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Abstract: In this paper, we design a diagnostic technique for a partially observed labeled Petri
net where the faults of the system are modeled by unobservable transitions. The diagnostic
method is based on the state estimation principle using the set of observed transitions. The
support of the approach is to describe the process under an algebraic form of a polyhedron for
each observed firing of an observable transition.
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1. INTRODUCTION

This paper focuses on the diagnosis of a process that
can be modeled in a Discrete Event System (DES) whose
state evolves at the occurrence of events. We can cite as
examples the transport networks, the computer systems,
multimedia systems, and manufacturing systems.

There are two powerful graphical and mathematical
tools for DES modeling, which are finite state automata
(Bouyer et al., 2005) and Petri nets. In this framework
we choose the Petri net formalism, mainly because the
presentation of a Petri net can model phenomena of syn-
chronism, assembly and sharing of resources, and thus it
is equipped with a much richer structure (Van, 1998). For
various economic and/or technical reasons, the presence
of a sensor for each system variable is not always possible.
As a result, the Petri net may contain transitions that
model unobservable events in the system. The relevant
transitions are named unobservable transitions and the
Petri net is then called a partially observed Petri net.
Hence, the model that we use in this paper is a labeled
partially observed Petri net.

In the literature, the techniques used for the diagnostic
of Petri nets depend on the knowledge available on the
system as well as on the detectable faults affecting the
system (Wu et al., 2005) (Benveniste et al., 2003). For
fault diagnosis, we can find event-based, state-based, and
mixed-based faults. The event-based faults model the
system faults into a set of transitions, and the occurrence
of certain faults is equivalent to firing the associated
transitions. The detection and localization of faults are
carried out based only on observed events. These event-
based models have the advantage of detecting intermittent
faults (Genc et al., 2007) (García et al., 2008) (Ramirez

et al., 2012). The state-based faults consider that the
occurrence of a fault is equivalent to the change in the
state of the Petri net deviating from its nominal behavior,
which is expressed by losses or duplications of tokens. The
disadvantage of the state-based faults’ modulation is that
it can not detect intermittent faults that are short events
leading to unstable states (Wu et al., 2005) (Benveniste
et al., 2003). The Mixed-based faults modulation is a
combination of the occurrence of fault events and the
attainability of fault states (Wu et al., 2005). We find three
main techniques for Petri nets diagnosis: state estimation
(Benveniste et al., 2003), parity space (Wu et al., 2005),
and chronicles (Saddem et al., 2010).

In this paper, the diagnostic method is based on the esti-
mation of a reduced set of unobservable firing sequences
that enabled a sequence of observed transitions from a
given initial marking without any assumption of acyclicity.
The faults of the system are modeled by unobservable
transitions. A fault will be detected if there exists at least
one unobservable firing sequence of the reduced set that
includes a fault transition, i.e., the count vector of fault
transitions is different from the null vector. In this paper,
the incidence matrices and the initial marking are assumed
to be known. The occurrences of observable events are
assumed to be non-simultaneous.

The strategy taken in this paper is as follows. Firstly, it
is to algebraically describe the count vector denoted xun

of a possible unobservable sequence that enabled just one
observed transition t of the observation under the form of a
polyhedron A.xun ≤ b over Z with an unknown xun. The
parameter A only depends on the structure of the Petri
net while the parameter b depends on the initial marking
and the observed transition. Secondly, using this algebraic
model, the observer is designed for the estimation of a
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reduced subset of unobservable sequences that enabled t
while minimizing a cost function. Accordingly, The set of
associated count vectors xun is expressed by an Integers’
Linear Program (ILP) as {min(c>.xun) | A.xun ≤ b }
. By introducing a new variable, we can rewrite the
ILP as a polyhedron that can be solved by the Fourier-
Motzkin (FM) algorithm. The reduced observer is designed
in two phases. The off-line preparation is based on the
variables’ elimination of the FM algorithm. The on-line
procedure computes the current unobservable sequences
and markings by exploiting the current data, which are
updated at each occurrence of an observed event. An
advantage of this two-phase approach is that only the off-
line preparation contains the costly time part of the FM
algorithm.

