and the general properties of the trajectories of

homogeneous systems. The Condition 2 can be checked by a standard technique which computes

all the non-negative invariants. As this technique can be costly in terms of time and memory

space, we also present a more efficient technique where the first step is based on the polynomial

gaussian elimination and the second step exploits standard algorithms of the linear programming.

Perspectives are the analysis of the robustness of the computed results with respect to variations

of the parameters and the extension to more general time models such as T-time Petri nets and

time stream Petri nets.
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