
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2013 1

State Estimation of Timed Labeled Petri Nets with
Unobservable Transitions

Philippe Declerck and Patrice Bonhomme

Abstract—The aim of this paper is to reconstruct the
least/greatest sequence of unobservable transitions in timed Petri
nets based on the on-line observation of firing occurrences of
some transitions on a sliding horizon. The Petri net, which
can be unbounded and can contain self-loops and circuits, is
described under an algebraic form composed ofA.x ≤ b which
expresses the possible time sequencex and the fundamental
marking relation. Under the assumption of Backward/Forward
Conflict Freeness of the unobservable-induced subnet, we show
the existence of a finite least/greatest sequence with respect to
the data known on a given horizon. A technique of computation
using linear programming is given.

Note to Practitioners:Abstract—In many processes, it is not
always possible to associate a sensor with each state due to the
cost and the physical location. In most control applications, not
all state variables are measurable. This characteristic can be
found in many discrete event systems such as manufacturing
systems, microcircuit design, transportation systems, and the food
industry. The variables in discrete event systems express events
such as the beginning/end of a task, the departure/arrival of a
train at a railroad crossing, etc. However, the unknown datacan
be crucial for the control system which supervises the process. In
particular, the knowledge of the timestamps of these past events
allows future actions to be determined. The technique proposed
in this paper is based on a specific calculation of the unknown
numbers of events by using the known data on a sliding horizon.

Index Terms—Petri nets, Time, Observer, Lattice, Linear
programming

I. I NTRODUCTION

In the framework of discrete event dynamic systems, the
observability and the observer design problem have received
much attention over the last few years, particularly from a Petri
net point of view. In most control applications, not all state
variables are measurable: In practice, it is not always possible
to associate a sensor with each state. In the classical system
theory, this partial knowledge of the system state has led to
the introduction of observers in order to estimate these states
that cannot be measured directly. In the field of Petri nets, the
general objective of the estimation can be defined as follows: It
is assumed that a certain number of transitions are labeled with
the empty stringε, while a different label taken from a given
alphabet is assigned to all other transitions. As the firing of the
transitions labeled with the empty string cannot be observed,
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these transitions are called unobservable or silent. Therefore,
the set of transitions is then partitioned intoTR = TRobs ∪
TRun whereTRobs is the set of observable transitions while
TRun is the set of unobservable ones. For a sequence (word)
ω observed on a given horizon, the aim is to compute firing
sequences of unobservable transitions necessary to complete
ω into a fireable sequence of the Petri net consistent with its
past evolution.

In this paper, we focus on an on-line estimation approach
based on a sliding horizon by considering a sequence of
observable events at each step of the estimation on a time
horizon. This means that after the computation of the state
estimate on a given horizon, the horizon shifts to the next
sample, and the estimation of the state estimate is restarted
using known information of the new horizon. The interest in
such estimation methods stems from the possibility of dealing
with a limited amount of data, instead of using all the infor-
mation available from the beginning [5]. In this framework,
we focus on the estimation of the least (respectively, greatest)
sequence of a timed labeled Petri net system based on the
observation of transition labels which are time events for each
transition. Coherent with the vocabulary used in lattices,this
least (respectively, greatest) sequence (if it exists) is also called
minimum (respectively, maximum) sequence and is unique by
definition.

Let us illustrate these different sequences by analyzing the
schedule of planes in an airport. Two companies 1 and 2
operate a shuttle service between Paris and London with a
unique plane 1 and 2 respectively. Number{1, 2, . . . , 7} the
days of a week and notexi(t) the number of past stops of
plane i at the end of the dayt. If plane 1 can get to the
airport twice, and plane2 three times on a given day (Monday)
t = 1, then plane1 has the lowest frequency. Indeed, we have
x1(t = 1) = 2 ≤ x2(t = 1) = 3. Moreover, we consider the
least sequence with respect to the componentwise order. Now
consider an airport which chooses between company 1 and
company 2 each day with respect to the frequency of the stops.
Suppose that the possible schedules are as followsx1(1) = 2,
x2(1) = 4, x1(2) = 5 and x2(2) = 3. The least number of
occurrences of the planes isx1(1) = 2, andx2(2) = 3 which
is the least sequence with respect to the componentwise order.
It is also the least efficient solution for users but limits the
deterioration of the airport and the related cost. Symmetrically,
the greatest sequence isx2(1) = 4 andx1(2) = 5 which is the
most efficient solution for users. It also leads to the optimal
earnings of the airport corresponding to the landing fees paid
by the aircrafts for landing.

We now consider the following pedagogical problem where
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the time unit is a minute which is more suitable for the
description than a day. Let us assume that a person in Paris
observes that 10 planes coming from London have landed at
time 600 minutes or before. A maintenance department at
London can use this observation. Indeed, we can conclude
that at least ten planes have taken off from London at time
600−TLP minutes whereTLP is the travel time from London
to Paris. So, the least number of plane take-offs from Londonis
ten at time 600−TLP minutes. If each plane has been checked
before its take-off, we can estimate the minimum activity of
the maintenance department and the relevant invoice givinga
(guaranteed) minimum sum. Moreover, at the most 10 planes
have taken off at time 650 minutes or before at Paris if we
assume that each plane stays at the airport at least 50 minutes.
We can conclude that the greatest number of 10 planes have
landed in London at time 650+TPL minutes whereTPL is the
travel time from Paris to London. It could be lower: A pilot
can decide to return or to land at another airport for technical
reasons. The least number of landings is zero in the worst
case. Based on the greatest estimated number of landings in
London (the highest estimated frequency of the air fleet), the
relevant invoice giving the (optimistic) maximum sum can be
made. Note that the manager of the maintenance department
can also estimate the maximum activity of the maintenance
and the working hours of the employees if more observations
are used.

