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Optimization of the time durations by exploiting
time margins in Time Interval Models

Philippe Declerck

Abstract—Considering Time Interval Models, which can de-
scribe a large class of models including Timed Event Graphs
and P-time Event Graphs, a general aim is to control the system
such that it follows a 1-periodic behavior starting from an initial
state with a minimal or maximal cycle time. The aim of this
paper is the optimization of the time durations in order to
achieve a given rate of production when the quantity of resources
(number of pallets, machines,...), usually represented by the initial
marking, is assumed to be a fixed datum. A prior step is the
determination of the critical subsystems, whose variations can
influence these optimal values and affect the obtainment of the
relevant trajectories, and the non-critical subsystems leading to
time margins. Two approaches are proposed in that aim. A first
technique is based on an adaptation of the classical Martı́nez and
Silva’s algorithm, where each solution gives a critical subsystem,
while a second approach checks each inequality of the system by
an optimality verification. Using this partition of the subsystems
and particularly exploiting the time margins corresponding to
idle times of machines, the approach allows an optimization of
the non-critical time durations when the extremum cycle times
and the resources are the constant parameters of the problem. In
this paper, the definition of P-time Event Graphs is generalized
by introducing the model of Time Supervisor Place which restricts
the time behavior of a set of places. The approach is applied to
a plant bakery composed of two production lines.

keywords: Petri nets, Time Interval Model, P-time Event
Graphs, cycle time, time margin, critical, linear programming,
food industry, transportation network

I. INTRODUCTION

In this paper, we consider an algebraic model named Time
Interval Model, which covers a large scope of models such as
Timed Event Graphs, P-time Event Graphs and P-time Event
Graphs with Affine-Interdependent Residence Durations ([11],
Chapter 3 in [9], [10]). Time Interval Models are dynamical
linear inequality systems of the form A.x ≤ b, where the
variable x represents the dates of the events, and ”.” denotes
the usual matrix multiplication. The first objective of the
present paper is to introduce a new class of systems that
can be modeled as a Time Interval Model: P-time Event
Graphs with Time Supervisor Place. Time Supervisor Places
limit the admissible residence time of tokens within a set
of places by introducing additional time constraints, which
otherwise, could not be modeled in standard P-time Event
Graphs. Our definition is different from the macro-places
which are often used to create hierarchical Petri nets and to
improve the readability of Petri nets by hiding substructures.
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As Time Supervisor Places restrict the time behavior of a
set of places, they cannot be implicit places which have
the property that their addition to or their removal from a
net system does not change its behavior, i.e., an implicit
place represents redundancy [25]. Therefore, usual macro-
places and implicit places do not extend the expressiveness
of the modeling contrary to the Time Supervisor Places which
enlarge the definition of the places of the P-time Event Graphs.

The extremum cycle time (remember that the production
rate is the inverse of the cycle time) is clearly a crucial notion
as it gives a picture of the possible speeds followed by the
process. Let us consider a cost criterion depending the time
durations of the places when the desired behavior is a periodic
schedule. Practically, this cost criterion can express an energy
saving or a financial economy produced by a slow-down of
machines relevant to a subset of places, as a slow-down of
a vehicle in a transportation system or a choice of slower
vehicles. The slow-down of a machine, which is expressed by
an increase of the lower bound of the relevant time duration,
is possible as the end of a task does not always correspond
to the beginning of another task by reason of time margins.
Symmetrically, the upper bound can express a security limit
for the workers as a place can describe a noisy equipment
(e.g. a jackhammer) or a dangerous situation (e.g. a chemical
hazard, a nuclear irradiation): in that case, the minimization
of the upper bound is clearly an objective for a manager who
desires to keep in good health a team which is exposed to
these potential dangers. In the food industry, the quality of
the product will be damaged if the cooking is too long and
the reinforcement of this limit reduces the risk of unwanted
manipulations. The same objective happens if the employees
are paid hourly and the manager desires to reduce the financial
cost by limiting overtime hours.

The objective of this paper is the optimization of the cost
criterion function of the limits of the time durations where the
process, here the Time Interval Model, follows a 1-periodic
trajectory for a given cycle time. This problem allows the
modeling of optimization problems in which we may optimize
the speeds of the machines or better select the processing
times, for instance if we have the choice between several
machines with different speeds. This aim implies the resolution
of two problems beforehand:

- The computation of the cycle time when the parameters
of the Time Interval Model are assumed to be constant. When
a Timed Event Graph or a P-time Event Graph is considered,
values have been assigned to the initial marking and time
durations.

- The analysis of the effects of the time durations on the
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cycle time.
Indeed, a well-known fact in production management is

that a critical task is relevant to a null time margin when the
optimal path in the PERT graph (or better the Roy’s potential-
task graph) is computed. For Timed Event Graphs, it may be
observed that a limited variation of some time durations can
influence the production rate while a modification of some
other durations has no effect.

In the first case, the relevant substructures are named critical
as they cannot be modified: if the process undergoes the
corresponding unwanted variations, this situation shows a vul-
nerability of the process as it leads to a loss of controllability,
that is, the non-attainment of the desired 1-periodic trajectory.
Examples of systems presenting a weak robustness are as
follows: a seasonal harvest can have an insufficient production
produced by an unexpected closed frontiers limiting the flow
of necessary workers; hospitals can be in a degraded mode
coming from a lack of appropriate personal protective equip-
ment; the passenger flow in a railway system can be perturbed
by a military attack against critical infrastructures as shunting
systems.

In the second case, the non-critical substructures can be
considered as free parameters which can be modified and
optimized. Indeed, the existence of time margins implies that
some variations of non-critical relations are neutral. Therefore,
an optimization of the system for a given production rate can
have an effect on the non-critical subsystems but must keep
the critical subsystems which determine the production rate.
In that aim, a prior objective is the localization of the critical
and non-critical relations.

Let us make the connections with some related works. In
a manner of speaking, the problem considered in this paper
is dual to the resource optimization problem [15] [27] as we
assume that the quantity of resources (typically, the number of
pallets, machines,...) usually represented by the initial marking
is a constant of the problem when a Petri net is considered.
The study [15] for Timed Event Graphs minimizes the cost
of the resources needed to obtain (at least) a given periodic
throughput while for the class of Timed Weighted Marked
Graphs, the problem in [27] consists in finding an initial
marking to minimize the cycle time while the weighted sum of
tokens in places is less than or equal to a given value. Focusing
on hardware circuits, [22] studies the representation under
the form of a marked graph describing the communication
channels and the computation of the components. The main
problem is to minimize the size of memory resources used as
buffer through the interconnection wires. Taking the ASAP (As
Soon As Possible) semantic, contrary to this proposed paper,
[22] gives an algorithm which consists in computing the best
ASAP execution where execution rate is maximal and memory
resources are minimal.

In this proposed paper, we can consider the model of P-time
Event Graphs which was introduced in [18] and the model of
Negative Event Graphs [19] which generalizes Timed Event
Graphs [23] [15] [22]. A difference with [20] is that the linear
precedence constraint graph cannot consider a maximum time
duration.

The paper [5] addresses the problem of computing upper

and lower bounds for the throughput of transitions in Petri net
models having a unique consistent firing count vector. This
paper identifies two interesting subclasses of nets having this
characteristic (persistent nets and mono-T-semiflow nets) and
contains a discussion of their ergodicity conditions. The Petri
nets are bounded and the time interpretation is associated
with transitions contrary to this proposed paper. [3] focuses
on the existence of periodic schedules connected to the critical
circuits while the proposed paper generalizes this last concept
to critical subsystems which can be circuits but not only.
An interesting result illustrated by Fig. 7 in [3] is that the
system might be live although no periodic schedule exists. The
liveness is out the scope of the proposed paper but clearly, the
existence of a periodic schedule gives a sufficient condition of
liveness. [3] studies the influence of the initial marking with
respect to the feasibility of the periodic schedules while the
problem is here dual as the proposed paper is the optimization
of the time durations in order to achieve a given rate of
production when the initial marking is assumed to be a fixed
datum. Based on the firing speeds of transitions, some studies
focus on a control problem in first-order hybrid Petri nets: [13]
proposes controllers that employ the knowledge of the system
state in order to exhibit a satisfactory performance in terms
of throughput and product inventory levels while [1] makes a
sensitivity analysis of throughput if a machine produces faster.