The paper is organized as follows. In the first section, we
explain the principle of the state estimation of all sets of
unobservable firing sequences and we propose a model of
the form A.x ≤ b which describes the estimation problem
under an algebraic point of view. In section 3, we estimate
a reduced set of unobservable firing sequences that is
expressed by an integer linear program. The following
section introduces the detection and localization procedure
based on a set of integer linear programs.

2. ALGEBRAIC DESCRIPTION OF ALL SETS OF
UNOBSERVABLE FIRING SEQUENCES

2.1 Principle

In order to estimate the unobservable firing sequences that
enabled an observation w, we algebraically characterize
this set. We use the problem decomposition to reduce
the search space of solutions. The search has is done
step by step treating separately and successively each
observed transition of the observation. Starting from one
observation for each step, we determine the set of count
vectors associated to the set of unobservable sequences
that enable this transition. These vectors are called the
set of explanation vectors. The firing of this observed
transition and the unobservable sequences associated to
the founded explanation vectors generate new current
markings utilized in the following step. We restart the
search procedure until the last observed transition.

The set of current markings are reached from the initial
marking M0, by firing the possible sequences associated to
the explanation vectors of all steps. We assume that for
the initial marking M0, we have the observation (word)
w = `(tob,1), `(tob,2), ...., `(tob,h) , where tob,i ∈ TRob is
the ith observed transition in w, and where i ∈ [1..h]
with h being the number of observed transitions in w.
After that, we look for the set of minimal unobservable
sequences σun = σun,1, σun,2, ...., σun,h which enable w at
M0. In σun, the sequence σun,i ∈ TR∗un is an unobservable
sequence that enables tob,i, after being fired, in the order
tob,1, tob,2, ...., tob,i−1 . The sequence σun can be unique or
not.

In step 1, we treat the first observed transition tob,1

from the initial marking M0 and we search the possible
sequences σun,1 that enable this transition. The marking
M1, resulting from firing such σun,1tob,1 sequence is a new
initial marking treated by step 2 with the new observed

transition tob,2. The search procedure is repeated until the
last observed transition tob,h. Finally we get:

M0[σun,1tob1 Â M1[σun,2tob,2 Â M2.....Mh−1

[σun,h−1tobh−1 Â Mh (1)

The marking Mh, resulting from firing the sequence
σun,1tob,1σun,2tob,2......σun,htob,h and the initial marking
M0, is a possible current marking. The set of current
markings are the markings by discovering all the possible
unobservable firing sequences σun,1, σun,2, ...., σun,h.

In what follows, we describe the estimation problem of
the explanation vectors that enabled just one observed
transition t of the observation w under the form of a
polyhedron A.xun ≤ b over Z with an unknown xun.

2.2 Polyhedron of explanation vectors

Definition 1. The set of the explanation vectors of the
transition t at M is the set of the count vectors associated
to the unobservable transitions that enable the transition
t, from the marking M .

E(M, t) = {π(σun)|σun ∈ TR∗un such that
M [σun Â M ′ and M ′[t Â}

where M ′ is the marking reached from the marking M by
firing the unobservable sequence σun.

We suppose that from the marking M , we observe the
transition t ∈ TRobs, then there exists σun ∈ TR∗un such
that M [σun > M ′ and M ′[t >, so we get the system:





M ′ = M + Wun.xun

M ′ ≥ W−
obs(., t)

xun ≥ 0
(2)

Hence, the vector xun must verify the following matrix
inequality:

A.xun ≤ b (3)

with A =
(−Wun

−Ik×k

)
and b =

(
M −W−

obs(., t)
0k×1

)
.

For a Petri net with an acyclic TRun-induced subnet, each
solution of the matrix inequality (3) in Zk corresponds to
an explanation vector (Stremersch et al., 2002). In the
literature, there exist a lot of works on the determination
of the count vectors that are associated with real firing
sequences in the case of a cyclic TRun−induced subnet,
by solving the reachability problem (Stremersch et al.,
2002). Then, it consists in demonstrating that there exists
a firing sequence from the marking M to reach the target
marking M ′ = M + Wun.xun.

In the following subsection, we use the off-line the FM
elimination algorithm to structurally describe the set of
explanation vectors.