Let us briefly put our contribution into a general context
and give some related works. A more extensive synthesis
about state estimation problems and fault detection using Petri
nets and automata models can be found in [9] and numerous
references can be found therein. A possible approach is to
build an automaton observer for a Petri net model which is
a deterministic automaton whose set of events is represented
by the set of labels of the observable transitions of the Petri
net [2] [18]. The states of the automaton store all the Petri
net markings that can be reached from the initial marking
which is assumed to be known. An issue that arises with
building an observer automaton is that in the worst case it
has exponential complexity in the number of states of the
original model [11] [15]. Moreover, the state space of the
marking is possibly infinite. The starting point of the solution
in [18] is a finite state machine which is assumed to be without
an unobservable cycle. The technique using an automaton
observer also requires that the set of consistent states must
be explicitly enumerated. As the set of estimated markings
can be huge, and the on-line calculation of this set can be
computationally prohibitive, a reduced observer automaton is
described in [12].

A second class of approaches directly considers the marking
and is often based on an algebraic description of the state space
which does not require to be enumerated. An advantage is the
possibility to adapt the general results of linear programming
to Petri nets. In [8] [17], the algorithm reconstructs the
sequence of unobservable transitions, allowing the occurrence
of an observable event. Under the acyclicity assumption of
the unobservable subnet of the system, the set of markings
consistent with the observed word is represented by a linear
system with a fixed structure that does not depend on the

length of the observed word [8].
Different variations of the state estimation problem for

Discrete Event Systems can be distinguished. An issue arises
when the labeling function that assigns to each event a label
is non-injective (i.e. transitions share the same label). Named
‘non-deterministic transitions’ in some studies, this means
that an event occurrence may not be distinguishable from
the occurrence of another different event [20] [17]. Another
variation is to consider that the Petri net is equipped with
sensors that allow observation of the number of tokens in
some places [16]. Similar to the state estimation problem
in automatic control for continuous systems (Kalman filter,
Luenberger observer), we can also consider that the starting
point of the system evolution is unknown. In this paper, we
consider that the initial counterx(t = 0) is unknown. This
problem is also considered in [5] developed in the algebra of
dioids which presents an estimation approach for Time Event
Graphs with complex synchronizations such as P-Time Event
Graphs and Time Stream Event Graphs. Considering non-
bounded Event Graphs, the approach uses a receding-horizon
estimation of the greatest state, and analyzes the consistency
of the data. Following the same strategy, we consider simpler
synchronizations but more complex incidence matrices in this
proposed paper. Note that the state considered in [5] is not a
vector of sequences (also called counter) but a vector of dates
of the transition firing (also called dater [10]) which presents a
duality with the counter form. Another state (a pair composed
of a marking and firing temporal interval) is also used in [7]
where model checking is applied to acyclic unobservable time
Petri nets.

In this paper, the net structure and the initial marking are
assumed to be known. The net is assumed to be live. We
also take make the assumption that the algebraic model of
the timed Petri net described in this paper is ‘time live’ or
consistent, that is, it presents at least one time sequence during
the application of the on-line approach. We finally assume
that the firing of the different observable transitions can be
distinguished (a prospective study is to analyze the problem
when different transitions share the same label). The firings
of the transitions can be simultaneous. No fluidification of the
Petri net model is considered in this paper. As in [10] [4][5]
and the relevant examples, the assumptions of the non-cyclicity
and boundedness of the Petri net, which are common in many
papers, are not made. The presence of circuits in the Petri net
does not affect the results of this paper (nor our past papersin
different fields) because we take time into consideration and
choose an algebraic modeling based on a specific state called
‘counter’ (or ‘dater’ in other papers).

The paper is organized as follows: The following section
presents basic notions of Petri nets and lattice theory. We
then show that the timed Petri net can be described by an
algebraic model which is analyzed in the subsequent sections.
The next section introduces different theoretical resultswhich
show the existence of the least and greatest solutions under
some assumptions on the structure of the unobservable subnet.
Finally, an estimation approach based on linear programming
is proposed. The case of contact-free unobservable transitions
is considered. We also discuss the cyclicity and give Example
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1 with a self-loop. Finally, Example 2 containing circuits
illustrates the approach.