In general, a technique based on graph theory can only be
employed for small systems as a simple search of any circuit
faces a combinatorial explosion of the number of circuits
(the complexity given Section 3.1.13 in [14] is e.(n- 1)! with
e=2.718). Moreover, an important characteristic of the articles
[10], Chapter 3 in [9], [11], [12], and this proposed paper
is that each relation of the model can make the connection
between more than two events. In that case, graph theory
cannot direcly be applied, and a generalization must be stud-
ied. A solution is to develop an approach based on the linear
programming. Note that the studies [5] [15] [18] [19] [23] [20]
[3] [22] [26] [27] are limited to two events.

In this paper, we assume that we can control all the dates
of the state which allows to practically build the 1-periodic
trajectory. We assume the feasibility of the 1-periodic trajec-
tory on an infinite trajectory (this point is discussed in [11]).
Contrary to the papers [10] [11] which analyze the existence of
the extremum cycle times and present techniques allowing the
computation of the optimal trajectories, the proposed paper fo-
cus on the optimization of the time durations and contains two
original techniques for determining the critical subsystems.
Different from [12], where the algorithm exploits directly the
variations of time durations, the proposed approaches 1 and 2
are structural as no variation of durations is considered and the
algorithms do not compute trajectories or initial conditions.

The paper is organized as follows: in Section II, we describe
the Time Interval Model which can describe P-time Event
Graphs with Time Supervisor Places. The concept of Time
Supervisor Place is illustrated by a simple example of a
company composed of two workers in Section II-D and a plant
bakery composed of two production lines in Section IV. The
aim is presented in section III-A while the computation of the
optimal trajectories is remembered in section III-A. Section
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III-B introduces the concept of min-critical (respectively, max-
critical) subsystem and presents two techniques to determine
these subsystems. It presents a new structural analysis based on
the Martı́nez and Silva’s algorithm [21] in Section III-C and an
original classification of the relations based on the checking
of each relation with respect to the critical characteristic in
Section III-D. Three examples illustrate the approaches. The
example of the plant bakery described in [12] presents now a
Time Supervisor Place which modifies its behavior.

II. ALGEBRAIC MODEL

In the paper, ”resp.” is an abbreviation of ”respectively”. The
notation |E| stands for the cardinality of the set E while the
notation Ai,. corresponds to row i of matrix A. The transpose
of the matrix A is denoted At. Let us first introduce the
following main notations which are defined in the rest of the
paper if necessary:
• P is the set of places denoted pi, Psp is the set of Time

Supervisor places, P \ = P ∪ Psp, q = |P \| and, I =
{1, . . . , 2.q}.

• M is the current marking, M0 is the initial marking and,
Mi is the marking of place pi.

• m is the maximum number of tokens in the initial
marking.

• W is the incidence matrix.
• G− and G+ are structural matrices defining the TIM and

determining H, N.
• T−, T+ are the lower and upper time durations and, θ =

((−T−)t, (T+)t)
t
.

• TR is the set of transitions which are denoted xi and
n = |TR|.

• k ∈ N is the number of events.
• xi(k) ∈ R represents the date of the kth firing associated

with transition xi.
• λ represents the cycle time and, λmin, λmax are the

minimal and maximal cycle times respectively.
• ∆ is the vector of time margins.
• Y, Y −, Y =, Y + are sets of row-vectors denoted y.

A. Time Interval Model

In this paper, we focus on the following algebraic model
which is named Time Interval Model (TIM) defined over R(

G−

G+

)
.

(
x(k)
x(k + 1)

)
≤
(
−T−

T+

)
, (1)

for k ≥ 0 where: x(k − 1) and x(k) ∈ Rn; T− and
T+ ∈ (R ∪ {−∞,+∞})q; G− =

(
G−1 G−0

)
and G+ =(

G+
1 G+

0

)
∈ Rq ×2.n. The addition of the constraints

x(k) ≥ x(k − 1) in the algebraic model guarantees that
the trajectory is non-decreasing. In this paper, we assume the
consistency of the TIM (1), that is, the existence of a state
trajectory over R on an infinite horizon. For simplicity, we
do not distinguish a relation and its relevant index and, a
relation whose index is i is directly written ”relation i” with
i ∈ I = {1, . . . , 2.q}.

Below, the aim is to illustrate the possibilities of modeling
of the Time Interval Models which can describe P-time Event

Graphs and also the Time Supervisor Places which is an
original model. Note that the study [2] proposes an algebraic
model named implicit discrete model which is close to the
interval model but with the restriction of a symmetric form.
The problems solved in Section III directly consider the TIM
(1) without being specific to particular Time Event Graphs and
the relevant structures of matrices G− and G+.

In a first reading, the following section can be skipped as
Section III exploits directly model (1).

B. Preliminary remarks on Petri nets

A brief description of the Petri nets and P-time Event
Graphs is now presented. A Petri net is a pair (GR,M0),
where GR = (V,AR) is a bipartite graph defined as follows:
the set V is a finite number of nodes which are partitioned
into disjoint sets of places P and transitions TR; the set AR
consists of pairs of the form (pi,xj) and (xj ,pi) with pi ∈ P
and xj ∈ TR. The initial marking M0 is a vector of dimension
|P | whose elements denote the number of initial tokens in the
respective places and M0

i is the initial marking of the place
pi ∈ P . The set •pi (resp., p•i ) is the set of input (resp., output)
transitions of pi ∈ P . The set •xi (resp., x•i ) is the set of input
(resp., output) places of the transition xi ∈ TR. For a Petri
net with |P | places and |TR| transitions, the incidence matrix
W = [Wij ] is a |P | × |TR| matrix of integers and its entry is
given by Wij = W+

ij −W
−
ij where W+

ij ≥ 0 is the weight of
the arc from transition j to place i, and W−ij ≥ 0 is the weight
of the arc from place i to transition j. The characteristic vector
s of a firing sequence S is such that each component of s is a
natural number corresponding to the number of firings of the
corresponding transition. A marking M reached from an initial
marking M0 by the firing of a sequence S, can be calculated
by the fundamental relation: M = M0+W.s where W.s is the
usual matrix product of W by vector s. A Petri net is called
an Event Graph if each place has exactly one input and one
output transition: formally, |•p| = |p•| = 1 (∀p ∈ P ). All arc
weights of the event graphs considered below are unitary. A
Timed Event Graph is a triple (GR,M0, f) where (GR,M0)
is an Event Graph and the mapping f : P → R+ associates
with each place pl a time duration.

