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Abstract. The fault detection in large scale physical system is more
and more necessary for technical and economical reasons . Indeed , its
aim is the improvement of the reliability and of the availabibity of the
system .

The basic principle of fault detection is the comparison of the actual
behaviour of the system with the reference one describing the normal
operation . Some approaches have been developed which commonly use the
linear state and measurement equations representation . However , such a
representation is not often available for large scale complex industrial
systems . Those systems are characterized by the great number of
variables which are necessary for their description , and by the great
variety of the types of relationships which link these variables
qualitative or gquantitative , statical or dynamical , linear or non
linear. The paper presents an approach based on structural analysis in
order to exhibit coherence models for fault detection of large scale
systems . The initial knowledge upon the normal operation of the system
is given by its representation under the form of a network of elementary
activities .This network defines the structure of the system under the
form of a digraph linking each activity to the physical variables which
are constrained by it . We propose an embedding procedure in order to
identify the under , just and over determined components of the
structural digraph . The overdetermined component represents that part
of the overall system in which the fault detection and isolation
procedure can be introduced .

Keywords. Structural analysis ; structural solvability ; fault
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processing a subset of variables . Among
the set of all the variables , only some of
them are known ( computed by elementary
activities ) or measured ( a sensor
performs also an elementary activity ) .
The general framework is to use such a
representation in order to identify
possible ARR for fault detection , based on
the overdetermination , within the system
of one or more variables ( Staroswiecki
,1989b ). The ARR are the result of a
systematic approach which can be decomposed
into two steps :

* Qualitative step . The structural
analysis of the process gives subsets of
non independant known or measured variables

It gives also subsets of elementary ( or
process functions ) which link these
variables Each of those subsets will give
rise to one or more ARR

* Quantitative step . This step consists in
the computation of the ARR corresponding to
each of the previously mentionned subsets

The present work is concerned whith the
qualitative step It is based on the model
presented in ( Staroswiecki ,198%a ) and
uses the embedding procedure in order to
exhibit the three canonical components of
the structure of the complex system under
investigation , namely the structural under
, over and just sclvable sub-systems .

The first part presents the structural
representation of a complex system and
defines its sub-systems characterisation

In the second part , the embedding
procedure is applied for the structural

analysis of the system . The graph theory
is used for the identification of the
canonical components via a coupling
approach . The third part discusses the
application of structural analysis to the
design of FDI procedures .

STRUCTURAL REPRESENTATION OF COMPLEX MODEL

Structural Model

The large scale system under consideration
is represented by a network of elementary
activities . These activities represent :
* physical constraints : their model is
derived from mass or energy balance
considerations

* control constraints : their model is
given by the control algorithms which are
implemented or by the human operators who
act on the system

# measurement constraints : their model is
given by the knowledge of the sensors which
are implemented on the system

To each of the elementary activities
corresponds a set of constraints possibly
of different kinds which constitute the
model of the activity . The overall systenm
is thus represented by a set of m
constraints
F={1%f1,

£ ; wew o I )

which are applied to a set of n variables

Y={({¥Y1 9, Y2 ¢+ o+« + ¥Yn }

We write :
By =0 (1)

We point out that no hypothesis is made
about the properties of completeness of
the model ( Staroswiecki , 198%a ) , so
that m and n can take any values . Moreover
, no use is made of the exact nature of the
constraints £i , and of the values of the
parameters which could intervene : we only
consider the structure of the system of
equations ( 1 ) The following binary
relation defines it :

St FxX Y e S ) o)
( £5 , ¥5 ) - > s (f ,¥;)
such that S ( £ , ¥y ) =1 iff the

constraint fi applies to the variable Y4

A digraph Bog =G ( F , ¥ ; RAg )
associated to the function 8 is defined by:
( £i , %3 ) € A <=> 5 (f5 , x%x3) =1

The following notations are introduced

Vg =Fug¥

(YveVg)en (V,By)={aehay]| (3
weVg ) a= (v, w)}

(Yaehy)puy (a , By ) ={vevg | (3
wevVg ) a= (v, w)}

An extensiocon is :
Vi c Vg ) pa (V'
) and v € V')

A’ c Bp ) ey (A , Bg) ={Vv]|Vv=ypy
) and a € A’ )

1

» Bp ) ={a|a=u

—_~ e~ ~
o << g =T

Iet ( C , X } be a bi-partition of the set
Y . ( in application , C will be the subset
of known variables and X the subset of the
unknown ones ) .

A restriction of By is defined by By = G (
Fy , X i Ay )

with Ay = { a | a e Bg and Py ( a ) =/=9 }
Fxy ={ £ | feFand ( 3aeldgy) (Pp

(a)=(£f) }

Definitions

s/



A subsystem over By is said compatible iff
at least one solution X exists .A
compatible subsystem having a unique
solution is said to be determined (
underdetermined if more than one solution).
Let us consider a determined subsystem . It
is said to be overdetermined iff at least
two differents means to determine the
solution exists . At the opposite , the
subsystem is said to be just determined .

