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DIAGNOSIS ON A SLIDING WINDOW
FOR PARTIALLY OBSERVABLE PETRI NETS

Amira Chouchane and Philippe Declerck

In this paper, we propose an algebraic approach to investigate the diagnosis of partially
observable labeled Petri nets based on state estimation on a sliding window of a predefined
length h. Given an observation, the resulting diagnosis state can be computed while solving
integer linear programming problems with a reduced subset of basis markings. The proposed
approach consists in exploiting a subset of h observations at each estimation step, which pro-
vides a partial diagnosis relevant to the current observation window. This technique allows
a status update with a ”forgetfulness” of past observations and enables distinguishing repet-
itive and punctual faults. The complete diagnosis state can be defined as a function of the
partial diagnosis states interpreted on the sliding window. As the analysis shows that some
basis markings can present an inconsistency with a future evolution, which possibly implies
unnecessary computations of basis markings, a withdrawal procedure of these irrelevant basis
markings based on linear programming is proposed.

Keywords: diagnosis, state estimation, partially observed Petri net, sliding window, inte-
ger linear programming
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1. INTRODUCTION

The problem of estimating the state of a dynamic system is a fundamental issue in
system theory. Observing a process and estimating its state consists in determining the
values of system variables from a certain set of measurements given by a set of sensors.
In a Petri Net (PN) framework, the state observer aims to give an on-line picture of
the process and to provide the estimation of the system state based on the observation
of a set of events. An important motivation is the fault diagnosis as the occurrence
of faults can perturb or stop the evolution and production of the process. As it can
contain transitions associated with events which are not observable or not available for
the supervisory system, this PN is said to be partially observable. Unobservable events
can also model faults, disturbances or noises that can affect the system. Indeed, the
complete computerization of each process is not always possible due to the physical
impossibility and the excessive cost. For instance, in a motorway with a payable access,
the inputs and outputs at an unauthorized access are unobservable events if no sensor has
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been added to detect the relevant events. These unobservable events can also represent
faults.

In this article, we are interested in the fault diagnosis of a partially observed Labeled
PN (LPN) which describes the fault model. We assume that the faults of the system
are modeled by some unobservable transitions. Therefore, the occurrence of a fault is
equivalent to the firing of the associated unobservable transition.

The literature is very rich of bibliographic work on the LPN diagnosis [1, 2, 3, 4, 5,
6, 7, 8, 9]. In what follows, we will cite the most relevant work, in relation with the
proposed approach.

Diagnosis techniques based on the basis marking estimation have been subject to
a number of interesting papers in the last ten years [1, 2, 10, 11, 12]. The set of
basis markings is a reduced subset of the possible current markings which are coherent
with a given observed sequence. It is based on the computation of a set of minimal
explanation vectors associated with each transition of the observed sequence. In [1],
a basis-marking based approach was suggested for the diagnosis of partially observable
LPNs with an acyclic unobservable subnet. The faults are modeled by some unobservable
transitions. In [10], a generalization of this approach assuming that faults could also
be modeled by observable undistinguishable transitions was made. The determination
of the set of minimal explanation vectors was based on a tabular algorithm that shows
an exponential complexity in the worst case. To tackle this issue, it is shown in [10]
that if the LPN is bounded, the off-line construction of an automaton called Basis
Reachability Graph (BRG) will move off-line a burdensome part of the procedure. This
BRG is a deterministic graph used for the on-line diagnosis that has as many nodes
as possible basis markings. However, the number of basis markings can be huge even
for a limited number of transitions, which will considerably affect the execution time of
the approach [13, 14]. Assuming that all the system faults are observable, an Extended
BRG (EBRG) was constructed in [4]. The EBRG corresponds to an automaton based
on basis markings and has significantly fewer states than the reachability graph in most
cases, but the number of nodes is still exponential.

To reduce the state space to be estimated, diagnostic techniques based on Integer
Linear Programming (ILP) problems have been developed. In [6], the authors put for-
ward an approach of fault diagnosis of a partially observed PN requiring an on-line
computation of the set of possible fault events explaining the last observed event. The
on-line computation consists in solving the ILP problems formulated on a net structure
and based on g-markings. In [15], the authors developed a methodology for partially
observed LPN diagnosis. This methodology calculates the least-cost transition firing
sequences that are consistent with the observed word. It is assumed that each transition
is associated with a nonnegative cost that will capture its likelihood. A recursive algo-
rithm was developed, which may find the least-cost firing sequence while reconstructing
only a finite number of transition firing sequences under the acyclicity assumption of
the unobservable subnet. A fault is detected if it is included in a subset of unobservable
sequences that are coherent with the observation verifying an ILP problem. In [7], a
diagnosis approach of partially observed LPN, with undistinguishable observable transi-
tions and with loops in the unobservable subnet, was presented. The faults of the system
are modeled by unobservable transitions. A new system description on a reduced horizon
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was described, which avoids the initial marking update for each observed transition of
the observed word. A fault diagnosis approach was established based on the resolution
of ILP problems. However, the resolution time of an ILP problem is exponential in the
worst case and the diagnosis procedure can be time consuming. To further reduce the
computation complexity, a relaxation of ILP problems allows solving these problems by
an algorithm of linear programming, such as the ellipsoid algorithm of Khashiyan or
the interior point algorithm of Karmarkar, which are polynomial in the worst case. The
drawback of this approach is that the receding horizon can not be increased infinitely
as it raises with the cardinality of the observed word. A solution to this problem is
proposed in this paper.

In the present work, we introduce diagnosis indicators for fault diagnosis of partially
observable LPNs under the form of ILP problems defined on a sliding horizon (window)
instead of a receding one. The interest of the sliding window is to provide an updated
interpretation focusing on the current status corresponding to the chosen horizon of
observation and allowing the ”forgetfulness” of the old events. This forgetfulness is
necessary when the process evolves on a long operation time. We express any fault
indicator under ILP problems for a given horizon length and a set of basis markings.
Herein, the main lines of the classical technique [1, 10], which computes the sets of
minimal explanation vectors and basis markings, are kept. We will see that at each
step, the computation of the set of basis markings is necessary only at the beginning
of the current window. Moreover, a diagnosis can be made even if the determination
of the last sets of minimal explanation vectors and basis markings is not finished or
cannot be finished due to a combinatorial explosion. This technique allows postponing
the time-consuming computation of these sets for the current observation. In addition,
we show that a minimal solution can lead to a basis marking, which cannot produce a
sequence consistent with the following observations. In that situation, the generation
of some minimal solutions and relevant basis markings is unsuccessful. The originality
of this work is to present such a particular situation. Checking these unfruitful basis
markings on a sliding horizon allows protectively preventing additional calculations that
can be very costly from the point of view of time and space.