C. P-time Event Graphs

To describe time constraints on tokens in P-time Event
Graphs [4] [6], we associate a temporal interval defined in
R+ × (R+ ∪ {+∞}) with each place: each place pl ∈ P is
associated with an interval [T−l , T

+
l ], where T−l is the lower

bound and T+
l is the upper bound. A P-time Event Graph is a

triple (GR,M0, f) where (GR,M0) is an Event Graph, and
the mapping f : P → R+ × (R+ ∪ {+∞}) associates with
each place pl an interval [T−l , T

+
l ] with 0 ≤ T−l ≤ T

+
l . Each

considered event is the firing of transition xi ∈ TR and the
relevant date is usually denoted xi(k) ∈ R with k ∈ N for the
sake of simplicity. Let m ∈ N be the maximum number of the
initial tokens: m = max{M0

l |l ∈ {1, |P |}}. A numbering of
the events can be made if we assume a FIFO (First In First
Out) functioning of the places which guarantees that the tokens
do not overtake one another and the absence of token deaths.
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Fig. 1. Example 1: Elementary P-Time Event Graph

Therefore, the following system can describe a P-time Event
Graph for each place pl ∈ P where each place pl links one
upstream transition {xj} = •pl and one downstream transition
{xi} = p•l .

xp•l (k)− x•pl(k −M0
l ) ∈ [T−l , T

+
l ] (2)

The rewriting of (2) leads to the form of the TIM (1) defined
over R. We take the assumption m ∈ {0, 1} which is not
limiting as we can apply the building given in appendix of
[10]. To summarize, the column-vectors −T− and T+ are
duration vectors of dimension |P | and interval [T−l ,T+

l ] is
the time interval of place pl; the dimension of G− = [G−1 G

−
0 ]

and G+ = [G+
1 G

+
0 ] is equal to |P | x (2).|TR|; so, q = |P |

and n = |TR|. Matrices G−and G+ express time connec-

tions inside the time Petri net and matrix
(
G−

G+

)
presents a

symmetric form as we have G+ = −G−. Some connections
between the rows of W and G− are made in the following
property when m = 1.

Property 1: [10], Chapter 3 in [9] and [11]
Let us assume that m = 1. For each place pl ∈ P , we

have: (G−0 )l,. = Wl,. and (G−1 )l,. = 0 if M0
l = 0 ; (G−0 )l,. =

−(W−)l,. and (G−1 )l,. = (W+)l,. if M0
l = 1. �

Example 1
The inequalities describing the elementary P-time Event

Graph of Fig. 1 relatively to places p1, p2, p3 are as

follows.


T−1 ≤ x2(k)− x1(k − 1) ≤ T+

1

T−2 ≤ x1(k)− x2(k − 1) ≤ T+
2

T−3 ≤ x2(k)− x1(k − 1) ≤ T+
3

So, we ob-

tain n = |TR| = 2 , q = |P | = 3, T− =

 T−1
T−2
T−3

 , T+ = T+
1

T+
2

T+
3

 , G−1 =

 1 0
0 1
1 0

 , G−0 =

 0 −1
−1 0
0 −1

 ,

G+
1 = −G−1 and G+

0 = −G−0 . �
Moreover, we have shown that the TIM (1) can describe

P-time Event Graphs with affine-interdependent residence du-
rations [10]: in general, each entry in column-vectors T− and
T+ is a time duration of a place but this usual interpretation
is generalized in the case of affine-interdependent residence
durations, that is, a residence duration of a token in a place
determines the time duration of another place. The equality
G+ = −G− is not kept and the inequalities expressed by
the TIM (1) can contain three or four variables contrary to

the bi-variable inequalities (2) of the P-time Event Graphs.
Finally, these new relations are more complex since the
coefficients depend not only on the entries of the incidence
matrix in {−1, 0, 1} but also on the coefficients of the affine
interdependence over R.

D. Time Supervisor Places

We now present another possibility of the TIM (1). Let
us add some specifications to the considered model under
the form of a set of Time Supervisor Places denoted Psp
(sp for supervisor places) which extends the initial set of
places P of the Petri net. The complete set of places is
P \ = P ∪ Psp . The relevant marking (respectively, initial
marking) of the event graph with supervisor places is denoted
M

\

(resp., M0,\ ); so, M is a subvector of M
\

. We consider
a set of additional constraints l′ ∈ {1, . . . , |Psp|} where each
constraint represented by a Time Supervisor Place supervises
the behavior of a subset of places Pl′ ⊂ P. The Time
Supervisor Place relevant to the subset Pl′ ⊂ P is denoted
as a standard place p|P |+l′ ∈ Psp but its index |P |+ l′ starts
at |P | + 1 and finishes at |P | + |Psp| = |P \|. Its current
marking (resp., initial marking) is the sum of the marking
of the places of Pl′ , that is, M|P |+l′ =

∑
pl∈Pl′

Ml (resp.,

M0
|P |+l′ =

∑
pl∈Pl′

M0
l ).

We can now generalize the definition (2) to a set of places
where the additional constraint expresses lower and upper
bounds to the sum of place durations. Formally, the constraint
of a Time Supervisor Place p|P |+l′ ∈ Psp is algebraically
defined by

∑
pl∈Pl′

(xp•l (k)− x•pl(k −M0
l )) ∈ [T−|P |+l′ , T

+
|P |+l′ ] (3)

for l′ ∈ {1, . . . , |Psp|}.
The analysis of (3) shows that this definition can also

describe a place of a P-time Event Graph when |Pl′ | = 1 :
in that case, the sum in (3) disappears. Therefore, each place
is a Time Supervisor Place and this new model includes the
model of P-time Event Graphs. Moreover, the definition of
Time Supervisor Place needs only a time evolution of a Petri
net and is separated from the definition of the P-time Petri
net: it implies that Time Supervisor Places can be applied to
other models as timed Petri nets and time Petri nets. The above
relation (3) can easily be rewritten under the form of TIM (1).
Equality G+ = −G− is kept and matrix G− is defined as
follows.

Property 2: Let us assume that m = 1. For each Time
Supervisor Place pi with i = |P |+ l′ and l′ ∈ {1, . . . , |Psp|},
we have:

(G−0 )i,. =
∑

pl∈Pl′

(G−0 )l,. =∑
pl∈Pl′ |M0

l =0

Wl,. −
∑

pl∈Pl′ |M0
l =1

(W−)l,. and

(G−1 )i,. =
∑

pl∈Pl′

(G−1 )l,. =
∑

pl∈Pl′ |M0
l =1

(W+)l,. .

Proof. Immediate from the definition of the constraint of a
Time Supervisor Place (3) and the previous property 1. �
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Fig. 2. Example 2: P-time Event Graph with a time supervisor-place

Example 2
Fig. 2 considers a customer whose building is being reno-

vated by a company composed of two workers. The relevant
jobs correspond to places p1 and p3. The firing of x3 expresses
the end of the renovation. The company wants a maximum
payment for this work which is calculated from the presence
of two workers, whereas the customer wants a minimum
payment. Assuming that the presence of a token in a place
corresponds to an effective task of a worker, we consider that
the sum of the tasks associated with p1 and p3 must belong
to the interval [T−5 , T

+
5 ]. This constraint defines the Time

Supervisor Place p5 relevant to the places p1 and p3 which
is represented by an oval in grey. The additional constraint
1 is: the sum of the task durations associated with p1 and p3

must belong to the interval [T−5 , T
+
5 ] = [15, 16].

So, T−5 ≤ (x3(k)−x1(k−1))+(x3(k)−x2(k−1)) ≤ T+
5

or{
+x1(k − 1) + x2(k − 1)− 2.x3(k) ≤ −T−5
−x1(k − 1)− x2(k − 1) + 2.x3(k) ≤ T+

5

.

(G−1 )5,. = −(G+
1 )5,. =

(
1 1 0

)
and (G−0 )5,. =

−(G+
0 )5,. =

(
0 0 −2

)
. �

Therefore, a Time Supervisor Place can be seen as an
additional place having a set of input and output transitions
(the Time Supervisor Place p5 has two input transitions in
Example 2) which implies that the general structure is no
longer an event graph: the model cannot be described by a
bipartite graph or equivalently by an incidence matrix which
presents at most two entries per row. Moreover, a row in
matrices G− and G+ can present entries different from 1,
-1 and 0 as shown in Example 2. As a consequence, a
problem considering Time Supervisor Places cannot be solved
completely by classical graph theory, and so, we will use linear
programming in the following sections.