II. PRELIMINARY

In this section, we refer back to the formalism of Petri
nets. The notation|X | is the cardinal number of the setX .
A Place/Transition net (aP/TR net) is a structureN =
(P, TR,W+,W−), whereP is a set of|P | places andTR is
a set of |TR| transitions which are denoted byx (notation
t corresponds to the current time,Tl to the temporization
of place pl ∈ P, and T to the transposition of a matrix).
MatricesW+ andW− are|P |×|TR| post- and pre-incidence
matrices overN where each rowl ∈ {1, . . . , |P |} specifies
the weight of the incoming and outgoing arcs of placepl ∈ P
respectively. The incidence matrix isW = W+ − W−. In
this paper, we consider that the weight of each arc is unitary
which implies thatWij ∈ {−1, 0, 1}. The preset and postset of
a nodeX ∈ P ∪TR are denoted by•X andX• respectively.
The marking of setP is a vectorM ∈ N|P | that assigns to
each place of aP/TR net a non-negative integer number of
tokens, represented by black dots.Ml is the marking of place
pl with l ∈ {1, . . . , |P |}. A net system(N,M0) is a netN
with an initial markingM0 = M(t = 0).

This part briefly recalls lattice vocabulary (see Part 4.3.1
of [1]). This paper deals with partial order≤ defined on set
Rn which is defined componentwise:x ≤ y if and only if
xi ≤ yi, ∀i ∈ {1, 2, ..., n}. The greatest (respectively, least)
element of a subset is an element of the subset which is greater
(resp., lower) than any other element of the subset. If it exists,
it is unique. The greatest (resp., least) element of a subset
is also called maximum element (resp., minimum element or
smallest element) of a subset. A majorant (resp., minorant)
of a subset is an element not necessarily belonging to the
subset which is greater (resp., lower) than any other element
of the subset. If a majorant (resp., minorant) belongs to the
subset, it is the greatest (resp., least) element. The upperbound
(resp., the lower bound) is the least majorant (resp., greatest
minorant). Sup-semilattice (resp., inf-semilattice)(Φ,≤) is an
ordered setΦ such that there exists an upper (resp., lower)
bound for each pair of elements. It is called a lattice if it is
both an inf-semilattice and a sup-semilattice.

III. M ODEL

With language misuse, each transition and its corresponding
variable is denoted with the same letter. Each transition is
associated with thenumber of eventswhich happenbefore or
at time t. Called a ‘counter’, the number of events which are
the firings of the transition is denoted byx(t). In this paper,
time is discrete (t ∈ Z) and the occurrence of each event is
synchronized with an external clock. Assuming that the events
can only occur att ≥ 1, we havex(t) = 0 for t ≤ 0. For
any t ∈ N∗, it may be that no event takes place att, a single
event happens att, or several events occur simultaneously at
t. Remember that it leads to non-decreasing sequences. For
a given transition, the arrival of two events at times 3 and
5 implies that the sequence of numbers of events starting at
t = 0 and finishing att = 7 is 0, 0, 0, 1, 1, 2, 2, 2, that is,

x(t = 3) = 1 andx(t = 5) = 2 but alsox(t = 4) = 1 and
x(t = 7) = 2.

Timed Petri nets allow the modeling of discrete event
systems with sojourn time constraints of the tokens inside the
places. Each placepl ∈ P is associated with a temporization
Tl ∈ N. Its initial marking is the entryl of the vectorM0 which
is denoted by(M0)l. A token remains in placepl at least for
time Tl. Assuming that the tokens of the initial marking are
immediately available att = 1, the evolution can be described
by the following inequalities expressing relations between the
firing event numbers of transitions. For each placepl, we can
write that the output flow of tokens at timet ∈ N∗ is lower
than or equal to the addition of the input flow and the initial
marking ofpl.

∑

i∈p•

l

xi(t) ≤
∑

i∈•pl

xi(t− Tl) + (M0)l (1)

In this inequality, each weight1 of xi(t−Tl) (respectively,
1 of xi(t)) corresponds to the weight of an incoming arc going
from input transitionxi to placepl (respectively, the outgoing
arc going from placepl to output transitionxi) which is equal
to W+

li (respectively,W−
li ).

After applying a technique described in [10] , the set of the
previous inequalities can be expressed in the following way
such that the temporization of each place is equal to zero or
one:

G ·

(

x(t− 1)
x(t)

)

≤ M0 (2)

where thelth row ofG contains the weights of the incoming
and outgoing arcs of placepl: Roughly speaking, the general
idea in [10] is to split each placepl associated with a tempo-
rizationTl > 1 into Tl places, such that the temporization of
each place is equal to one. MatrixG = [G1 G0] has an order
(|P | × 2.|TR|) and the submatricesG1 andG0 are defined
as follows:

• The row l ∈ {1, 2, ..., |P |} of matrix Gi for i ∈ {0, 1}
contains the unitary weights of the incoming arcs of place
pl with temporizationi (Tl = 0 or 1), with negative sign
(usually expressed by the entries of−W+).

• In addition, the rowl of matrix G0 contains the unitary
weights of the arc outgoing from placepl, with positive
sign (usually expressed by the entries ofW−).

Note that an inequality using ‘dater’ in the space of real
numbers can also be written for Timed Event Graphs [10] and
P-time Event Graphs. This form, which presents symmetry
with (2), does not directly allow the deduction of the marking
M(t) from the fundamental relation of marking, contrary to
the counter form used in this paper.