In this paper, the incidence matrices and the initial marking of the LPN are assumed
to be known, along with the feasibility of the system. The occurrences of observable
events are considered non-simultaneous. We take the hypothesis of acyclicity, ensuring
that the solutions found by the algebraic method correspond to the firing sequences of
unobservable transitions [16]. Moreover, the fault transitions are divided into various
fault classes. For clarity, the case of undistinguishable observable transitions (the firings
of several transitions can be observed but cannot be distinguished) is not considered in
this paper, but relevant modeling can be found in the study of [7].

The remainder of this paper is organized as follows. In section 2, we present some
preliminary notions and some useful definitions related to the proposed approach. In
section 3, we expose the principle of our estimation approach for fault diagnosis. We
build a polyhedron defined on a sliding window, which describes the estimation problem
under an algebraic point of view. In section 4, we introduce different criteria which
permit implementing the fault diagnosis procedure. In section 5, the computational
complexity analysis and the comparative results are presented. In section 6, a bench-
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mark is used to illustrate the numerical efficiency of the proposed technique. Section 7
concludes the paper and provides a number of perspectives for the present work.

2. PRELIMINARY

2.1. Background on LPN and notations

A Place/Transition (P/T) net is the structure N = (P, TR,W+,W−), where P is a set
of |P | places and T is a set of |T | transitions. Matrices W+ and W− are respectively
the |P | × |T | post and pre-incidence matrices over N, where each row l ∈ {1, . . . , |P |}
specifies the weight of the incoming and outgoing arcs of place pl ∈ P . The incidence
matrix is W = W+ −W−. The pre-set and post-set of node z ∈ P

⋃
T are denoted by

•z and z•, respectively.
Notation T ∗ represents the set of firing sequences, denoted x, consisting of transitions

of T . We denote by πT : T ∗ → N|T | the function that associates with x the x vector
of dimension |T | expressing the firing vector or count vector of sequence x ∈ T ∗, where
the ith component xi is the firing number of the ith transition of T in sequence x.
The marking of the set of places P is a vector M ∈ N|P | that assigns to each place
pi ∈ P a non-negative integer number of tokens Mi. The ith component Mi is denoted
as M(pi). Marking M , reached from the initial marking M init (which replaces the
usual notation M0) by firing sequence x, can be calculated by the fundamental relation:
M = M init + W.x. Transition xi ∈ T is enabled at M if M ≥ W−(., xi) and may be
fired yielding marking M ′ = M+W (., xi). We write M [x � to denote that the sequence
of transitions x is enabled at M , and we write M [x �M ′ to denote that the firing of x
yields M ′.

A labeling function  L : T → E∪{ε} assigns to each transition xi ∈ T either a symbol
from a given alphabet E or the empty string ε. Without any loss of generality, mapping
 L is assumed to be surjective. In a partially observed LPN, we assume that the set of
transitions T can be partitioned as T = Tob

⋃
Tun, where set Tob (resp. Tun) is the set

of observable transitions (resp. unobservable transitions) associated with a label of E
(resp. the empty string ε). Thus, |Tun| 6= ∅ as  L is surjective. The restriction of  L to Tob
and E is a function  L′ : Tob → E which is assumed to be injective (and so bijective): In
other words, the case of undistinguishable observable transitions is not considered in this
paper. The labeling functions  L and  L′ can be also extended respectively to transition
sequences,  L : T ∗ → {E

⋃
{ε}}∗ and  L′ : T ∗ob → E∗.

The unobservable induced subnet of the PN N is defined as the new net Nun =
(P, Tun,W

+
un,W

−
un), where W+

un and W−un are the restrictions of W+ and W− to P ×
Tun. Therefore, Wun = W+

un − W−un. Likewise, the observed subnet of N is defined
as the new net Nob = (P, Tob,W

+
ob,W

−
ob) where W+

ob and W−ob are the restrictions of
W+ and W− to P × Tob. A reorganization of the columns as regards Tun and Tob
yields W =

(
Wun Wob

)
. A sequence of unobservable transitions denoted xun ∈ T ∗un

is of count vector xun = πTun
(xun) of dimension |Tun| and a sequence of observable

transitions denoted xob ∈ T ∗ob is of count vector xob = πTob
(xob) of dimension |Tob|. The

reorganization of the components of x yields x =
(
xun

T xob
T
)T
.

Let us add the following notations. We consider a feasible firing sequence x from the
initial marking M init. Let xob =  L′(x) be the observable projection of x. Assuming
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that the occurrences of observable transitions are non-simultaneous, we associate an
index 〈i〉 to each occurrence of an observable transition. We can then write xob as

xob = x
〈1〉
ob x

〈2〉
ob · · ·x

〈k〉
ob where x

〈i〉
ob ∈ Tob is the ith observed transition of xob and k = |xob|.

Let x
〈1〉
un , x

〈2〉
un , . . . , x

〈k〉
un be the unobservable sequences that are coherent with transitions

x
〈1〉
ob , x

〈2〉
ob , . . . , x

〈k〉
ob , respectively. That is, x

〈1〉
unx

〈1〉
ob x

〈2〉
unx

〈2〉
ob · · ·x

〈k〉
un x

〈k〉
ob is a feasible firing

sequence from M init. Then, there exists a set of markings M 〈1〉,M 〈2〉, . . ., M 〈k+1〉 such

that M 〈1〉[x
〈1〉
unx

〈1〉
ob �M 〈2〉 · · ·M 〈k〉[x

〈k〉
un x

〈k〉
ob �M 〈k+1〉 with M 〈1〉 = M init.

2.2. Definitions

The concept of explanation vectors [17] allows for focusing on specific evolutions of the
PN which are consistent with the observations. The set of explanation vectors is defined

for each observed transition x
〈i〉
ob as follows:

Definition 2.1. Let x
〈i〉
un be an unobservable sequence which leads to the firing of the

observed transition x
〈i〉
ob from a starting marking M 〈i〉. The relevant count vector is

denoted xun
〈i〉 and is named an explanation vector of x

〈i〉
ob from M 〈i〉. The sets of possible

unobservable sequences x
〈i〉
un and relevant explanation vectors xun

〈i〉 for marking M 〈i〉

and observation x
〈i〉
ob are denoted SEQ(M 〈i〉, x

〈i〉
ob ) and E(M 〈i〉, x

〈i〉
ob ), respectively, and

defined as:

SEQ(M 〈i〉, x
〈i〉
ob ) = {x〈i〉un | x〈i〉un ∈ T ∗un, M 〈i〉[x

〈i〉
un �M ′ with M ′[x

〈i〉
ob �}

E(M 〈i〉, x
〈i〉
ob ) = {xun〈i〉 | x〈i〉un ∈ SEQ(M 〈i〉, x

〈i〉
ob }.