To summarize, the general form of TIM (1) can describe
P-time Event Graphs with Time Supervisor Places under a
modification of the set of places which is now P \. So, q =
|P \|. The term m is relevant to the set P of places of the
P-time Event Graphs and the expression m = max{M0

l |l ∈

[1, |P |]} is kept. Therefore, we have T− and T+ ∈ R|P \|, G−

and G+ ∈ R|P \| ×2.|TR|, and n = |TR|.

III. OPTIMIZATION OF THE TIME DURATIONS

A. Aim and principle

Let u be a unitary vector with |u| = |x(k)| = n, that is,
u = (1 . . . 1)

t
. A basic objective is to control the TIM (1) such

that it follows a 1-periodic trajectory which is now defined.
Definition 1: [12] The TIM (1) follows a 1-periodic behav-

ior when its trajectory satisfies equality x(k+1) = λ.u+x(k)
for k ≥ 0 where λ is the cycle time.

The following relations can simply be deduced after the
introduction of x(k + 1) = λ.u+ x(k) in TIM (1):

H.x(k) +N.λ ≤ θ (4)

with H =

(
G−1 +G−0
G+

1 +G+
0

)
, N =

(
G−0 .u
G+

0 .u

)
and θ =(

−T−
T+

)
. The dimensions of these matrices are respectively

(2.q × n), (2.q × 1) and (2.q × 1).
The difference θ − (H.x(k) + N.λ) provides a vector of

time margins denoted ∆2.q×1 =
(

(∆−q×1)t (∆+
q×1)t

)t
which can be used to improve the behavior of each equipment
by modifying the time durations. Indeed, if we subtract a
component of ∆ in the right-hand side θ of (4), it corresponds
to increase T−i (−T−i → −T

−
i −∆−i ) or to decrease T+

i (T+
i

→ T+
i −∆+

i ) under the condition that the time durations are
finite.

Example 1 continued
In place p1, a token created from the firing of transition x1

at time x1(k − 1) is available at time x1(k − 1) + T−1 for
the firing x2(k) but its use is not immediate in general: the
token must wait during the duration x2(k) − (x1(k − 1) +
T−1 ) . Considering that this time margin is useless in general,
an increase of the time duration T−1 which corresponds to a
slow-down of the task represented by place p1 can reduce it.
Therefore, the choice of the greatest time leads to a value
which can be added to the time duration T−1 if the general
constraints of the problem are kept.

Symmetrically, the token death which can occur at the
time x1(k − 1) + T+

1 can express a loss of quality of a
product (excessive baking) or a security rule (e.g. noisy
equipment, dangerous situation). The available duration is
x1(k − 1) + T+

1 − x2(k) which is also a time margin which
can be exploited. We can desire to reenforce the specifications
and to fix more strict official rules: the search of the best time
margin under the general constraints of the problem yields a
value which can be subtracted to the time duration T+

1 . �
Inequality (4) for a given λ describes a set of possible

relevant 1-periodic trajectories. The objective is the opti-
mization of a cost criterion function of the limits of the
time durations by exploiting the time margins where the
process, here the Time Interval Model (1), follows a 1-periodic
trajectory defined by (4) for a given cycle time. The linear
programming problem which focuses on the maximization of
the time margins for a given cycle time λ is defined as follows:
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max(c.∆) with c ≥ 0 such that(
H I2.q×2.q

0 Idoubleq×2.q

)
.

(
x(k)
∆

)
≤
(

θ −N.λ
T+ − T−

)
for k ≥ 0

with x(k), ∆ ≥ 0 and Idoubleq×2.q =
(
Iq×q Iq×q

)
.

(5)
Naturally the condition T−i ≤ T

+
i for each relation must be

satisfied and the condition T−i + ∆−i ≤ T
+
i −∆+

i is added in
the linear programming problem. This aim needs the resolution
of two other problems beforehand:

- The computation of the possible cycle times λ when
H,N, θ in (4) are constant. The variables of the problem are
x(k) and λ. The approach is remembered in Section III-A

- The analysis of the time durations which can modify the
given cycle time λ and improve the value of the criterion c.∆.
This study is treated in Section III-B.

An example of the maximization of the time margins based
on (5) is made in Example 3 Section IV.

Remark. For the sake of clarity, the cost criterion in the
above problem is linear but more general criterion can be
chosen as a quadratic criterion. Moreover, the problem can
be adapted to treat the case of a finite set of possible mod-
ifications of the time durations. Let Ψ = {v1, v2, . . . , v|Ψ|}
be the relevant set of possible values for the time margin
∆i. So, ∆i =

∑
i=1,...,|Ψ|

zi.vi where zi is a boolean variable

satisfying
∑

i=1,...,|Ψ|
zi = 1 as a unique choice is possible. The

linear programming problem becomes a mixed-integer linear
programming problem after applying the same technique to
any time margin.

In fact, (4), and any problem using it as (5) consider an
infinite horizon k ≥ 0. The following definition and results
solve this difficulty.

Definition 2: [12] TIM (1) is said to be forward-
homogeneous (resp., backward-homogeneous) if any trajectory
of TIM (1) is invariant by shifting with any positive delay
(resp., negative delay), that is: if a trajectory x(k) satisfies (1),
then the trajectory x(k) + ω.µ.u with ω = 1 (resp., ω = −1)
also satisfies (1) for any delay µ ∈ R with µ > 0. TIM
(1) is said to be strictly-homogeneous when it is forward-
homogeneous and backward-homogeneous.

The following theorem gives an algebraic way to analyze
the homogeneity of the TIM (1).

Theorem 1: [11] [12] TIM (1) is forward-homogeneous
(resp., backward-homogeneous) if and only if H.ω.u ≤ 0 with
ω = 1 (resp., ω = −1) . TIM (1) is strictly-homogeneous if
and only if H.u = 0. �

Theorem 2: When H.ω.u ≤ 0 with ω = 1, TIM (1) satisfies
x(k + 1) = λ.u+ x(k) for any k ≥ k1 for some given cycle
time λ if this assertion holds for a given k = k1.

Proof. We assume that the trajectory {x(k1), x(k1 + 1)}
with x(k1 + 1) = x(k1) + λ.u satisfies (1) with k = k1.
If H.ω.u ≤ 0 with ω = 1, Theorem 1 says that the TIM
(1) is forward-homogeneous: by definition, if an elementary
trajectory {x(k1), x(k1 + 1)} satisfies (1), we can deduce that
{x(k1) + ω.µ.u, x(k1 + 1) + ω.µ.u} also satisfies (1) for any
non-negative µ ∈ R. Taking the particular value µ = λ, we can

deduce that {x(k1)+λ.u, x(k1+1)+λ.u} also satisfies (1). As
{x(k1)+λ.u, x(k1 +1)+λ.u} = {x(k1 +1), x(k1 +1)+λ.u}
satisfies (1) with x(k) = x(k1 + 1) and x(k + 1) = x(k1 +
1) + λ.u, k corresponds to k1 + 1 and finally, the trajectory
{x(k1 + 1), x(k1 + 2)} with x(k1 + 2) = x(k1 + 1) + λ.u
satisfies (1). As the reasoning can be repeated for {x(k1) +
i), x(k1 + 1) + i} with i ≥ 2, the result is proved. �

Consequently, the consideration of a given k is sufficient in
the maximization of the time margins (5) and the following
problems using (4), if the TIM (1) is forward-homogeneous.
This assumption is taken in the sequel.

An objective is to determine the minimum or maximum
cycle time such that the TIM (1) follows a 1-periodic behavior
starting from k = 0. If we assume the consistency of (4),
the problems of minimization and maximization of the cycle
time λ can be written under the following form of a linear
programming problem [10] [9].