IV. SEQUENCE ESTIMATION

A. Objective

The aim is the estimation of the sequence of numbers of
transition firings and markings by considering system (2) for
θ ∈ {t− h+ 1, t− h+ 2, ..., t} whereh ∈ N∗ is the horizon
of the sequence estimation. Letxobs(θ) (respectively,xun(θ))
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be the subvector of the state vectorx(θ) such that the relevant
transitions belong to the set of observable transitionsTRobs

(respectively, unobservable transitionsTRun). The objective
for each timet is the estimation of the least (respectively,
greatest) estimate sequence denoted byx−

un(θ) (respectively,
x+
un(θ)) for θ ∈ {t − h, t − h + 1, ..., t} knowing the

observable state vectorxobs(θ) in the same window. Knowing
this sequence, the relevant markings are directly deduced from
the fundamental marking relation.

B. Solution space

System (2) for timeθ ∈ {t− h+1, t− h+ 2, ..., t} can be
rewritten as follows:

(

G1,un G0,un

)

·

(

xun(θ − 1)
xun(θ)

)

≤

M0 −
(

G1,obs G0,obs

)

·

(

xobs(θ − 1)
xobs(θ)

) (3)

after an adequate permutation of the columns of ma-
trix G with respect to the observable/unobservable transi-
tions: The columns of

(

G1,un G0,un

)

(respectively, of
(

G1,obs G0,obs

)

) correspond to the unobservable transi-
tions (respectively, to the observable transitions).

An equivalent form describing the set of trajectories on
horizonh is as follows:

A1 · xun ≤ C1 −B1 · xobs (4)

with

xun=















xun(t − h)
xun(t − h + 1)
xun(t − h + 2)
. . .
xun(t − 1)
xun(t)















, xobs=















xobs(t − h)
xobs(t − h + 1)
xobs(t − h + 2)
. . .
xobs(t − 1)
xobs(t)















, A1 =











G1,un G0,un 0 . . . 0 0
0 G1,un G0,un . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . G0,un 0
0 0 0 . . . G1,un G0,un











B1 =











G1,obs G0,obs 0 . . . 0 0
0 G1,obs G0,obs . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . G0,obs 0
0 0 0 . . . G1,obs G0,obs











and

C1 =











M0

M0

. . .
M0

M0











.

The dimension of vectorxun is denoted byn = (h +
1).|TRun| while the dimension of vectorxobs is (h +
1).|TRobs|. The dimensions of matricesA1, B1, C1 and
column vectorb1 = C1−B1 ·xobs are respectively (h.|P | x n),
(h.|P | x (h+1).|TRobs|), (h.|P | x 1) and (h.|P | x 1). In addi-
tion, below we express that the trajectories are non-decreasing,
that is,xun(θ−1) ≤ xun(θ) for θ ∈ {t−h+1, t−h+2, ..., t}
which can easily be rewritten under the form of a polyhedron

A2 · xun ≤ 0h.|TRun|x1 (5)

where the dimension of matrixA2 is (h.|TRun| x n). More-
over, we have

A3 · xun ≤ 0nx1 (6)

whereA3 = −Inxn as the trajectories are non-negative.

Finally, the solution space of the Petri net is characterized
by the following polyhedron

A · xun ≤ b (7)

with A =





A1

A2

A3



 and b =





C1 −B1 · xobs

0h.|TRun|x1

0nx1



 . The

dimensions of matrixA and column vectorb are respectively
(n+ h.(|P |+ |TRun|) x n) and (n+ h.(|P |+ |TRun|) x 1).

After an adequate permutation of the columns of the in-
cidence matrixW =

(

Wobs Wun

)

with respect to the
observable/unobservable transitions, each estimated marking
of the Petri netM(θ) for θ ∈ {t− h, t − h + 1, ..., t} based
on the observationxobs(θ) satisfies

M(θ) = M0 +W.

(

xobs(θ)
xun(θ)

)

(8)

wherexun(θ) is a subvector ofxun satisfying (7).
Remark 1: System (7) can be completed to handle the

case where the initial marking is not completely known but
belongs to a finite set of possible initial markings defined bya
polyhedronA4 ·M0 ≤ b4. So, vectorM0 becomes an unknown
data in (7).

Therefore, the spirit of the paper is to deal with the inequal-
ity (7) which completely describes the different trajectories
of the Petri net. In the following parts, we show that the
concept of componentwise order can give the least and greatest
estimates of the trajectories if we add some assumptions.

C. Analysis

1) Structures:
Definition 1: Given a netN = (P, TR,W+,W−), and a

subsetTR′ ⊆ TR of its transitions, theTR′-induced subnet
of N is defined as the new netN ′ = (P, TR′,W+′,W−′)
where W+′ (respectively,W−′) is the restriction ofW+

(respectively,W−) to P × TR′. The netN ′ is obtained from
N by removing all transitions inTR \ TR′.

We now consider the TRun-induced subnet
(P, TRun,W

+′,W−′) which is associated with the
unobservable transitionsTRun. The following definitions,
but not the concept of time sequence described above, are
also considered in [8] where the Petri net is untimed.

Definition 2: TheTRun-induced subnet is Backward Con-
flict Free (BCF), i.e., any two distinct unobservable transitions
have no common output place.