CANONICAL REPRESENTATION

The over , under , and just determined
subsystems are now structurally
characterized . Their properties lead to
algorithms for the decomposition of the
overall system into three parts .

canonical Representation of a Digraph

The following definitions are extracted
principally from ( Dulmage, 1958 ; Gondran ,
1979 ).

pefinition 1

Let Vy =Fx u X and E c Vy
The projection over E is a function Pg
defined by :

Pg ¢ Bl Ay ) w2 Vy

@ —-> Pp (@) =
U(py (2a)n E)
aef@

pefinition 2

P=¢c(vg: @) is a disjoint subgraph of
By 1£f

1) @ c Ay

2) Ppx ( Px ) is an injective application
of @ in Fy ( in X )

Definition 3

A maximal disjoint subgraph ( MDS ) of By
is defined by el = ¢ ¢ Vy : @ ) such that :
ve*ce, e*=/=e G (Vx: @ ) is not
disjoint .

The set of the maximal disjoint subgraphs
of By will be noted E ( By ) -

Definition 4

A disjoint subgraph el =6 (vy i @) of By
is complete iff PypX and Py are surjective .

Definition 5

A pair of sets (o ,8 ) is an exterior
cover of B =G { Fx’ , X' : A ) with Fy’ ©
Fx and X’ ¢ X 1ff

Let + ( B ) be the set of the exterior
covers of B . The number |o |+ | 8] is
called the dimension of the covering and B
is said to be of finite exterior dimension
if there is a covering ( « , g ) such that
|e|+] 8| is finite

The exterior dimension ( ED ) is defined as

dim ( B) =min (|a|=+]81])
(a,8) ey (B

An exterior cover ( «,8 ) which achieves
the minimal dim ( B ) is called a minimal
exterior cover ( MEC ) .

Definition 6

A subgraph B of Bx is said to be semi-
irreducible iff B has a unique MEC ( a , &
) or (@, £)

THEOREM 1 ( Dulmage , 1958 )

For any digraph By of finite ED , there
exist uniquely determined minimal covers (
wx , A5 ) (o , px ) such that if (a , §)
is any other minimal cover then :

1) ax is a proper subset of a OY ax = @

2) o is a proper subset of ™

3) B« is a proper subset of g or fx
4) p is a proper subset of ﬁ*

The pair ( ez , ﬁ* ) and ( e , Bx ) are
named extreme minimal covers ( EMEC ) .

B

Fig. 1 A bigraph Gbé E ( Bg)

THEOREM 2 ( Dulmage , 1958 )

If ( ax . 3* y and ( a* , B ) are the EMEC
of digraph By , the three canonical
components are defined as

B> =G (a , Bx i Bx )

BS = G ( ax ,E*;A){()

B= =G ( a*\ ax , B*\Bx i AY )
with _

AX>=AXF\(Q*.£*)

Ax< = Ay n ( ax B* )

Ay~ = Ay 0 ( af\ax + A7\Bx )
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They are characterized by :

1) (@ , f% ) and ( ex , ¥ ) are
respectively the unique MEC of B> and BY (
B” and B are semi-irreducible )

( a*\a* , @) and ( @ , ﬁ*\ﬁ* ) are MEC of
B=

2) If We E ( By ) then

@(W’) = @(W) n (e . Bx ) € E ( B )

@(WS) = @(W) N (ex . B° ) € E ( BS

@(WT) = @(W) n (o™ \ax . B*\Bx ) €
and W=Ww o WSowW

The sum of graphs © is defined by
respectively the sum of vertices and arcs
of the different graphs

[ e (w ) | =]ps|
e (v | =] ax | .
| @ (W ) | = let\ex | =] 87\Bx |

and only the subgraph W~ is complete .

ok *

3) (e - f5) U (a . fx) =2
X
ﬁ*
Ex
B
ﬂ‘k
ke
Fig. 2 Canonical decomposition .

The following theorem leads to an algorithm
for the decomposition of Fy ( resp. X ) in
Qx4 cz*\a* I_a* ( resp fx , ﬁ*\ﬁ* [ _ﬂ-* )

It is based on the construction of alterned
chains .

Definition 7

letW=G (Fx , X; @ (W) )eE (Bg) .
An alterned chain L = G ( Fr, , X, i A, ) on
w is defined by :

1) Fr,v X1, = ug ( A, ) ¢ F, c Fy ; X1, c X;
Ay, € Ay

2) The n arcs of Aj, are renamed upon the
form aj
such that

(v i=1..n) ( aj € A, )

aj e @ (W) , aj4+17 € @ (W)
<=> Ppy( aj )} = Ppx( @it )

a; ¢ @ (W) , aj4q7 € @ (W)
<=> Py (aj ) = Px ( aj+1 )

| 4__

2

F iz
——
i

Fig. 3 An alterned chain.