2.3 Fourier Motzkin elimination algorithm for off-line
characterization of explanation vectors

The FM elimination algorithm transforms the linear in-
equalities system A.x ≤ b with x = (x1, ..., xn)> on a
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set of n inequalities where each one depends on just one
unknown. We are interested in this paper in utilizing the
FM eliminations for the off-line generation of a set of
inequalities depending only on one unknown whatever the
initial marking and the observed transition are, i.e., in
function of the data vector b.

The FM elimination algorithm consists of two consecutive
phases, repeated until the penultimate variables. The
first phase is the computation of bounds for the system
variable xl, which is in function of the variables xl+1

until xn. The second phase is the construction of a new
system by eliminating the variable xl, and consequently
the construction of a new system of the variables xl+l until
xn from which we are looking for bounds for xl+1, and
so on. For the last variable xn, we get bounds of known
terminals. Thus, by determining xn we can determine
successively xn−1 back to x1. The existence of a solution
test, called the feasibility condition is achieved by checking
if the lower limit of the last variable xn is less or equal to
its upper limit.

(1) Phase1:Computation of bounds
At the beginning of each step, the system Al.Xl ≤

bl of unknown Xl = [xl xl+1...xn]T is put in the
following form:

(S) :





al
pos.xl + Al

pos.x
′ ≤ bl

pos S+

−al
neg.xl + Al

neg.x
′ ≤ bl

neg S−
al

zer.xl + Al
zer.x

′ ≤ bl
zer S0

(4)

where xl is the variable to eliminate, x
′

=
[xl+1 xl+2...xn]T is the vector composed of the other
variables after eliminating xl. The subsystem S+ cor-
responds to the subsystem of n+ inequalities that are
associated with the unitary vector al

pos containing the
xl coefficients of 1. The subsystem S− corresponds to
the subsystem of n− inequalities that are associated
with the unitary vector al

neg containing the xl coef-
ficients of −1. The subsystem S0 corresponds to the
subsystem of n0 inequalities associated with the zeros’
vector al

zer containing the xl coefficients of 0. The
dimensions of matrices can easily be deduced from
system (4).

If the two subsystems S+ and S− exist, then we
can determine the bounds to xl whose lower limit
is a maximum of terms while the upper limit is a
minimum:

max[(Al
neg.x

′−bl
neg)i,.] ≤ xl ≤ min[(bl

pos−Al
pos.x

′
)i,.].
(5)

If S+ does not exist in (S), then the upper limit of
xl is equal to +∞. If S− does not exist in (S), then
the lower limit of xl is equal to −∞.

(2) Phase2:Elimination and construction of new system
This phase consists in putting into zeros the column

associated with xl, by adding each row of S+ with the
rows of S−, and by keeping the rows of S0. After that,
we eliminate the zeros’column associated with xl.

For the construction of a new system, the system
is put in the form (4), after normalizing the values of
the first column.

The two phases described above are repeated for the other
variables.

3. REDUCED SET OF UNOBSERVABLE FIRING
SEQUENCES MINIMIZING A COST FUNCTION

We can determine a subset of the explanation vectors by
minimizing a cost function c>.xun. Accordingly, The set
of count vectors xun minimizing c>.xun satisfies the ILP:

{
min

xun∈Zk
c>.xun

s.t. A.xun ≤ b
(6)

We can write the ILP (6) in the following augmented form:




min µ such that
Aaug.y ≤ baug

xun ∈ Zk, µ ∈ Z+
(7)

with Aaug =
[

A 0m×1

c> −1

]
, the unknown vector y =

[
xun

µ

]
,

and the vector baug =
[
b
0

]
.

The positive integer variable µ verifying c>.xun ≤ µ is
chosen as small as possible. We can apply off-line the FM
elimination algorithm to get a system of n+1 inequalities
where each one depends on just one unknown.

In what follows, we show that the optimization problem (6)
serves us in detecting and localizing system faults choosing
suitable cost functions.

4. SYSTEM DIAGNOSTIC

The aim of this approach is to create a model diagnoser
allowing to detect the system faults. The process model
describes the normal and faulty behaviors.