Problem I

min
κ∈Rn+1

c.κ (resp., max
κ∈Rn+1

c.κ)

under constraints A.κ ≤ b

with A =
(
H N

)
, b = θ, c =

(
0 . . . 0 1

)
and

κ =

(
x(0)
λ

)
. �

Remark. The desired 1-periodic trajectory facilitates the
presentation of the approach but can be extended to more
general periodic behaviors as the e-periodic trajectories start-
ing at k = 1 with a cyclicity e 6= 1. So, the expression
x(k) = λ.u + x(k − 1) for k ≥ 1 and the unitary vector
u is replaced by x(k+ e) = γ.u+x(k− 1) for k ≥ 1 and the
cycle time is λ = γ

e . For a cyclicity e, we can compute a e-
periodic trajectory by following the same technique. The initial
step is to develop the system on a horizon and to establish
an inequality similar to (5). Sequences with different periodic
behaviors can also be considered.

B. Critical and non-critical subsystems

An objective of this paper is the analysis of the 2.q relations
of TIM (1) presenting the form(

G−

G+

)
i,.

.

(
x(k)
x(k + 1)

)
≤ θi (6)

with i ∈ I = {1, . . . , 2.q} and precisely the determination
of the min-critical (resp., max-critical) relations relevant to
minimum cycle time (resp., maximum cycle time). A charac-
teristic feature of Timed Event Graphs is that, for the places
of a circuit presenting the maximum ratio, a small variation
of any time durations can modify the value of the minimum
cycle time. We now generalize the concept of these critical
places to the notion of critical relations.

Definition 3: [12] The relation i ∈ I in TIM (1) is said
min-critical (resp., max-critical) for the minimization (resp.,
maximization) if there is a small variation of θi which modifies
the optimal value of the cycle time.

Considering P-time Event Graphs with Time Supervisor
Places, the sets of min-critical pairs (pi, |θi|) relevant to
relation i ∈ I (resp., non-min-critical pairs) are denoted
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P critmin (resp., Pnon−critmin ). So, P critmin ∩ Pnon−critmin = ∅
and the places relevant to first elements of the pairs of
P critmin ∪P

non−crit
min define P \. A symmetrical notation is used

for the max-critical pairs with P critmax and Pnon−critmax .
For a P-time Event graph, each relation corresponds to a

pair (pi, T−i ) for i ∈ {1, . . . , q} or (pi−q , T+
i−q) for i ∈ {q +

1, . . . , 2.q} and the variation is on T−i or T+
i . Note that a

relation i corresponding to an infinite θi cannot be critical as
it cannot lead to a variation of the optimal value of the cycle
time.

Example 1 continued. Let T−1 = 1, T−2 = 5, T−3 = 3,
T+

1 = 6, T+
2 = 7, T+

3 = 8. If the upper bounds of the time
durations are neglected, a Timed Event Graph is obtained. Let
us apply the classical technique where the minimum cycle time
for Timed Event Graphs is based on the consideration of the
circuits and is determined by the calculation of the maximum
of the ratios defined by the sum of the time durations to the
sum of the number of the initial tokens, for each elementary
circuit: so, λmin = max(

T−1 +T−2
2 ,

T−3 +T−2
2 ) = max(3, 4) = 4.

So, the relations corresponding to pairs (p2, T−2 ) and (p3, T−3 )
are critical as an increase of the time duration T−2 or T−3
modifies the value of the cycle time contrary to T−1 . Therefore,
we can increase T−1 , that is, we give the possibility to slow
down the process relevant to place p1 without modifying the
maximum speed 1/λmin of the whole system. As a time
margin for a trajectory operating at the minimum cycle time
is available, it can be reduced.

�
However, as explained in the introduction, a simple search

of any circuit faces a combinatorial explosion of the number
of circuits [14]. In addition, the resolution made by the linear
programming problem I provides the extremum cycle time but
the optimal solution κ is not unique as different solutions x(0)
and different time margins can be obtained. It is worth noting
that the time margin is null when a relation i is critical, but
the converse is not true in general. Therefore, other approaches
must be developed.

C. Approach 1 using Martı́nez and Silva’s algorithm

The determination of the critical relations can exploit the
following theorem which analyzes the existence of a 1-periodic
trajectory without its computation. Let Y = {y ∈ R1×2.q |
y.H = 0 with y ≥ 0} with the following partition Y = Y − ∪
Y = ∪ Y + where

Y−= {y ∈ Y | y.N = −1}
Y== {y ∈ Y | y.N = 0}
Y+= {y ∈ Y | y.N = 1}

(7)

and consider the two conditions

(∀y ∈ Y =) y.θ ≥ 0 (8)

and

λmin = max
∀y∈Y −

(−y.θ) ≤ λmax = min
∀y∈Y +

(y.θ). (9)

Theorem 3: [12] When H.ω.u ≤ 0 with ω = 1, TIM (1)
satisfies x(k+ 1) = λ.u+ x(k) for any k ≥ 1 for some given

cycle time λ, if and only if constraints (8) and (9) are satisfied.
�

Inequality λmin ≤ λmax can be seen as a consistency
condition. As Theorem 3) says that λmin = max

∀y∈Y −
(−y.θ)

and λmax = min
∀y∈Y +

(y.θ), we can deduce that the minimal

cycle time is the maximum of the possible terms −y.θ for
any y ∈ Y − and the maximal cycle time is the minimum of
the possible terms y.θ for any y ∈ Y +. This point implies that
an arbitrary vector y ∈ Y − (resp. y ∈ Y +) can correspond
or not to the optimal cycle time λmin (resp. λmax). The
expression λmin = max

∀y∈Y −
(−y.θ) (resp., λmax = min

∀y∈Y +
(y.θ))

also shows that each relation relevant to a non-null entry yi
of y ∈ Y − (resp., y ∈ Y +) leading to the optimal cycle
time (that is, −y.θ = λmin (resp., y.θ = λmax)) represents
a critical relation i ∈ I as a small variation of the relevant
entry θi with the pertinent sign can modify the optimal value.
Naturally, this interpretation holds for every non-null entry yi
for each y ∈ Y − (resp., y ∈ Y +) leading to the optimal cycle
time and the relevant vectors y can be named min-critical
(resp., max-critical) : only some vectors of Y − (resp., Y +)
are critical. Therefore, a synthesis of the relevant supports of
min-critical (resp., max-critical) vectors with respect to the
non-null entries gives the sets of min-critical and max-critical
relations, respectively. The computation of all the vectors of
Y can be made by an adaptation of the classical Martı́nez and
Silva’s algorithm which allows the determination of every P-
invariant [21]. Note that even if the concepts are close, the
row-vector y below is over R1×2.q and is not a P-invariant
(also named P-semiflow) which is a vector of Nq.

Example 1 continued. We have H =(
1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

)t
,

N =
(
−1 −1 −1 1 1 1

)t
and x(k) =(

x1(k) x2(k)
)t
. For the condition y.H = 0 with

y ≥ 0, the application of the classical Martı́nez and Silva’s
algorithm can provide the following integer solutions:
y1 =

(
1 1 0 0 0 0

)
, y2 =(

0 1 1 0 0 0
)
, y3 =

(
0 0 0 0 1 1

)
,

y4 =
(

0 0 0 1 1 0
)
, y5 =(

1 0 0 1 0 0
)
, y6 =

(
1 0 0 0 0 1

)
,

y7 =
(

0 0 1 1 0 0
)
, y8 =

(
0 0 1 0 0 1

)
and,
y9 =

(
0 1 0 0 1 0

)
. 2) The conditions y.N = −1,

y.N = +1 and y.N = 0 yields a classification and a
modification of the vectors as follows: Y − = {y12 ,

y2
2 } ,

Y + = {y32 ,
y4
2 } and, Y = = {y5, y6, y7, y8, y9}. 3) λmin =

max(−y.θ) = max(
T−1 +T−2

2 ,
T−2 +T−3

2 ) = max(3, 4) = 4 for
y ∈ Y −.