The set of computed markings, which is produced following the firing of x
〈i〉
ob from

M 〈i〉, is used as known starting markings for x
〈i+1〉
ob , is denotedM〈i+1〉 and is determined

by the consideration of all markings M 〈i〉 ∈M〈i〉 and the relevant computed sequences

x
〈i〉
unx
〈i〉
ob . Formally, the set of starting markings is defined iteratively as follows:

M〈1〉 = { M 〈1〉 with M 〈1〉 = M init},
M〈i+1〉 = {M 〈i+1〉 ∈ N|P | | (∃M 〈i〉 ∈M〈i〉)(∃x〈i〉un ∈ SEQ(M 〈i〉, x

〈i〉
ob )) :

M 〈i〉[x
〈i〉
un �M ′[x〈i〉ob �M 〈i+1〉}, ∀i ∈ {1, . . . , k}.

From M 〈i〉[x
〈i〉
un � M ′ with M ′[x

〈i〉
ob �, we can easily deduce the following system with

unknown xun
〈i〉 ∈ Nn:

−Wun.xun
〈i〉 ≤M 〈i〉 −W−ob(., x

〈i〉
ob ). (1)

Notation W−ob(., x
〈i〉
ob ) selects the column relevant to the observed transition x

〈i〉
ob in W−ob.

Each vector xun
〈i〉 satisfying (1) is an explanation vector if the unobservable subnet is

acyclic [18].

Among all sequences in SEQ(M 〈i〉, x
〈i〉
ob ), we distinguish the ones which present a

behavior strictly necessary to this firing, i. e. sequences which correspond to minimal
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count vectors. For an observed transition x
〈i〉
ob from M 〈i〉, we get:

SEQmin(M 〈i〉, x
〈i〉
ob ) = {x〈i〉un ∈ SEQ(M 〈i〉, x

〈i〉
ob ) | @x′un〈i〉 ∈ SEQ(M 〈i〉, x

〈i〉
ob ) :

x′un
〈i〉
< xun

〈i〉 }
Emin(M 〈i〉, x

〈i〉
ob ) = {xun〈i〉 | x〈i〉un ∈ SEQmin(M 〈i〉, x

〈i〉
ob }.

Similarly, the set of basis markings [17] is a subset of M〈i+1〉 defined as follows:

Mmin,〈1〉 = { M 〈1〉 with M 〈1〉 = M init},
Mmin,〈i+1〉 = {M 〈i+1〉 ∈ N|P | | (∃M 〈i〉 ∈Mmin,〈i〉), (∃x〈i〉un ∈ SEQmin(M 〈i〉, x

〈i〉
ob )):

M 〈i〉[x
〈i〉
un �M ′[x

〈i〉
ob �M 〈i+1〉}, ∀i ∈ {1, . . . , k}.

The relevant minimal count vectors xun
〈i〉 of Emin(M 〈i〉, x

〈i〉
ob ) with M 〈i〉 ∈Mmin,〈i〉 are

named minimal explanation vectors. They can be computed by the tabular approach
(Algorithm 3.5 in [17]) which is a combinatorial technique treating (1) with M 〈i〉 ∈
Mmin,〈i〉.

Definition 2.2. (Cabasino et al. [17]) The set of j-vectors for an observed word w
from M init is the set of minimal count vectors xun of unobservable transitions xun =
x
〈1〉
unx

〈2〉
un · · ·x〈k〉un interleaved with xob = x

〈1〉
ob x

〈2〉
ob · · ·x

〈k〉
ob , where L′(xob) = w, whose firings

enable xob.

If we adopt the definition of j-vectors presented in [17] for an LPN without undistin-
guishable observable transitions and with an acyclic unobservable subnet (the hypothe-

ses considered in this work), the j-vectors of an observed sequence xob = x
〈1〉
ob x

〈2〉
ob · · ·x

〈k〉
ob

from M init can be formally defined as follows:

Ymin(M init, xob) = {xun =
k∑

i=1

xun
〈i〉| xun〈i〉 ∈ Emin(M 〈i〉, x

〈i〉
ob ) with

M 〈1〉[x
〈1〉
unx

〈1〉
ob �M 〈2〉 · · ·M 〈k〉[x

〈k〉
un x

〈k〉
ob �M 〈k+1〉 and

M 〈1〉 = M init}.

In this paper, we use the notion of the observation window, denoted [x
〈i〉
ob ]rq, which

means that we observe the successive firings of transitions from x<q>
ob to x<r>

ob starting

from M<q> (with q ≤ r). The length of the observation window [x
〈i〉
ob ]rq is defined as the

number of the observed transitions in [x
〈i〉
ob ]rq, i. e. r− q + 1. In the following section, we

present the estimation problem on a sliding window considered in this article.

3. ESTIMATION ON A SLIDING WINDOW COMPLETED WITH BASIS
MARKINGS

Let us consider an LPN with a known structure and a known initial marking M init.
Given a sequence of labels w ∈ E∗ emitted by the firing of an observable sequence

xob = x
〈1〉
ob x

〈2〉
ob · · ·x

〈|w|〉
ob generated by the LPN activity, x

〈1〉
un , x

〈2〉
un , . . . , x

〈|w|〉
un are unob-

servable sequences coherent with transitions x
〈1〉
ob , x

〈2〉
ob , . . . , x

〈|w|〉
ob , respectively. A fea-

sible firing sequence x from the initial marking M init can be then written as x =
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x
〈1〉
unx

〈1〉
ob x

〈2〉
unx

〈2〉
ob · · ·x

〈|w|〉
un x

〈|w|〉
ob . Then, we will algebraically describe the unobservable

count vectors that are coherent with the observed labels, on a sliding observation win-
dow of fixed length h where 1 ≤ h ≤ |w|, i. e. by considering for each estimation step h
successive observed transitions while updating the starting marking successively.