Considering that a certain number of faulty behaviors may
occur in the system, we assume that the possible faults
that can affect the system are modeled by unobservable
transitions. Naturally, there may also exist other transi-
tions that represent normal behaviors. We denote TRf the
set of fault modeled by unobservable transitions of an nf

cardinal and TRn the set of unobservable transitions of an
nn cardinal, which represent normal behaviors. Then, we
have:

TRun = TRn

⋃
TRf (8)

Let us consider the count vector xn of nominal unobserv-
able transitions and the incidence matrix Wn of a nominal
unobservable subnet Nn = (P, TRn,W+

n ,W−
n ). Similarly,

xf is the count vector of faulty unobservable transitions
and Wf is the incidence matrix of a faulty unobservable
subnet Nf = (P, TRf ,W+

f ,W−
f ).

Then, from the marking M and for the observed transition
t ∈ TRobs , the explanation vectors E(M, t) is expressed
as follows:

An.xn + Af .xf ≤ b (9)
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where xun = (xn xf )>, the matrix An =

(−Wn

−Inn×nn

0nf×nn

)
,

the matrix Af =



−Wf

0nn×nf

−Inf×nf


 and the vector b =

(
M −W−

obs(., t)
0k

)
with k = nn + nf . In the following,

we explain the principle of diagnosis.

4.1 Diagnostic principle

The diagnostic method taken in this paper is based on a set
of partial diagnostic decisions by treating separately and
successively each observed transition tob,i of the observed
word w. The aim of diagnosis for an observation tob,i is:

• to determine if the estimated unobservable sequences
σun,i enabling the observed transition tob,i from the
marking M correspond to an affected behavior or not,

• and to localize the faults T j
f , j ∈ [1..nf ] that leads to

a faulty behavior after fault detection.

We determine then the state of the partial diagno-
sis ∆(tob,i) and the functions of partial localizations
∆(tob,i, T

j
f ) .

4.2 Fault detection and localization for one observed
transition

In this section, we design a fault detection and localization
method based on the ILP. We show that the detection of
faults is formulated as a problem of minimization of the
sums of fault transitions’firing, and the location of faults
is based on nf minimization problems where nf is the
number of fault transitions in the system.

Fault detection A fault is detected if there is at least one
fault transition that is fired. This means that the firing
sum of the fault transitions is greater or equal to 1. Let us
consider the optimization problem defined as follows:




min(c>.xf ) such that
An.xn + Af .xf ≤ b
xn ∈ Znn ; xf ∈ Znf

(10)

where c is a vector of ones of dimension nf . Therefore, we
can deduce that:

• Case 1: If min(c>.xf ) = 0, then we cannot conclude
on the existence of a fault.

• Case 2: If min(c>.xf ) ≥ 1, then a fault is detected.

Moreover, if min(c>.xf ) ≥ 1, then it gives the minimal
number of detected faults that are possibly of the same
type. Hence, the detection function for the observed tran-
sition tob,i is defined by:

4(tob,i) = min(c>.xf ) (11)

For the off-line application of the FM eliminations on the
optimization problem (10), we rewrite the optimization
problem (10) under the form Aaug.y ≤ baug by introducing
a new variable µ such that c.xf ≤ µ, taking the variable µ
as small as possible. The system (10) is then rewritten as
below:





min µ

such that
[
An Af 0m×1

0 c> −1

]
.

[
xn

xf

µ

]
≤

[
b
0

]
(12)

For an observed transition tob,i, if we detect faults then
we must locate the fault transitions that produce the fault
behavior. In the following, we design a method for fault
localization.

Fault localization In order to isolate the faults of the
system, the occurrence of the faults is tested for each
system fault T j

f separately : For each fault T j
f with j ∈

{1, . . . , nf}, we test whether this fault has occurred at
least once. The optimization problem for each fault T j

f

is as follows:





min(xj
f ) such that

An.xn + Af .xf ≤ b
xn ∈ Znn ;xf ∈ Znf

(13)

where xj
f is the firing count vector of the fault transition

T j
f . Then, we can distinguish two cases:

• Case 1: If min(xj
f ) = 0, then we cannot conclude on

the occurrence of the fault T j
f .

• Case 2: If min(xj
f ) ≥ 1, then the fault T j

f has
occurred.