Finally, only y2
2 satisfies the optimality condition: rela-

tions i ∈ {2, 3} are min-critical. Symmetrically, λmax =

min(y.θ) = min(
T+
2 +T+

3

2 ,
T+
1 +T+

2

2 ) = min(7.5, 6.5) = 6.5
for y ∈ Y +.

So, only y4
2 satisfies the optimality condition: relations i ∈

{1, 2} are max-critical. Let us also consider the consistency
condition (8) which becomes −T−1 +T+

1 ≥ 0, −T−1 +T+
3 ≥ 0

, −T−3 + T+
1 ≥ 0, −T−3 + T+

3 ≥ 0 and −T−2 + T+
2 ≥ 0. �
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To avoid the three steps and the classification of the previous
example, we now present a more synthetic approach where
the Martı́nez and Silva’s algorithm can be applied in one step.
Let us consider the min-critical relations. 1) The condition
y.H = 0 with y ≥ 0 which must be satisfied, presents the
convenient form which can be solved by Martı́nez and Silva’s
algorithm. 2) The condition y.N = −1 becomes y.N +α = 0
where α is an artificial scalar equal to 1. 3) Moreover, we
must select the vectors y giving the optimal cycle time λmin =
−y.θ which can be replaced y.θ + α.λmin = 0 with α = 1.
After introducing a real number β > 0, the application of
the Martı́nez and Silva’s algorithm can compute all the non-
negative solutions

(
y′ β

)
in(

y′ β
)
.

(
H N θ
0 1 λmin

)
= 01x(n+1) (10)

and each row vector 1
β .
(
y′ β

)
=
(
y α

)
which clearly

satisfies the condition α = 1, gives a desired solution y
satisfying y.H = 0, y.N = −1 and λmin = −y.θ, that is,
a desired y ∈ Y − where each non-null entry is relevant to a
min-critical relation. Symetrically, the resolution must treat

(
y′ β

)
.

(
H N θ
0 −1 −λmax

)
= 01x(n+1) (11)

for the max-critical relations.
As the optimal cycle times have already been obtained,

Y − 6= ∅ (resp., Y + 6= ∅) and these systems are consistent,
that is, at least a solution must be obtained.

Remark. If matrix H, vector N are integers (which is
satisfied in this paper as we consider the class of P-Time
Event Graphs with Time Supervisor places), and parameters
θ and λmin (resp. λmax) are integers, a slight modification of
the Martı́nez and Silva’s algorithm allows to provide integer
solutions. Indeed, the generation of integers facilitates the
writing of elegant solutions in general: as a division by β is
made, the technique allows to express solutions with simple
fractions and not real numbers with a fractional component.

Example 2 continued
The matrices of the time interval model are as follows:

G−1 =


1 0 0
0 0 1
0 1 0
0 0 1
1 1 0

 , G−0 =


0 0 −1
−1 0 0

0 0 −1
0 −1 0
0 0 −2


, G+

1 = −G−1 , G+
0 = −G−0 ,T− =(

T−1 T−2 T−3 T−4 T−5
)t

=
(

1 2 3 4 15
)t

and T+ =
(
T+

1 T+
2 T+

3 T+
4 T+

5

)t
=(

20 19 18 17 16
)t
.

The values of the minimum cycle time and maximum cycle
time which are 5.25 and 13 respectively, can be computed
by applying Theorem 3 or the linear programming problem I.
Let us apply the improved technique based on Martı́nez and
Silva’s algorithm.

Knowing that λmin = 5.25 and λmax = 13, we obtain a
unique vector(

y′ β
)

=
(

0 1 0 1 1 0 0 0 0 0 4
)

and

(
0 0 0 0 0 0 1 0 1 1 4

)
which satisfies

(10) and (11), respectively for λmin and λmax .
The set of min-critical pairs is P critmin =

{(p2, T
−
2 ), (p4, T

−
4 ), (pc1 , T

−
c1)} while the set of max-critical

pairs is P critmax = {(p2, T
+
2 ), (p4, T

+
4 ), (pc1 , T

+
c1)}.

We can verify that λmin = −y.θ = (2 + 4 + 15)/4 = 5.25
and λmax = y.θ = (19 + 17 + 16)/4 = 13. �

However, the analysis of the algorithm and its use shows
that the complexity is not polynomial and is time costly even if
it can be useful for some examples. Therefore, a more efficient
approach is necessary.

D. Approach 2: Checking of each relation

Synthetic linear programming problem.
Deduced from Theorem 3, the following property allows

to compute the optimal cycle times with a synthetic form of
linear programming problem.

Property 3: The computation of the optimal cycles times
can be made with the following problem denoted Problem II

λmin, λmax = −ρ. min
y∈R1×2.q

y.b with y.A = c and y ≥ 0 (12)

with A =
(
H N

)
, b = θ and c =

(
0 . . . 0 −ρ

)
where ρ = +1 and ρ = −1 for the minimization and the
maximization of the cycle time, respectively.

Proof. From Theorem 3, we can directly deduce the two
following linear programming problems.

λmin = max(−y.θ) with y.A = c and y ≥ 0 over R

where A =
(
H N

)
and c =

(
0 . . . 0 −1

)
.

Respectively,

λmax = min(y.θ) with y.A = c and y ≥ 0 over R

where A =
(
H N

)
and c =

(
0 . . . 0 +1

)
. Let

us show that Problem II is an equivalent form: If ρ = 1, we
obtain − min

y∈R1×2.q
y.b. From property −min(−x) = max(x),

we deduce − min
y∈R1×2.q

y.b = max
y∈R1×2.q

(−y.b) which is the

expression of λmin. As c =
(

0 . . . 0 −1
)
, the rel-

evant linear programming problem is deduced. If ρ = −1,
we have min

y∈R1×2.q
y.b which is the expression of λmax and

c =
(

0 . . . 0 +1
)

: the second linear programming
problem is obtained. �
Remark. The Problem II proposes explicit forms which can
directly be used in the software tools. Indeed, we can only
consider the minimization min

y∈R1x2.q
(y.θ) for the two optimiza-

tions and deduce the exact sign of the desired value with
a multiplication by coefficient −ρ . Similarly, we can only
use a maximization for the two optimizations and make a
multiplication by ρ : another expression of the criterion is
ρ. max
y∈R1x2.q

(−y.θ) as −ρ. min
y∈R1×2.q

y.b = ρ.(− min
y∈R1×2.q

y.b) =

ρ. max
y∈R1x2.q

(−y.θ).

Technique based on the computation of the cycle time
for a constrained problem
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Let us exploit Problem II expressed by (12). The proposed
technique is to check if a selected pair for i ∈ I gives the
same optimal cycle time by adding the constraint yi 6= 0 in
system (12). As yi ≥ 0, this constraint is replaced by yi >
0 or yi ≥ εi where εi is assumed to be a positive number
sufficiently small such that a possible solution with yi > 0 and
the relevant criterion are not modified by this constraint. So,
yi ≥ εi ⇔ yi − sl = εi where sl ≥ 0 is a slack variable. The
addition of a new variable and constraint gives the following
system

(
y sl

)
.

(
H N d
0 0 −1

)
=
(

0 −ρ εi
)

(13)

with y, sl ≥ 0, d =
(

0 . . . 0 1 0 . . . 0
)t

where
1 is in the i-th position if we consider yi > 0. As the
constraints of system (12) are included in the new equality
(13), the resolution of the new problem gives a solution
satisfying y ∈ Y − and y ∈ Y +, respectively. But any vector
of Y − and Y + does not satisfy (13) as a new constraint is
added.

The criterion of the non-modified system (12) is kept if we

take a new vector b′ =

(
θ
0

)
as

−ρ. min
y∈R1×2.q,sl≥0,sl∈R

(
y sl

)
.