3.1. Principle

For each estimation step k with k ∈ [h · · · |w|], we consider a window of observations

[x
〈i〉
ob ]kk−h+1 where h ∈ [1 · · · |w|] is the fixed horizon length. At step k, observation

x
〈k〉
ob is the last considered one, while observation x

〈k+1〉
ob is not available (not still avail-

able if we consider a usual behavior). To determine the diagnosis status at step k,
the interpretation will not consider the sequences that interleave observations on hori-
zon {1, . . . , k − h} starting from the initial marking M 〈1〉 = M init and leading to a
marking of Mmin,〈k−h+1〉. The starting markings at step k are then the basis markings
M 〈k−h+1〉 ∈ Mmin,〈k−h+1〉. As explained in the introduction, the proposed approach
keeps the standard approach [17] but adds a complementary technique based on a slid-
ing window. The main lines of the procedure, for each step k with k ∈ [h · · · |w|], are
presented as follows:

• The computation of the set of basis markings Mmin,〈k−h+1〉

• The checking ofMmin,〈k−h+1〉 , based on the analysis of the coherence of markings

in Mmin,〈k−h+1〉 w.r.t. the window of future observations [x
〈i〉
ob ]kk−h+1

• The diagnosis based on the window of observations [x
〈i〉
ob ]kk−h+1 with starting mark-

ings in Mmin,〈k−h+1〉.

The following notations relevant to step k and window length h are taken:

xun =
(

(xun
〈k−h+1〉)T (xun

〈k−h+2〉>)T (xun
〈k−h+3〉>)T . . . . . . (xun

〈k〉)T
)T

xob =
(

(xob
〈k−h+1〉)T (xob

〈k−h+2〉>)T (xob
〈k−h+3〉>)T . . . . . . (xob

〈k〉)T
)T
.

As x
〈i〉
ob is a unique observed transition, with i ∈ {k − h + 1, . . . , k}, each vector xob

〈i〉

is null except a unique component that is equal to 1 and which corresponds to the
observed transition. Vector xun includes the different explanation vectors xun

〈i〉, i ∈
{k − h+ 1, . . . , k}.

Remark 3.1. As the technique of state estimation on a sliding window considers a
fixed horizon, it needs that a sufficient number of observation is available, that is, h
observations and the first horizon considered by the estimation is {1, . . . , h}, the second
one is {2, . . . , h + 1}, and so on. This point implies that the approach starts at k = h.
However, as the technique is flexible, it can easily be completed by a technique of state
estimation on a receding horizon, proposed in [7], before its application. The form of
the used system of relations is similar but must be adapted to the receding horizon h′

increasing from 1 to h− 1.



486 A. CHOUCHANE AND P. DECLERCK

3.2. Algebraic modeling on a sliding window

In this part, we develop an algebraic model which describes the evolution of count vectors

for the observation window [x
〈i〉
ob ]kk−h+1 beginning from a starting marking M 〈k−h+1〉 ∈

Mmin,〈k−h+1〉. We have M 〈i〉[x
〈i〉
un � M ′〈i〉 with M ′〈i〉[x

〈i〉
ob � M 〈i+1〉 for i ∈ {k − h +

1, . . . , k}.

3.2.1. Equations for first observed transition x
〈k−h+1〉
ob of the window

For the observed transition x
〈k−h+1〉
ob from M 〈k−h+1〉, there exists marking M ′〈k−h+1〉

with

M ′〈k−h+1〉 = M 〈k−h+1〉 +Wun · xun〈k−h+1〉. (2)

Marking M ′〈k−h+1〉 satisfies M ′〈k−h+1〉[(xob)
〈k−h+1〉 � . Therefore, we get:

−Wun · xun〈k−h+1〉 +W−ob.xob
〈k−h+1〉 ≤M 〈k−h+1〉. (3)

3.2.2. Equations for observations from x
〈k−h+2〉>
ob to x

〈k〉
ob of the window

For the observed transition x
〈k−h+2〉>
ob from M 〈k−h+2〉>, there exists some marking

M ′〈k−h+2〉> with

M ′〈k−h+2〉> = M 〈k−h+2〉> +Wun · xun〈k−h+2〉> = M 〈k−h+1〉 +Wun.(xun
〈k−h+1〉+

xun
〈k−h+2〉>) +Wob.(xob

〈k−h+1〉).

Marking M ′〈k−h+2〉> satisfies M ′〈k−h+2〉>[(xob)
〈k−h+2〉> � . Hence, we have:

−Wun.(xun
〈k−h+1〉 + xun

〈k−h+2〉>)−Wob.(xob
〈k−h+1〉) + W−ob.xob

〈k−h+2〉> ≤M 〈k−h+1〉.

More generally, we deduce for all i ∈ {k − h+ 2, . . . , k} the following relation:

−Wun

i

.
∑

j=k−h+1

xun
<j> −Wob.

i−1∑
j=k−h+1

xob
<j> +W−ob.xob

〈i〉 ≤M 〈k−h+1〉. (4)

3.2.3. Complete system

According to (3) and (4), the count vectors xun ∈ Nh.|Tun| and xob ∈ Nh.|Tob| fulfill the
following polyhedron:

A.xun +B.xob ≤ b (5)

where A=



−Wun 0 0 . . . 0
−Wun −Wun 0 . . . 0

−Wun −Wun −Wun

...
...

... 0
−Wun −Wun . . . −Wun −Wun

 ,
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B =



W−ob 0 0 . . . 0
−Wob W−ob 0 . . . 0

−Wob −Wob W−ob
...

...
... 0

−Wob −Wob . . . −Wob W−ob

 and b =


M 〈k−h+1〉

M 〈k−h+1〉

M 〈k−h+1〉

...
M 〈k−h+1〉


with M 〈k−h+1〉 ∈Mmin,〈k−h+1〉. As a function of h, the dimensions of matrices A and B
and vector b are (h.|P |×h.|Tun|), (h.|P |×h.|Tob|) and h.|P |×1, respectively. Matrices A
and B depend on the structure of the PN, while vector b depends on the basis marking
M 〈k−h+1〉 ∈Mmin,〈k−h+1〉.

Remark 3.2. System (5) can easily be completed at step 1 to treat the case where the
initial marking M 〈1〉 is not completely known but belongs to a set of possible markings
described by a system of form Γ.M 〈1〉 ≤ Θ.