Definition 3: TheTRun-induced subnet is Forward Conflict
Free (FCF), i.e., any two distinct unobservable transitions have
no common input place.

2) Extremum solutions:Considering aTRun-induced sub-
net, we now focus on the existence of a least/greatest estimated
trajectory in our practical problem. We make the connection
between the important structures of Petri nets and the mathe-
matical definitions defined in Section II.

Definition 4: The system of linear inequalitiesA.x ≤ b
is inf-monotone (respectively, sup-monotone ) if each row
of matrix A has one strictly negative (respectively positive)
element at most.
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Let Γ be the solution set of an inf-monotone (respectively,
sup-monotone) systemA.x ≤ b. SetΓ is an inf-semilattice
(respectively, sup-semilattice) since each pair of elements has
an lower (resp., upper) bound. Moreover, the following lemma
guarantees thatΓ has an extremum element, that is, a least or
greatest solution which belongs toΓ. In our practical problem,
it implies the existence of a least/greatest estimated trajectory
satisfying (7).

Lemma1: [3]. Let Γ be the solution set of an inf-monotone
(respectively, sup-monotone) systemA.x ≤ b. SetΓ has a least
(respectively, greatest) element if the set is non-empty and has
a minorant (respectively, majorant).�

Theorem 1: In a BCF TRun-induced subnet, the least
estimatex−

un exists overR. In a FCFTRun-induced subnet,
the greatest estimatex+

un exists overR if xun has a finite
majorant.

Proof. When theTRun-induced subnet of the considered
Petri net is BCF (respectively, FCF), the analysis of system (3)
shows that each row of matrix

(

G1,un G0,un

)

(and matrix
A1 consequently) has one strictly negative (respectively, pos-
itive) coefficient at the most. The same remark can be made
for (5) and (6). So, system (7) is inf-monotone (respectively,
sup-monotone). It implies that the solution set of (7) is an
inf-semilattice (respectively, sup-semilattice). Moreover, the
assumption of time liveness shows the existence of a state
trajectory and the set is non-empty. Finally,xun(θ) = 0 for
θ ∈ {t− h, t− h+ 1, ..., t} is a minorant of the set since the
initial condition is x(θ = 0) = 0 and the trajectory is non-
decreasing. The application of Lemma 1 shows that the least
estimatex−

un exists overR in a BCF TRun-induced subnet.
In the case of a FCFTRun-induced subnet, the reasoning is
similar but the assumption thatxun has a finite majorant must
be added as there is no obvious majorant.�

3) Minorant and majorant:In this part, we consider the de-
termination of the minorant and the majorant used in Theorem
1 showing the existence of extremum solutions. Let us discuss
the minorant in the case of a BCFTRun-induced subnet.
Remember that it is an element not necessarily belonging to
the subset. Note that the least trajectory exists even if allthe
transitions of the Petri net are unobservable (TR = TRun).
The minorant(x−

un)i = 0 which is independent of the Petri
net in the above theorem is clearly not a satisfactory answerto
the problem. Consideration of the following relations gives a
more efficient minorant. LetPBCF be the set of placesp

l
∈ P

having a unique unobservableinput transitionxi ∈
• pl . For

each placep
l
∈ PBCF with PBCF ⊂ P , the relevant relation

in system (4) after some elementary transformations becomes

xi(θ − Tl) ≥
∑

xj∈p•

l
|xj∈TRun

xj(θ) − (M0)l+

∑

xj∈p•

l
|xj∈TRobs

xj(θ)−
∑

xj∈•pl|xj∈TRobs

xj(θ − Tl)
(9)

for θ ∈ {t − h + 1, t − h + 2, ..., t}with Tl = 0 or Tl = 1.
Variablexi(θ−Tl) has a finite minorant which is the right-hand
term of the above inequality if each variablexj(θ) for xj ∈ p•l
with xj ∈ TRun also has a finite minorant. Applying the
above backward propagation through the Petri net and starting
from known data, a finite minorant for each transition ofTRun

can be determined. The above relations also show a backward
propagation through time with a delayTl for each place, as
shown in the above relation, that is, we deducexi(θ−Tl) from
xj(θ). Note that the variables must also satisfy inequalities
xi(θ) ≥ xi(θ−1) (expressed by (5)) which follow the opposite
direction through time, that is, we deducexi(θ) from xi(θ−1).
Finally, this resolution generates a minorant and naturally, the
constraint propagation on the complete set of inequalities(7)
gives the greatest minorant which is the least estimate.

Let us now also sketch the determination of a majorant in
the case of a FCFTRun-induced subnet. LetPFCF be the
set of placesp

l
∈ P having a unique unobservableoutput

transition xi ∈ p•l . For each placep
l
∈ PFCF with PFCF ⊂

P , the relevant relation in system (4) can be rewritten as

xi(θ) ≤
∑

xj∈•pl|xj∈TRun

xj(θ − Tl) + (M0)l+

∑

xj∈•pl|xj∈TRobs

xj(θ − Tl)−
∑

xj∈p•

l
|xj∈TRobs

xj(θ)
(10)

for θ ∈ {t − h + 1, t − h + 2, ..., t} with Tl = 0 or
Tl = 1. Therefore, a determination of the majorant following
the direction of the arcs through the Petri net and starting from
known data can be made. It is also made with a delayTl for
each place as shown in the above relation. This resolution
can also be completed by inequalitiesxi(θ) ≤ xi(θ + 1)
(expressed by (5)) which follow the opposite direction through
time. As above, the constraint propagation on the complete set
of inequalities (7) gives the least majorant which is the greatest
estimate.