(
θ
0

)
= −ρ. min

y∈R1×2.q
y.θ

To summarize, the problem denoted Problem III relevant to
the analysis of the i− th relation for i ∈ I and, ρ = +1 and
ρ = −1, respectively, is −ρ .min

y∈R1×2.q

(
y sl

)
.b′ when the

constraints are(
y sl

)
.

(
H N d
0 0 −1

)
=
(

0 −ρ εi
)

(14)

with y, sl ≥ 0, d =
(

0 . . . 0 1 0 . . . 0
)t

where

1 is in the i− th position and b′ =

(
θ
0

)
.

The following property analyzes the results of problem III
for each i ∈ I.

Property 4: For problem III:
• If the computed cycle time for ρ = 1 (resp., ρ = −1)

is λmin (resp., λmax) for i ∈ I, the relevant relation is
min-critical (resp., max-critical) (Case 1).

• If the optimal cycle time λmin, λmax is not kept, the
relevant relation is not min-critical (resp., max-critical)
and a lower value (resp., greater value) is obtained for
ρ = 1 (resp., ρ = −1) (Case 2).

• If the problem is inconsistent, the relevant relation is not
min-critical (resp., max-critical) (Case 3).

Proof.
Let λopt be the optimal cycle time λmin, λmax of the non-

modified system (12). As the constraints of (14) include the
constraints defining Y and Y − (resp. Y +), each solution to
problem III is a vector y ∈ Y − (resp. y ∈ Y +) and can
correspond or not to the optimal cycle time λmin (resp. λmax).
Moreover, the restriction yi 6= 0 is added. The following cases
are distinguished.

Case 1. If the solution y ∈ Y − (resp., Y +) of the completed
problem (14) leads to an optimal criterion −ρ.y.θ = λopt

with yi 6= 0, a small variation of the relevant entry θi with
the pertinent sign can modify the optimal value. Definition
3 implies that the selected pair i is min-critical (resp., max-
critical). Note that this conclusion can be extended to any pair
i′ 6= i such that yi′ 6= 0 in vector y which is min-critical
(resp., max-critical).

Case 2. As the solution y ∈ Y − (resp., Y +) does not lead
to the optimal solution of (12), vector y is not min-critical
(resp., max-critical). For ρ = +1, as the non-null entry yi
selects a vector y ∈ Y − which does not reach the optimal
cycle time λmin , only a lower value is obtained as shown by
the formula λmin = − min

y∈R1×2.q
y.θ = max

y∈R1x2.q
(−y.θ)and we

obtain λ < λmin. For ρ = −1, a greater value is obtained as
the optimal maximal cycle time is the minimum of the possible
terms y.θ for any y ∈ Y + with yi 6= 0. So, λmax < λ.

Case 3. If the problem III is inconsistent for a given i ∈ I,
there is no y ∈ Y − (resp., Y +) having a component yi ≥ εi
where εi is assumed to be sufficiently small. A fortiori, y and
yi cannot be critical. �

Complexity
The complexity of Approach 2 and the approach presented

in [12], is clearly polynomial as only the application of
a standard algorithm of linear programming is necessary.
Precisely, the complexity is polynomial in the worst case if
modern algorithms are used (the complexities of the ellipsoid
algorithm of Khashiyan and the interior point algorithm of
Karmarkar in the worst case are respectively O(n′4 × L) and
O(n′3.5 × L) where n′ is the number of variables and L is
the number of bits necessary in the storage of the data [8]).
The complexity is also polynomial in the average case if
the Simplex is used (the simplex is known to be efficient in
practice as it has polynomial-time average-case complexity
in some general case [24]). Approach 2 and the approach
presented in [12], need 2.q resolutions of a linear programming
problem with q = |P \| where P \ is the number of places
including the Time Supervisor places, for each optimal cycle
time λmin or λmax. The sizes of the systems to be solved are
almost the same as they are (2.q×n+1) and (2.q+1×n+2)
for [12] and Approach 2, respectively. Considering the 72
problems of the complete approach (4.q with q = 18 for
λmin and λmax) checking the critical pairs in example 3
presented below, the CPU times for [12] and Approach 2 are
approximately equal (respectively 0.124s and 0.186s with a PC
Intel Core 2.93GHz and function linpro() of Software Scilab).

E. Example 2 continued

The table I contains the computed cycle time for each
pair (place, duration) with ε = 0.01. The results give the
same critical pairs as the approach 1 using Martı́nez and
Silva’s algorithm. The values show the extension of the in-
terval [λmin,λmax] depending on the selected pair. In other
words, the obtained cycle time λ satisfies λ ∈ [0, λmin] and
λ ∈ [λmax,+∞] for the minimization and the maximization
of the cycle time, respectively. Remember that λmin = 5.25
and λmax = 13. Throughout these examples, the cycle time
of an identified critical pair is in bold in the tables.
Obtained with (14), the set of min-critical pairs is P critmin =
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TABLE I
EXAMPLE 2: CHECKING OF EACH RELATION BY APPROACH 2

Pair (p1, T
−
1 ) (p2, T

−
2 ) (p3, T

−
3 ) (p4, T

−
4 ) (pc1 , T−c1

) (p1, T
+
1 ) (p2, T

+
2 ) (p3, T

+
3 ) (p4, T

+
4 ) (pc1 , T+

c1
)

min−critical 5.175 5.25 5.215 5.25 5.25 5.135 5.08 5.135 5.12 5.24
max−critical 13.06 13.17 13.06 13.13 13.01 13.13 13 13.09 13 13

{(p2, T
−
2 ), (p4, T

−
4 ), (pc1 , T

−
c1)} and the set of max-critical

pairs is P critmax = {(p2, T
+
2 ), (p4, T

+
4 ), (pc1 , T

+
c1)}. The relevant

sets of non-critical pairs Pnon−critmin and Pnon−critmax can be
deduced easily. �

IV. INDUSTRIAL PROCESS: A PLANT BAKERY COMPOSED
OF TWO PRODUCTION LINES

Example 3 in Fig. 3 considers a baking process. The
modelling of this process under the form of a P-time Event
Graph has been presented in [12] but the replacement
of some places by a Time Supervisor place modifies the
behavior of the system and the results are different. The
plant bakery is composed of two production lines giving a
bread of higher quality (upper range 1) and of an ordinary
quality (ordinary range 2) respectively. The two ranges are
described by places p1, p2, p3, p4, p5, p6, p17 and p7, p8, p9,
p10, p11, p12, p13, p16, respectively. They follow the same
production sequence on four machines which are the kneading
machine, the dividing machine, the molding machine and
the oven. The system contains 15 transitions and 18 places
composed of 17 standard places and a Time Supervisor
place p18 represented by an oval in grey. We take M0 =(

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0
)t

. Taken from a semi-industrial plant bakery
[16] [17], the time durations specific for each range and an
additional operation of proofing (place p8) for the range 2
lead to two different qualities. The main operations are as
follows. After mixing the ingredients, the dough is kneaded.
This step of kneading is represented by places p1 and p7.
The following step is the first proofing which is the process
of leaving the dough in the machine for 10 to 30 minutes at
a steady temperature of 27◦C which leads to a fermenting.
Only the process 2 contains this step (place p8). Then,
the dough is divided into pieces of about 900 grams each
and placed in nets in the proofer (this step of dividing is
represented by p2 for the process 1 and p9 for the process
2). The following step is the second proofing which lasts
180 minutes for the range 1 (p3) and 15 to 20 minutes for
the range 2 (p10). Then each piece of dough is shaped with
a molding machine (the molding step is represented by p4

for the range 1 and p11 for the range 2). Then the operation
of final proofing provides the last fermenting (p5 for the
range 1 and p12 for the range 2). Finally, Baking the bread
takes up 20 to 25 minutes at a temperature of 250 to 280◦C
in the oven and is identical for the two ranges (the baking
corresponds to p6 for the range 1 and p13 for the range 2).
Assumed to be sufficiently large, the oven can take the two
productions. The following operations as the cooling, the
packing and the transport are not considered.