3.3. Checking of starting basis markings

A count vector x
〈k〉
un that is consistent with a current observation x

〈k〉
ob must also be con-

sistent with the following observations x
〈i〉
ob with i ∈ {k + 1, . . . , |w|}. Formally, we have

M 〈i〉[x
〈i〉
un � M ′〈i〉 with M ′〈i〉[x

〈i〉
ob � M 〈i+1〉 for i = k, but we must also consider the

same constraint for any i ≥ k + 1. In other words, the determination of x
〈k〉
un depends

not only on observation x
〈k〉
ob but can also be refined according to the subsequent obser-

vations x
〈i〉
ob , where i ≥ k + 1. In particular, it is implied that an unobservable sequence

x
〈i〉
un ∈ SEQ(M 〈i〉, x

〈i〉
ob ) relevant to an explanation vector xun

〈i〉 ∈ E(M 〈i〉, x
〈i〉
ob ) can lead

to a basis marking which cannot satisfy M<j>[x<j>
un �M ′<j>

with M
′<j>

[x<j>
ob � for a

given j ≥ i+ 1 and, therefore, cannot be the starting marking of a complete sequence
containing the following observations. Accordingly, system (5) at a given step can be
inconsistent for some basis markings but is consistent for at least one basis marking.
Thus, the computation of some basis markings can be unfruitful for a sequence of obser-
vations. Practically, the standard approach [17] deduces the basis markings at a given

step k from the successive observations x
〈i〉
ob for i ∈ {1, . . . , k}. However, some basis

markings can become unreachable with the occurrences of new observations x
〈i〉
ob , where

i ∈ {k + 1, . . . , |w|}, which are still unknown at step k. In other words, set Mmin,〈k+1〉

computed at step k may contain some candidate basis markings that are possibly in-
consistent w.r.t. the following observations at step 〈i〉, where i ≥ k + 1. Therefore,
these irrelevant basis markings must be withdrawn from the procedure when they are
detected.

For the sake of illustration, let us consider the acyclic PN in Figure 1 where Tob =
{y1, y2} and Tun = {x1, x2, x3}. assume the following evolution x1y1x3y2 starting from
M init = M 〈1〉 = (1 1 0 0 0 0)T . Two successive observations y1 and y2 are generated.
For observation y1, the two minimal explanation vectors are:
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Fig. 1. Petri net for

unfruitful basis marking analysis.
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Fig. 2. Petri net of

numerical analysis (Figure 4 in [19]).

-
(

1 0 0
)T

is relevant to x1 which yields the basis marking M1 = (0 1 0 1 0 0)T

∈Mmin,〈2〉.

-
(

0 1 0
)T

is relevant to x2 which yields M2 = (1 0 0 1 0 0)T ∈Mmin,〈2〉.

For observation y2 from M1, a minimal explanation vector is
(

0 0 1
)T

relevant
to x3 (consistent with sequence x1y1x3y2). For observation y2 from M2, no minimal
explanation vector is possible as M2(p2) = 0. Therefore, M2 is inconsistent w.r.t.
observation y1y2.

Example 1 shows that the standard procedure produces a sequence leading to a basis
marking M2, which cannot be extended to a sequence containing a new observed tran-
sition. In other words, the observable transition y2 is infeasible for the basis marking
M2; i. e., y2 can never be fired in any firing sequence starting from this basis mark-
ing. However, the observable transition y2 is L1-live for the other basis marking M1;
i. e., y2 can be fired at least once in some firing sequences. In fact, the two observable
transitions present a structural conflict described by a common place p2 presenting two
output unobservable transitions. This structural conflict leads to the loss of the liveness
of the observable transition for the basis marking M2, which contradicts the observa-
tion. For M2, observation y2 must use the same tokens already exploited, which yields
an inconsistent system. To sum up, two minimal sequences are potentially necessary for
observation y1 but it can only be exploited in the following observation.

In what follows, we consider the case of a Backward Conflict-Free (BCF) unobservable
subnet where the difficulty disappears.

Property 1. System (5) for a live BCF unobservable subnet is consistent for all basis
markings.
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P r o o f . Each system for a BCF unobservable subnet presents a unique minimal expla-
nation vector, which leads to a basis marking. As the PN is assumed to be live, system
(5) can follow a trajectory and each unique system for each observation is necessarily
consistent. �

The checking of each marking M 〈k−h+1〉 ∈ Mmin,〈k−h+1〉 can now be made. The
following result can then be stated:

Proposition 3.3. The basis marking M 〈k−h+1〉 ∈Mmin,〈k−h+1〉 is unfruitful and must
be withdrawn from Mmin,〈k−h+1〉 if the relevant polyhedron (5) has no solution.

P r o o f . We suppose that polyhedron (5) has no solution for a given starting marking

M 〈k−h+1〉 ∈ Mmin,〈k−h+1〉 and a given observed sequence x
〈k−h+1〉
ob , . . . , x

〈k〉
ob , we can

then distinguish two cases. Case1: @x〈k−h+1〉
un , . . . , x

〈k〉
un are coherent respectively with

x
〈k−h+1〉
ob , . . . , x

〈k〉
ob from M 〈k−h+1〉. Case2: M 〈k−h+1〉 can not be a starting marking for

x
〈k−h+1〉
un x

〈k−h+1〉
ob ...x

〈k〉
un x

〈k〉
ob . Case1 can not be true as x

〈k−h+1〉
ob · · ·x〈k〉ob is a feasible firing

sequence, and then there exists at least one unobservable sequence x
〈k−h+1〉
un · · ·x〈k〉un that

is coherent with such an observed sequence. Consequently, case2 is true; i. e., M 〈k−h+1〉

is an unfruitful basis marking. �

4. DIAGNOSIS ON A SLIDING WINDOW

We assume that each faulty behavior which may occur in the system is expressed by the
firing of an unobservable transition. Naturally, there may also be other transitions that
are unobservable whose firings correspond to normal behaviors. As a consequence, the
set of unobservable transitions is partitioned in two subsets

Tun = Tf ∪ Tn (6)

where Tf is the set of unobservable transitions whose firings describe fault events, and Tn
is the set of unobservable transitions whose firings correspond to regular unobservable
events. Furthermore, the set of fault transitions Tf can also be partitioned into cl disjoint
subsets that represent the different fault classes as follows:

Tf = T 1
f ∪ T 2

f ∪ . . . ∪ T cl
f . (7)

The objective is to detect a given fault class T j
f using the technique of estimation on a

sliding window.

Remark 4.1. In practice, faults can be modeled as a mixture of observable and unob-
servable transitions. In this case, if the observed word w includes an observable fault
event, we can conclude immediately that the system is faulty. Otherwise, a state estima-
tion procedure is necessary to generate the diagnosis verdict, and the proposed approach
developed herein is then applicable.

First, let us consider the following definition of partial diagnosis states on a sliding
window.
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Definition 4.2. For an observed word w from M init, we define the diagnosis func-
tion ∆k

h(w, T j
f ) with respects to a given fault class T j

f on a sliding observation window

[x
〈i〉
ob ]kk−h+1 for all k ∈ [h · · · |w|] as follows:

∆k
h(w, T j

f ) = Nh : Fault T j
f does not occur on window [x

〈i〉
ob ]kk−h+1 from all

M 〈k−h+1〉 ∈Mmin,〈k−h+1〉.