Moreover, if min(xj
f ) ≥ 1, then the fault T j

f can occurred
at least min(xj

f ) times. Therefore, given an observed
transition tob,i, the localization function for each fault
transition T j

f ∈ TRf , j ∈ {1, . . . , nf} is as follows:

4(tob,i, T
j
f ) = min(xj

f ) (14)

The number of isolated faults is always lower or equal to
the number of detected faults. Indeed, we have:

0 ≤
∑

j

min(xj
f ) ≤ min(c>.xf ) (15)

Consequently, it is possible to detect faults without being
able to isolate them. Especially, a possible situation is
(min(c>.xf ) ≥ 1) and (min(xj

f ) = 0 , ∀j). In other
words, the system faults are detectable but are not always
localizable.

For the on-line resolution of the optimization problem
(13), we base again on the off-line inequalities produced
by FM elimination algorithm: The optimization problem
(10) must be rewritten under the form Aaug.y ≤ baug by
introducing a new variable µj such that cj .xf = xj

f ≤ µj .
To minimize cj .xf , we take the variable µj as small as
possible. Then, we get:





min µj

such that
[
An Af 0m×1

0 c>j −1

]
.

[
xn

xf

µj

]
≤

[
b
0

]
(16)
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where cj is a vector of zeros except the jth elements
associated to the firing count vector xj

f of the fault
transition T j

f , which is equal to 1.
Example 1. Let us consider the Petri net of figure 1 where
TRobs = {t1, t2, t3}, TRn = {ε1, ε2}, and TRf = {T 1

f , T 2
f }.
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Fig. 1. Petri net example

We note m′
i = M(pi)−W−

obs(pi, t)

• Off-line inequations for fault detection:
The FM elimination algorithm applied on the ILP
(10) associated with our system gives the following
system inequalities:




max(0,−x2 −m′
7) ≤ x1 ≤ m′

1
max(0,−m′

1 −m′
7) ≤ x2 ≤ m′

4

max(0,−m′
3) ≤ x1

f ≤ min(m′
2,−x2

f + µ)
max(0,−m′

6) ≤ x2
f ≤ min(m′

5, m
′
3 + µ)

−µ ≤ m′
3 + m′

6

(17)

• Off-line inequations for fault localization:
The FM eliminations applied on the ILP (13) for the
fault transitions T 1

f and T 2
f gives the following system

inequalities:

For T 1
f :





max(0,−x2 −m′
7) ≤ x1 ≤ m′

1
max(0,−m′

1 −m′
7) ≤ x2 ≤ m′

4

max(0,−m′
3) ≤ x1

f ≤ min(m′
2, µ)

max(0,−m′
6) ≤ x2

f ≤ m′
5

−µ ≤ m′
3

(18)

For T 2
f :





max(0,−x2 −m′
7) ≤ x1 ≤ m′

1
max(0,−m′

1 −m′
7) ≤ x2 ≤ m′

4

max(0,−m′
3) ≤ x1

f ≤ m′
2

max(0,−m′
6) ≤ x2

f ≤ min(m′
5, µ)

−µ ≤ m′
6

(19)

We suppose that we have the observation t3 at the initial
marking M0 = (2 3 0 1 2 0 0)>.

• On-line fault detection:
For µ = 0, it exist not integer vector verifying (17).
For µ = 1,the vector (1 0 1 0)> verifying (17)
and associated to the firing sequence ε1T

1
f . Then, we

detect default. Then 4(t3) = 1.
• On-line T 1

f localization:
For µ1 = 0, the vector (0 1 0 1)> verifying (18)
and associated to the firing sequence ε2T

2
f . Then,

4(t3, T 1
f ) = 0. Consequently, T 1

f is not localisable.

• On-line T 2
f localization:

For µ2 = 0, the vector (1 0 1 0)> verifying (19)
and associated to the firing sequence ε1T

1
f . Then,

4(t3, T 2
f ) = 0. Consequently, T 2

f is not localisable.

Then, we detect fault but the localization is not possible.

5. CONCLUSION

In this paper, an on-line approach for fault detection and
localization is proposed. The systems that are concerned
are the DES modeled by a labeled partially observed Petri
net, where a subset of unobservable transitions model the
faults. The support of the approach is to describe the
process under the algebraic form of a polyhedron for each
observed firing of an observable transition. Computing the
solution of one ILP gives the diagnostic state of the fault
detection. The localization of each fault is made by a
specific ILP. A perspective is to develop the parity space
for Petri nets when the faults cannot be described by the
model.
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