Cyclicity
Let us note that we do not use a condition of acyclicity in

the previous results: The variables of aTRun-induced subnet
can have a minorant even if it contains some circuits or self-
loops which lead to null rows in the incidence matrixW .
Indeed, the resolution does not strictly follow the paths in
the Petri net but a sequence of relations in the corresponding
inequality system, where not a unique variable, but a set of
variables{xi(θ), xi(θ+1), xi(θ+2), ...}, is associated to each
transitionxi. Roughly speaking, the consideration of counters
leads to ‘open’ the circuits of the Petri net. Moreover, the
general conditions0 ≤ xi(θ) andxi(θ) ≤ xi(θ + 1) must be
satisfied. The following observer on an elementary Petri net
illustrates this point: The approach can consider a self-loop
which is expressed by an algebraic relation.

Example 1

x2
x1x1x1x1x1x1x1x1

p
1 p2

Fig. 1. Example 1: elementary P-timed Petri net with a self-loop (the
observable transition isx2).

In the Petri net given in Fig. 1, each place is associated with
a temporization equal to1 second. The inequalities relevant
to placesp1 and p2 of the Petri net in Fig. 1 arex1(t) ≤
x1(t − 1) + 1 andx2(t) ≤ x1(t − 1) + 2. Below, underlined
symbols likex2 correspond to known data of the problem.
We takeh = 1, t = 5 and we assume that the transitionx2 is
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observable. Let us takex2(t = 5) = 3. The observer is given
by max(x2(θ)− 2, x1(θ) − 1) ≤ x1(θ − 1) for θ ∈ {5} with
0 ≤ x1(4), 0 ≤ x1(5) andx1(4) ≤ x1(5). The least solution
is x−

1 (4) = x−
1 (5) = 1 and x−

1 (4) = 1 corresponds to the
smallest number of firing ofx1 necessary to the three firings of
transitionx2 arriving at t = 5 or beforet = 5 : Transitionx2

can also use the two tokens of the initial marking of its input
placep2. Naturally, other solutions satisfying the inequalities
of the observer exist:x1(5) − 1 = x1(4) ≥ 1 can be taken,
and the solutionx1(4) = 11 and x1(5) = 12 leads to the
production of ten tokens att = 4 or beforet = 4 which are
not used byx2 at t = 5. �

D. Technique using objective function

System (7) uses the formA.x ≤ b as in linear programming.
However, the concept of objective function has not been
used up to now. The following result makes the connection
between the objective function of linear programming and the
componentwise order which has been used in the previous
parts. In fact, the optimal solution to the estimation problem
is also the solution to a special linear programming problem
as indicated by the following result briefly stated in [3] [6].
This assertion is completed by the following proof.

Lemma 2: Let A.x ≤ b be a sup-monotone system. The
following statements are equivalent:

1. SetΓ = {x ∈ R|x||A.x ≤ b} has a greatest elementx+.
2. x+ is optimal for the problemmax{c.x}, such that

A.x ≤ b for any c > 0.
Corollary 1: The previous equivalence between 1 and 2 in

Lemma 2 holds if:x+ is replaced byx−; the words sup-
monotone, greatest and max are replaced by inf-monotone,
least and min, respectively.

Proof. Let x+ be the greatest element of setΓ (assertion
1). Then∀x ∈ Γ, x ≤ x+ ⇒ c.x ≤ c.x+ as c > 0 and so,
x+ is also the optimal solution to assertion 2. The reverse is
proved by contradiction. Letx+ be the optimal solution and
assume that assertion1 is false. Asx+ ∈ Γ is not the greatest
element of setΓ, there isx ∈ Γ such thatx � x+ that is,∃i
with xi > (x+)i. Including the case whereΓ has no greatest
element which can replacex+, we can takex

′

= max(x, x+)
which belongs toΓ as the system is sup-monotone (Theorem 1
in [6]). So, there isx

′

∈ Γ such thatx+ ≤ x
′

with x+ 6= x
′

.
It implies that c.x+ < c.x

′

as c > 0. Hencex+ is not the
optimal solution to problem 2 which leads to a contradiction.
Therefore, the reverse is proved.�

In fact, vectorxun(t) is over the integers as each entry
expresses the number of transition firing. Let us now complete
the previous study by giving the following definitions and
results.

Definition 5: An inf-monotone (respectively, sup-monotone)
system of linear inequalitiesAx ≤ b is also 1-inf-monotone
(respectively, 1-sup-monotone ) if:A and b are integers; the
strictly negative (respectively positive) coefficients ofA are
equal to−1 (respectively,+1).

Definition 6: The TRun-induced subnet is Unitary Back-
ward Conflict Free or UBCF (respectively, Unitary Forward
Conflict Free or UFCF) if: The subnet is BCF (respectively,

FCF); the weight of each incoming (respectively, outgoing)
arc of the subnet is unitary.