∆k
h(w, T j

f ) = Uh : We can not conclude on the existence of T j
f on [x

〈i〉
ob ]kk−h+1

from all M 〈k−h+1〉 ∈Mmin,〈k−h+1〉.

∆k
h(w, T j

f ) = Fh : Fault T j
f occurs on window [x

〈i〉
ob ]kk−h+1 from all

M 〈k−h+1〉 ∈Mmin,〈k−h+1〉.

For the current window of observations [x
〈i〉
ob ]kk−h+1, we can also define a first fault

indicator J−(T j
f , k) for each fault class T j

f ∈ Tf , which describes the minimum number

of occurrences of fault class T j
f in the considered observation window from all markings

M 〈k−h+1〉 ∈Mmin,〈k−h+1〉. This first indicator is defined as follows:

{
J−(T j

f , k) = min(cjf .xun)

such that (5) ,M 〈k−h+1〉 ∈Mmin,〈k−h+1〉 (8)

with cjf =
(
cj . . . cj cj

)
∈ {0, 1}h×|Tun| where cj is a row vector of dimension

|Tun|, for which all the elements are null, except the elements that are associated with
fault transitions in T j

f , which are equal to 1.
Symmetrically, we can determine the maximum number of occurrences of faults in

class T j
f . {

J+(T j
f , k) = max(cjf .xun)

such that (5), M 〈k−h+1〉 ∈Mmin,〈k−h+1〉 (9)

Based on the two fault indicators mentioned above, we get the following results for
partial diagnosis on a sliding window:

Proposition 4.3. Let us consider an observed word w from M init. The partial diagno-

sis states of fault class T j
f , associated with an observation window [x

〈i〉
ob ]kk−h+1 of length

h for each step k with k ∈ [h · · · |w|], is defined as follows:

• If J−(T j
f , k) ≥ 1, then ∆k

h(w, T j
f ) = Fh.

• If J+(T j
f , k) = 0, then ∆k

h(w, T j
f ) = Nh.

• If J−(T j
f , k) = 0 and J+(T j

f , k) ≥ 1, then ∆k
h(w, T j

f ) = Uh.

Indeed, if J−(T j
f , k) ≥ 1, we can say that at least a fault relevant to T j

f has been detected

at step k. Moreover, situation J−(T j
f , k) ≥ 1 guarantees a repeated characteristic of fault

class T j
f .
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By considering only setMmin,〈k−h+1〉, the proposed partial diagnosis at a given step
k does not need the computation of the set of minimal explanation vectors Emin(M 〈i〉,

x
〈i〉
ob ) and basis markingsMmin,〈i〉 for i ∈ {k−h+ 2, . . . , k}, which may show to be time

consuming. Finally, it leads to a sliding procedure: The next step needs the computation
of Emin〈k−h+2〉> and Mmin,〈k−h+2〉>, and so on.

Remark 4.4. Note that the detection of a fault with certainty can be unsuccessful
for a given horizon length h, while a greater window which exploits more information
can lead to detection even if the exact occurrences can remain unknown. Symmetrically,
J−(T j

f , k) ≥ 1 does not give information on iterations 〈k−h+j〉 except that the detected

faults of class T j
f are relevant to the current window [x

〈i〉
ob ]kk−h+1 .

Now, we establish the relationships between the partial diagnosis status ∆k
h(w, T j

f )

obtained for each window [x
〈i〉
ob ]kk−h+1 with k ∈ [h · · · |w|] and the complete diagnosis

state ∆(w, T j
f ) associated with the complete observation window [x

〈i〉
ob ]
|w|
1 from M init.

Definition 4.5. For an observed word w from M init, we define the diagnosis function
∆(w, T j

f ) associated with T j
f as follows:

∆(w, T j
f ) = N : Fault class T j

f does not occur for the observed word w from M init.

∆(w, T j
f ) = U : We can not conclude on the existence of T j

f for the observed word

w from M init.

∆(w, T j
f ) = F : Fault T j

f occurs for the observed word w from M init.

Proposition 4.6. Let us consider an observed word w from M init. The diagnosis state
∆(w, T j

f ) associated with T j
f can be deduced from the partial diagnosis states on the

sliding window of length h as follows:

1. If ∀k ∈ [h · · · |w|], ∆k
h(w, T j

f ) = Nh, then ∆(w, T j
f ) ∈ {U,N}.

2. If ∃k ∈ [h · · · |w|], ∆k
h(w, T j

f ) = Fh, then ∆(w, T j
f ) = F .

3. If ∃k ∈ [h · · · |w|], ∆k
h(w, T j

f ) = Uh, then ∆(w, T j
f ) = U .

P r o o f .

1) If for all steps k ∈ [h · · · |w|], ∆k
h(w, T j

f ) = Nh, then no fault of class T j
f is contained

in any minimal sequence consistent with an observation window of length h, but
there may exist one non minimal sequence that is consistent with w which contains
T j
f , so ∆(w, T j

f ) = {U,N}.

2) We suppose that there exists step k ∈ [h · · · |w|] such that ∆k
h(w, T j

f ) = Fh,

then fault class T j
f surely occurs on window [x

〈i〉
ob ]kk−h+1 from all M 〈k−h+1〉 ∈

Mmin,〈k−h+1〉. Therefore, all firable sequences which are consistent with x
〈k−h+1〉
ob
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· · ·x〈k〉ob from any M 〈k−h+1〉 ∈M〈k−h+1〉 necessarily contain at least one fault tran-

sition of T j
f . Consequently, all firable sequences consistent with xob = x

〈1〉
ob · · ·x

〈k−h+1〉
ob

· · ·x〈k〉ob · · ·x
〈|w|〉
ob fromM〈1〉 = M init contain at least one fault transition of T j

f , and

then ∆(w, T j
f ) = F .

3) We suppose that there exists some step k ∈ [h · · · |w|] such that ∆k
h(w, T j

f ) = Uh.

Hence, there exists M 〈k−h+1〉 ∈ Mmin,〈k−h+1〉 from which there exists a firable

sequence consistent with x
〈k−h+1〉
ob · · ·x〈k〉ob which contains some fault in T j

f . There

exists also M
′〈k−h+1〉 ∈ Mmin,〈k−h+1〉 from which there exists a firable sequence

which is consistent with x
〈k−h+1〉
ob · · ·x〈k〉ob , and which does not contain any fault in

T j
f . As a result, there exists a firable sequence that is consistent with xob from

M init, and which contains some fault in T j
f . However, we can not conclude on the

existence of a sequence consistent with xob from M init, which does not include a
fault transition of T j

f . Hence, ∆(w, T j
f ) = U .