A connection between the two production lines are ex-
pressed by places p14, p15 corresponding to two molding

machines. We assume an upper limit of 300 minutes in the
period of use of the molding machines otherwise another
production line not described in the event graph can take one
of these machines.

The two production lines share a unique dividing machine
whose behavior is described by a time supervisor place p18 :
the lower limit expresses the time necessary to the production
of the two lines while an upper bound represents a limit of its
use to avoid a premature wear.

Let us apply Problem I in Section III-A. The values of
the extremum cycle time λmin, λmax which are 148 and 187
respectively, are computed with the function linpro() of the
software Scilab. The analysis of the critical pairs by approach
1 using Martı́nez and Silva’s algorithm does not succeed as
the execution implies an overtake of the available memory.
The checking of the pairs by approach 2 with ε = 0.1 can be
executed and the results of the 72 problems are given in the
table II.

Let us apply (14) in Section III-B. The set of min-critical
pairs is P critmin = {(p1, T

−
1 ), (p3, T

−
3 ), (p4, T

−
4 ), (p15, T

−
15),

(p18, T
−
18), (p7, T

+
7 ), (p8, T

+
8 ), (p9, T

+
9 ), (p10, T

+
10)}. The set

of
max-critical pairs is P critmax =
(p1, T

−
1 ), (p3, T

−
3 ), (p18, T

−
18), (p7, T

+
7 ), (p8, T

+
8 ), (p9, T

+
9 ),

(p10, T
+
10), (p11, T

+
11), (p14, T

+
14)} and P critmin ∩ P critmax =

{(p1, T
−
1 ), (p3, T

−
3 ), (p18, T

−
18), (p7, T

+
7 ), (p8, T

+
8 ),

(p9, T
+
9 ), (p10, T

+
10)}.

So, the set P critmin (resp. P critmax) depends on the lower and
upper bounds of the time durations and does not correspond to
some (oriented) circuits of the event graph. The relevant time
durations cannot be modified if we desire to keep the values of
the extremum cycle times and the choice of reliable machines
is necessary for the corresponding critical pairs. A fortiori,
the intersection of the two sets which is non-empty (P critmin ∩
P critmax 6= ∅) corresponds to a crucial set where a variation of
a time duration leads to a variation of the optimal cycles. Let
us illustrate this point by considering a unitary increase of T−1
which takes the value 26. The relevant computation leads to
an increase of the minimum cycle time (λmin =149) and a
decrease of the maximum cycle time (λmax =186).

Finally, Section III-A with (5) where the non-critical pairs
are optimized can be applied. To avoid a general slow-down of
the whole process, the best cycle time λmin which corresponds
to the greatest production rate of the entire process, is a fixed
parameter. In this context, a greater time duration is possible
for the dividing step in the range 1 and the kneading, the
dividing step and the molding step in the range 2 as the
relevant pairs (p2, T

−
2 ), (p7, T

−
7 ), (p9, T

−
9 ) and (p11, T

−
11)

are not critical. This possibility implies an energy saving
and so a financial economy by reducing the speed of the
relevant machines without modifying the best production rate
of the whole process. Another possibility is the replacement
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Fig. 3. Example 3: Plant bakery

TABLE II
EXAMPLE 3: CHECKING OF EACH RELATION BY APPROACH 2

Pair (p1, T
−
1 ) (p2, T

−
2 ) (p3, T

−
3 ) (p4, T

−
4 ) (p5, T

−
5 ) (p6, T

−
6 ) (p7, T

−
7 ) (p8, T

−
8 ) (p9, T

−
9 ) (p10, T

−
10)

min−critical 148 147.7 148 148 142 147.5 147.5 146 147.5 147.5
max−critical 187 187.3 187 187.5 193 187.5 187.5 189 187.5 187.5

Pair (p11, T
−
11) (p12, T

−
12) (p13, T

−
13) (p14, T

−
14) (p15, T

−
15) (p16, T

−
16) (p17, T

−
17) (p18, T

−
18)

min−critical 147.5 145 147.5 121.4 148 −9852 −9836.7 148
max−critical 187.5 190 187.5 217 190.9 10187 10171.7 187

Pair (p1, T
+
1 ) (p2, T

+
2 ) (p3, T

+
3 ) (p4, T

+
4 ) (p5, T

+
5 ) (p6, T

+
6 ) (p7, T

+
7 ) (p8, T

+
8 ) (p9, T

+
9 ) (p10, T

+
10)

min−critical 147.8 147.8 146.7 147.5 142 147.5 148 148 148 148
max−critical 187.2 187.2 188.3 187.5 193 187.5 187 187 187 187

Pair (p11, T
+
11) (p12, T

+
12) (p13, T

+
13) (p14, T

+
14) (p15, T

+
15) (p16, T

+
16) (p17, T

+
17) (p18, T

+
18)

min−critical 147.5 145 147.5 144.1 138 −9836.7 −9852 145.8
max−critical 187 190 187.5 187 193.6 10171.7 10187 189.2

of the relevant machines by less efficient machines. Desiring
optimized the four machines, the criterion in the optimization
(5) is null except an unitary value for each machine. For λmin,
the results of the maximization are as follows: respectively,
the components of ∆ are ∆2 = 3, ∆7 = 5, ∆9 = 5 and
∆11 = 5 for T−2 , T

−
7 , T

−
9 and T−11 and the new values of time

durations are 10 + ∆2 = 13, 15 + ∆7 = 20, 10 + ∆9 = 15,
15 + ∆11 = 20.

V. CONCLUSION

In this paper, we have introduced the model of Time
Supervisor Place which is different from the model of implicit
places which represents redundancy and the model of macro-
place often used to improve the readability of Petri nets
by building a hierarchical structure. It can be seen as a
generalization of the class of P-time Event graphs since the
time behavior of each place can be described by a time macro-
place. We have shown that P-time Event Graphs with time
macro-places can be described by the TIM (1) using the dater
form. Even if it follows the spirit of P-time Event Graphs,
a perspective is to apply this new possibility of modeling to
other types of time Petri nets such as Time Stream Petri nets
[7] [9].

The robustness of Time Interval Models is analyzed through
the minimum and the maximum cycle times which depend
on pairs composed of a place and a time duration which
correspond to the rows of the Time Interval Model. Based
on Theorem 1 [10], a first approach using the Martı́nez and
Silva’s algorithm detects all the critical pairs. As this technique
is non-polynomial and cannot be applied to every common
Petri net, we propose another approach which selects each
relation by forcing the relevant component of the solution
to a non-null value and checks the relevant optimality: if
the computed cycle time is optimal, the relation is critical.
Otherwise, a lower value (resp., greater value) of the cycle
time is obtained. The complexity of approach 2 is clearly
polynomial and is numerically equivalent to the approach in
[12] exploiting a variation of the time durations. Approach 2
leads to an enlargement of the time interval [λmin, λmax] while
the approach [12] restricts it. After noticing that approaches 1
and 2 are structural, that is, the computing is independent of
the trajectories, a perspective is to analyze the possible duality
with approach [12] and to study the effects of the variation of
coefficients of the incidence matrix of the Petri net or inside
the matrices defining the TIM system.

Finally, the system optimization applied to the plant bakery
shows that some modifications of specific phases as the knead-
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ing, the dividing and the molding can lead to an energy saving
and a financial economy without affecting the production rate.
A natural perspective is to develop a bi-criteria approach
combining optimization of the time durations and optimization
of the resources.
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