Note that the BCF (respectively, FCF) Petri nets considered
in this paper are also UBCF (respectively, UFCF) as we have
assumed that the weight of each arc is unitary.

Theorem2: Let theTRun-induced subnet of the considered
Petri net be UBCF (respectively, UFCF).

• The least sequencesx−
un (respectively, greatest sequences

x
+
un) of system (7) inRn andNn are equal.

• The relevant extremum sequence is given by the follow-
ing linear programming problem:min{c.xun} (respec-
tively, max{c.xun}) such thatA ·xun ≤ b for anyc > 0.

Proof. The following three points shows that system (7) is
1-inf-monotone: 1) MatrixA and vectorb in (7) are integers
as the initial markingM0, vectorxobs and the matricesA1,
A2, A3, B1 are integers; 2) System (4) is 1-inf-monotone
as theTRun-induced subnet is UBCF; 3) The analysis of
matricesA2 andA3 shows that systems (5) and (6) are also
1-inf-monotone. As Theorem III.4 in [19] says that the least
elements of{x ∈ Rn : A.x ≤ b} and {x ∈ Zn : Ax ≤ b}
are equal whenA.x ≤ b is 1-inf-monotone, the same equality
holds for system (7) which is 1-inf-monotone. In addition, the
application of the constraintxun ≥ 0 expressed by system
(6) implies thatx−

un is overN. Therefore, the determination
of the least sequencex−

un of system (7) can be made overR
since the result of this resolution is also the least sequence
over N. Finally, Corollary 1 of Lemma 2 gives a practical
way to obtain the optimal solution which is the resolution of
the relevant linear programming problem for anyc > 0. The
reasoning is similar for the UFCF case.�

Under the above conditions, integer linear programming is
not necessary and we can directly apply current algorithms of
linear programming such as simplex (although some artificial
examples show exponential running times, in practice, and on
average, the simplex is efficient) or more recent polynomial
algorithms ([14], [13]). If theTRun-induced subnet is BCF
and not UBCF (resp. FCF and not UFCF), the uniqueness
of the solution is guaranteed, but not its integer type. If the
TRun-induced subnet is not BCF (resp. FCF), neither the
uniqueness nor the integer type of the solution are guaranteed.
In that case, the procedure gives an optimal solution overR
with respect to a given criterionc and not for anyc > 0.

V. CONTACT-FREE CASE

Let us consider system (7) without the assumption of a
BCF and FCFTRun-induced subnet. We now assume that
the unobservable transitions are contact-free which is defined
below.

Definition 7: The unobservable transitions are contact-free
if: For any pair of transitions(xi, xj), the set of input and
output places ofxi cannot intersect the set of input and output
places ofxj ; the unobservable transitions do not have self-
loops associated with them.

This assumption simplifies matrixA1 used in system (4)
as theTRun-induced subnet is now composed of subgraphs
containing a unique unobservable transition. Each rowl of
(

G1,un G0,un

)

relevant to placepl is null except for a
unique entry which is defined in one of the following cases:
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a
bx1x1x1x1x1x1x1x1

x3xxxxxxxx4xxxxxxx x2xxxxxxx x5xxxxxx

p2

p4

p3
p1

Fig. 2. Example 2: P-timed Petri net with observable transitions x4 andx5.

TABLE I
SIMULATION : EVENTS AND MARKINGS

Time t 0 1 2 3 4 5 6 7 8 9
Events x4 x1 x3 x5 x4 x1 x4 x3 x5

x2 x4 x1 x2 x1

1 1 1 0 1 1 2 2 0 1
0 1 1 1 0 1 0 1 1 0

M(t) 1 0 1 0 1 0 1 0 0 1
0 0 0 1 0 0 0 0 1 0

• An entry of Gi,un for i ∈ {0, 1} is equal to−1 if
the relevant transition is the (unique) unobservable input
transition of placepl with a temporizationi.

• An entry ofG0,un is equal to1 if the relevant transition
is the (unique) unobservable output transition of placepl.

Each row of (4) relevant to the first case (second case,
respectively) directly expresses a minorant (majorant, respec-
tively) of the firing count of each transition and the con-
sideration of all the relevant rows gives the least solution
(greatest solution, respectively) of the problem. Therefore, the
resolution of (4) which is a subsystem of (7) is limited to
a maximization of the minorants and a minimization of the
majorants. An entry ofxun can have a least solution and a
greatest solution if the relevant unobservable transitionis an
input and output transition of places.

VI. SIMULATION (EXAMPLE 2)

In the Petri net given in Fig. 2, theTRun-induced subnet
is BCF and presents a circuit. Each place is associated with a
temporization equal to1 second. The initial marking isM0 =
(

1 0 1 0
)T

. A possible evolution of the Petri net for

t ∈ {0, 1, ..., 9} is given in Table I.

A. Algebraic model

The matrices of the relevant matrix modelG1 · x(t− 1) +
G0 · x(t) ≤ M0 are:

G1 =









−1 0 0 0 0
0 −1 0 −1 0

−1 0 0 0 0
0 0 −1 0 0









and G0 =









0 1 1 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1









.