�

We can now make the following connections with four levels of diagnosis which express
an increasing level of alarm from 0 to 3 described in [17] and mainly based on the notions
of justification defined in section 2.2.

• ∆(w, T j
f ) ∈ {0, 1} if all justifications consistent with xob from M init do not contain

a fault transition. Level 0 expresses the absence of faults in a minimal or non
minimal sequence consistent with xob, which corresponds to status N . Level 1
expresses the absence of faults in minimal sequences consistent with xob and the
presence of fault in a non-minimal sequence consistent with xob, which corresponds
to status U . Therefore, this diagnostic state is equivalent to ∆(w, T j

f ) = {N,U}
defined in proposition 4.6.

• ∆(w, T j
f ) = 2 if there is a pair of justifications where an element of the pair contains

a fault transition, whereas the other one does not, which corresponds to status U .

• ∆(w, T j
f ) = 3 if all justifications contain a fault transition. This diagnostic state

is equivalent to ∆(w, T j
f ) = F defined in proposition 4.6.

Based on the diagnosis approach defined in [17], it is possible to distinguish between
diagnosis states 0 and 1 based on an ILP problem defined as a function of basis marking
Mmin,〈|w|+1〉. This distinction is possible by the present sliding window approach only
for the two particular cases h = 1 and h = |w|.

The proposed diagnosis can be seen as an additional module that completes the initial
approach of estimation [17] which alternates the computation of the basis markings and
the minimal explanation vectors. The two procedures are synchronized by the end of the
computation of the set of basis markings. Hence, in practice and for the sake of efficiency,
the operations can be distributed in two units which work in parallel. The additional
module presents some numerical advantages with respect to the diagnosis of the standard
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approach in [17]. In fact, the computation of sets Mmin,〈i〉 and Emin(M 〈i〉, x
〈i〉
obs) for

i ∈ {k − h + 2, . . . , k} is not necessary for the diagnosis relevant to a given step k and

the corresponding window [x
〈i〉
ob ]kk−h+1 even if these sets are necessary at the following

steps.

5. DISCUSSION

In this section, we present a comparison between the diagnostic approach proposed in
this article with the approach in [17] based on the computation of basis markings and
also with the algebraic approach proposed in [7] based on the resolution of ILP problems
on a receding horizon.

In [7], a diagnosis approach of partially observed LPN was based on the estimation
of a receding horizon, which corresponds to the sliding horizon observer described in
this paper for the particular case where h = |w|, i. e. by considering all the observations
in the same window (in this case N = Nh, U = Uh and F = Fh). For fault detection
based on an observed word w from M init, two ILP problems are defined with each
|w|.|Tun| variables. However, one limitation of this technique is that the horizon cannot
be increased exhaustively, as the resolution of an ILP problem is exponential in the worst
case. Therefore, diagnosis on a sliding horizon which replaces the receding horizon allows
for avoiding the problem of increasing matrices especially for large networks, using a
limited number of observations in each estimation step. In fact, the modification of the
fault indicators related to the optimization problems based on estimation on a receding
horizon makes it possible to use the partial measurements of the state to update the
fault indicators. Partial diagnostic states over a sliding horizon are then provided, which
makes it possible to interpret the diagnosis state for the observed word w from M init.
Fault detection is then based on the resolution of 2 ∗ (|w| − h + 1) ILP problems of
h.|Tun| variables each with h ≤ |w|. This reduces the complexity of the system in the
worst case, and allows a reduction in the length of the observation window. However,
the decrease in the value of h leads to an increase in the number of calculation windows
and consequently leads to the calculation of start markings (normally, basis markings)
for each additional window. Nevertheless, it’s will known that the computation of basis
markings suffers from some drawbacks.

The diagnostic approach proposed in [17], based on basis marking estimation, can be
considered as a diagnosis approach on a sliding horizon for the particular case h = 1 (by
considering a single observation at each estimation step). In section 3.3, we have shown
that unfruitful basis markings would lead to inconsistent sequences. It is worth noting
that the inconsistency of a marking can appear not only at the next estimation step as
for the PN of Figure 1 but also after many estimation steps (if we consider one observed
transition for each estimation step as in [17]): If M(p5) = 100, then 101 firings of y2 are
necessary, and so are 101 estimation steps. To reduce the presence of these unfruitful
basis markings, we consider a set of data taken together and not separated at each step.
In other words, the checking of the basis markings with a consistency analysis is made

not on an elementary window based on a unique observation x
〈k〉
ob (as in [17]) but on a

window of observations in order to anticipate the future behavior of the process, from
its current state, over a finite sliding horizon.



494 A. CHOUCHANE AND P. DECLERCK

In fact, the previous drawback is not the only one. Indeed, the approach using the
basis markings suffers also from a state explosion problem already for very small PNs
(see Table 6 associated with the LPN of Figure 2 for M0 = [80 80 0 0 0 0 0]T ). In this
paper, the proposed technique is based on a diagnostic module which uses a set of basis
markings but does not need the last computed sets.

To conclude, the diagnostic approach developed in this paper makes the best possible
trade off between the approaches suggested in [7] and [17] by choosing the appropriate
value of h. Moreover, the proposed approach is adaptive as the CPU time of the ad-
ditional module depends on the horizon length which can be adapted to the available
time. However, an increase in the speed of diagnosis on the sliding window may come
at the expense of a decrease in the accuracy of the results (uncertain verdicts).

6. EXAMPLE 3

We consider the LPN of Figure 2 proposed in [19] which models a part of a large
manufacturing system. Let Tob = {y1, y2, y3, y4, y5, y6} , E = {a, b, c, d, e, f}, Tun =
{x7, x8, x9, x10} and one single fault class Tf = {x9, x10} . The observable transitions
are labeled as follows:  L(y1) = a,  L(y2) = b,  L(y3) = c,  L(y4) = d,  L(y5) = e,  L(y6) = f .

Let us consider an observed word w = abeeedac associated with firing sequence xob =

x1x2x5x5x5x4x1x3 from initial marking M init =
(

20 20 0 0 0 0 0 0
)T
. Ta-

ble 1 represents the different diagnosis results exploiting the sliding window of length
h = 3, h = 4 and h = 5. We denote by ∆1 and ∆2 the diagnosis status of fault tran-
sitions x9 and x10, respectively. The calculations are performed on an Intel PC with a
clock of 1.80 Ghz as in [19]. The ILP problems use the glpk function of the software
GNU module Octave which is mostly compatible with Matlab and close to Scilab.

The detection of fault x9 occurs at the same step 5 for h = 3, 4 and 5. At step 5

with h = 3, starting from the three basis markings
(

17 17 0 1 1 1 0 0
)T
,(

17 17 1 1 0 1 0 0
)T

and
(

17 17 1 0 1 1 0 0
)T

computed at step
3, the firing of x9 is necessary for the observations y5y5y5. Therefore, we determine the
window of observations where the fault has occurred. The firing date is possible be-
tween the firing of y2 and the last firing of y5 as the occurrences of observable events
are assumed to be non-simultaneous.

The next steps show the ”forgetfulness” of past faults. Particularly, the status is Nh

for x9 at step 8 with h = 3. Starting from the basis marking that is unique here, and

equal to
(

19 19 0 0 0 1 0 0
)T

the firing of x9 cannot occur for observations
y4y1y3. As a consequence, a new occurrence of fault x9 can be detected and can be
distinguished from the first occurrence.

The computation at step k must be repeated for all basis markings of setMmin,〈k−h+1〉

computed at step k − h. If k = 7, the technique depends on the basis markings of
Mmin,<5> computed at step 4 for h = 3 with |Mmin,<5>| = 6. The computation at
step k does not depend on setsMmin,〈k−h+2〉>,Mmin,〈k−h+3〉>, . . . ,Mmin,〈k〉 (in the ex-
ample, not Mmin,<6>,Mmin,<7> ) and on their computations. Based on an increasing
horizon technique [7], as well as the classical approach based on the basis markings [17],
we obtain the same result for fault x9 (∆1 = F ), whereas the diagnosis state for x10 is
∆2 = N which is a more accurate result than ours (U).
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Step h=3 h=4 h=5
k Observations - (∆1,∆2) - time(s) Observations - (∆1,∆2) - time (s) Observations - (∆1,∆2) - time (s)
1 - - -
2 - - -
3 y1y2y5 − (Uh, Uh)− 0.0560 - -
4 y2y5y5 − (Uh, Uh)− 0.0948 y1y2y5y5 − (Uh, Uh)− 0.0580 -
5 y5y5y5 − (Fh, Nh)− 0.0906 y2y5y5y5 − (Fh, Nh)− 0.0958 y1y2y5y5y5 − (Fh, Nh)− 0.0500
6 y5y5y4 − (Uh, Nh)− 0.2516 y5y5y5y4 − (Fh, Nh)− 0.1156 y2y5y5y5y4 − (Fh, Nh)− 0.0888
7 y5y4y1 − (Uh, Nh)− 0.1039 y5y5y4y1 − (Uh, Nh)− 0.2536 y5y5y5y4y1 − (Fh, Nh)− 0.0916
8 y4y1y3 − (Nh, Nh)− 0.0683 y5y4y1y3 − (Uh, Nh)− 0.0959 y5y5y4y1y3 − (Uh, Nh)− 0.2156

Results xob − (F,U)− 0.6652 xob − (F,U)− 0.6188 xob − (F,N/U)− 0.4460

Tab. 1. Example 3: Diagnostic approach based on sliding horizon for

M init = (20 20 0 0 0 0 0 0)T .

To evaluate the effectiveness of the proposed fault diagnosis approach based on the
sliding window with respect to the discrete approach in [17], we reconsider the above ex-

ample for the initial marking M init =
(

80 80 0 0 0 0 0 0
)T

for observed se-
quences Y 5 = y1y1y1y1y2y2y2y2y5y5y5y5y5y5y5y5y5y5y5y5, Y 6 = y1y1y1y1y2y2y2y2y5y5

y5y5y5y5y5y5y5y5y5y5y4y4y4y4 and Y 7 = y1y1y1y1y2y2y2y2y5y5y5y5y5y5y5y5y5y5y5y5y4

y4y4y4y1y1y1y1, for which there exists an explosion of the basis marking number. Table
6 shows the effectiveness of the proposed approach compared to the discrete approach
in [17] in terms of computation time. We also note that for h = 20, we obtain a lower
computation time and also better precision than that for h = 12 and h = 16 (”U”
becomes ”U/N” for x10) for all the considered observed sequences Y 5, Y 6 and Y 7.

Observed Sliding window Basis marking
sequence approach

xob h = 12 h = 16 h = 20
(∆1,∆2) - time(s) (∆1,∆2) - time(s) (∆1,∆2) - time(s) (∆1,∆2) - time(s)

Y 5 (F,U) − 4 (F,U) − 3 (F,U/N) − 2 (F,N)-365
Y 6 (F,U) − 30 (F,U) − 5 (F,U/N) − 3 (F,N)-593
Y 7 (F,U) − 333 (F,U) − 36 (F,U/N) − 5 (F,N)-1332

Tab. 2. Numerical comparison.

7. CONCLUSION

In this paper, we have presented an algebraic approach for fault class diagnosis in an
LPN system. The proposed approach has been based on the state estimation on a sliding
window of length h and the fault detection has been performed by the ILP problem
resolution. For an observed word w, a set of |w| − h + 1 observation windows have
been defined such that each window would include exactly h observed transitions. For
each observation window i, a polyedron of form Ai.xi ≤ bi has been defined, where Ai

depends on a sub-structure of the LPN. On the other hand, the data vector bi depends
on the starting markings of the considered window i which is a set of basis markings
computed at step i by the classical approach developed in [17]. We have considered
the extreme values of h. For h = 1, the present approach is equivalent to the discrete
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approach [17] for which we have to compute all the basis markings associated respectively
with each observed transition of w. If we consider the extreme case h = |w|, then fault
detection is based on a single observation window that includes all the transitions of
the observation. In this case, our approach is equivalent to the diagnosis on a receding
horizon, as discussed in [7]. The drawback of the last mentioned approach is that the
system Ai.xi ≤ bi becomes wide and its resolution complex when w is long since the
resolution of an ILP problem is exponential (w.r.t. the number of system variables) in
the worst case. If we reduce the value of h, we decrease the size of the sub-systems to
be solved, but in return we increase the number of starting basis markings that we must
calculate, which may lead to a combinatorial explosion.

The numerical tests show that the information flows can be compatible as the tech-
nique is numerically efficient. It is worth noting that the choice of the horizon length
which is connected to the accuracy of the diagnosis is not fixed and can be adapted to
the used available computation facilities.

A perspective is to avoid the time-costly computations of minimal explanation vectors
and basis markings. For this, we will show in some future work that the modeling of
time allows considering the sequences directly. An other advantage is to process the
LPNs with cyclic unobservable subnet.

(Received November 27, 2021)
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