B. Observer

The labelsa andb in the Petri net correspond to the events of
the observable transitionsx4 andx5 (i.e. TRobs = {x4, x5})

TABLE II
EXACT NUMBERS OF FIRING

Time t 6 7 8 9
x1 3 3 3 4
x2 1 1 2 2
x3 1 1 2 2

TABLE III
KNOWN DATA

θ 6 7 8 9
x
4

3 4 4 4
x
5

1 1 1 2

while the labelε corresponds to the unobservable transitions
x1, x2 andx3 (i.e.TRun = {x1, x2, x3}). So, we havexobs =
(x4, x5)

T and xun = (x1, x2, x3)
T. The events associated

with labela (respectively,b) are observed at times 1, 3, 5 and
7 (respectively, 4 and 9). The following inequality is deduced
from the previous algebraic model:G1,un ·xun(θ−1)+G0,un ·
xun(θ) ≤ M0 − G1,obs · xobs(θ − 1) − G0,obs · xobs(θ) for
θ ∈ {t− h+ 1, t} where

G1,un =









−1 0 0
0 −1 0

−1 0 0
0 0 −1









, G0,un =









0 1 1
1 0 1
0 0 0
0 0 0









,

G1,obs =









0 0
−1 0
0 0
0 0









andG0,obs =









0 0
0 0
1 0
0 1









.

C. Estimation

We make an estimation ofxun at t = 9 and we arbitrarily
take h = 3. In other words, we estimate the firing numbers
of the transitions given by Table II which is directly deduced
from Table I. Based on the observations given by Table III on
the window{t − h, t − h + 1, ..., t} = {6, 7, 8, 9}, Table IV
gives the least estimatex−

un calculated by the observer.
The numbers in bold are only deduced from the application

of the characteristic that the trajectory is non-decreasing:
x−
1 (8) ≤ x−

1 (9), x−
2 (7) ≤ x−

2 (8) ≤ x−
2 (9), and x−

3 (8) ≤
x−
3 (9). Each least estimate satisfiesx−

i (θ) ≤ xi(θ). The
estimates atθ = 6 and θ = 7 are equal to the exact data of
the scenario of this simulation. We also havex−

i (9) 6= xi(9)
and x−

2 (8) = x−
2 (9) 6= x2(9): The estimation considers

only the observations forθ ∈ {6, 7, 8, 9} and cannot directly
use the relations describing the timed Petri net forθ ≥ 10:
Obviously,x4(10) − 1 ≤ x1(9) and x5(10) ≤ x3(9) cannot
be used sincex4(10) and x5(10) are unknown att = 9.
The analysis of the inequalities shows that the backward
propagation of the information through the timed Petri net

TABLE IV
LEAST ESTIMATES FORt = 9 AND h = 3

θ 6 7 8 9

x
−

1
3 3 3 3

x
−

2
1 1 1 1

x
−

3
1 1 2 2
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TABLE V
MEAN ABSOLUTE ERROR FORt = 9 AND h = 1 TO 9

h 1 2 3 4 5 6 7 8 9
e(h) 0.5 0.33 0.25 0.2 0.16 0.14 0.12 0.11 0.1

TABLE VI
SUBSET OF THE SOLUTION SPACE FORt = 9 AND h = 3

θ 6 7 8 9
x1 3 + k 3 + k 3 + k 3+ k

x2 1 + k 1 + k 1+ k 1+ k

x3 1 1 2 2

produces this transient period (see also inequality (9) andthe
relevant comment). Symmetrically, the calculation is made
without using the observations on the horizon{0, ..., 5}:
So, the observer can only use a part of the past evolution
(θ ∈ {6, 7, 8, 9}) and not the complete evolution of the system
(θ ∈ {0, 1, ..., 9}). Taking the mean absolute errore(h) = 1

n
.

∑

i∈{1,2,3},θ∈{t−h,t−h+1,...,t}

|xi(θ) − x−
i (θ)| which is a way to

quantify the difference between the true valuesxi(θ) (Table
III) and estimated valuesx−

i (θ) (Table IV), Table V shows
that the increase of the horizon in the simulation given by
Table I improves the estimation.

Table VI for h = 3 and k ∈ N describes a subset of the
solution space satisfying the inequalities of the observerand
the algebraic model. It shows that other sequences that are
consistent with the same observations exist.

VII. C ONCLUSION

In this paper, we propose to consider the time parameter
in the sequence estimation of the Timed Petri net. At first,
we show that the solution space is completely described
by a polyhedron in the general case. Secondly, we exploit
the structure of the Petri net and make the connections
between the concept of Backward/Forward Conflict Freeness
of the unobservable-induced subnet and the concept of inf-
monotone/sup-monotone inequality. The analysis of the re-
lations shows that the resolution is not only limited to a
backward/forward propagation of the calculation through the
Petri net but must also follow the constraint that the trajectory
is non-decreasing. An elementary example illustrates thatthe
assumption of acyclicity is not necessary in the proposed ap-
proach. The application of linear programming and its relevant
efficient algorithms allows the estimation of the least/greatest
sequence with respect to the data known on a given horizon.
We also consider the assumption of contact-free unobservable
transitions where a simple resolution gives lower and upper
bounds on the time sequences.
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