The following sets are associated to W :
I (W) =Fx\NPpx (€ (W))
J(W)=X NPx (@ (W))
The elements of I ( W) (J ( W) ) belong
to Fy ( X ) and are not the extremity of
any arc of @ ( W ) We introduce the
following theorem :

THEOREM 3

For any element belonging to a* U Bx
there exists an alterned chain such that:

1) e € py (ap , By )
2) Pp (a1 ) eI (W)
and conversely .

For any element belonging to ax U.E} "
there exists an alterned chain such that

1) e e py (a3 , By )

2) Py (ap ) e J (W)
and conversely .

The proof is given in ( Declerck,1991).

The Embedding Procedure

Let us define the extended graphs B* and w'
which include initial structures By and W :

wt=c (F", xt ;e (w))

B" =6 (F", x* ; at)

Ft* = Fu P,

Fp = { fi4+ | %3 €T (W) )

xF=xux,

Xp = ( Xj4 | f1 €I (W) )

@ (wh)y=@ (W) uvs u Ve

Vs = { ((£fi ., x%i4) | £ €I (W) xj4 € Xy)
Ve = ( fi4 , %{) | %4 €T (W) £44 € Fy)
At = ay UV, U Ve

This superstructure is distinguished by the
introduction of the variables xj; of X, and

relations fij; of F; whose roles are

precised



- F4 : for every variable of J ( W) , a
function fi4 which constitutes a new
constraint , has been introduced . In order
to achieve the equivalence of the models
represented by By and Bt , each fi; is
given by the following form :

fi4 = x3 = Ij with xj e J (W)

Ij €] ==, 4= [
The introduced variable is unknown (a).
- X4 : for every function of I ( W) , a
variable xj; which constitutes a new degree
of freedom , has been introduced In order
to achieve the equivalence of the models
represented by By and Bt , each function of
I (w) is given by the following form :
£; : £ (C, X ) + xj4 =0 with xj4 =0
The intrecduced variable xj4 is known (b)

Property 1

The graph W' is a complete disjoint
subgraph of Bt
The proof , quite simple , is omitted .

Note that the algebraic information (a) and
(b) are not contained in the graph Bt so
that the disjoint subgraph W' is complete .

The graph G = G (V;A) is associated to BY.

1) V=g
2) A= { ,aj ) such that
ane@ (W) ,ajee (W) 3a3e ah\
@ ( W' ) such that Pp+ ( ap ) = Pp+ ( aj )
and Py+ ( aj ) = Pyt ( ajy ) 3

(wh
( an
)

g gt (H10+x10}
G,/ Mxi+x > S

(f5,x2
[(f8.x3+) |

(75%4)  (2xa+) |

_'__v_,m____,,,,..,,-,‘___.""! G ."'\\_‘_“ . ._,_"!
Fig. 4 ThegraphG=G(V;A).

Notation. For two vertices u and v , v is

=aid to be reachable from u on G , which is
denoted as " u ——=> v " , iff there exists

a directed path from u to v on G .

Property 2

(vuevVs ) (f§ veV) such that v --—> u
(Vvue Ve ) (ﬂ/ v € V ) such that u =-=--> v

Proof
If u = aj = ( £5 , Xj+ ) € Vs , as pp (
xj+ ) = { a3} (7 aj € At ) with aj =/= aj
and Py+ (aj ) = Px+ (aj ) . Then Z (
ap , aj ) € A : the path ( u , aj Yo aj .
ax ) ... ( ap , v ) does not exist . The
proof is symmetrical for the second part

THEOREM 4

(Y ueVs uVe) (/{vev>uv<)such
that u -==> v or v -—-=-> u

The proof is given in ( Declerck,1991).

Equivalence

Let the graphs ¢ =6 (V> ; 2~ ) , e =¢

(VS ;A% ) and G- =G ( V- ; A~ ) be
defined by :
VV=(v|(veV) (3uevVs ) u-—->v}
VS=(v ]| (veV) (uevVe) v -—->u)}
V= =W v w R )
then Vv = V> u vS u v™
A ={alp (a,c) cv )
A% = { a wr (a , G ) v< }
AT=({alw(a,c) cv
THEOREM 5

The subgraphs B” , BS , B~ of By and the
subgraphs G~ , G° , G- of G are
respectively bound by the following
correspondances

B> and G~ : o

and ¢ : %

)
- L ey ® )
B™ and G~ : % Q ax = Pka v

8

The proof is given in ( Declerck,1991).

APPLICATION

The canonical decomposition of the digraph
Bx which represents the structure of the
system of equations Fy(X) = 0, gives the
following subsystems.

The subproblems corresponding to the semi
irreducible composents B et B, if they
exist, are not generally solvable. The
problem corresponding to B is structurally
underdetermined , i.e. has more unknowns
than equations, and that corresponding to
B” is structurally overdetermined, i.e.,
has fewer unknowns than equations.

However, the system (1) describes a
physical process. For that reason, Y exists
and also X : the system is compatible.The

subsystem corresponding to B is



underdetermined whereas the_subsysten B~
and BT are determined. As B~ has fewer
unknowns than equations,B> gives at least
two subsystems which permit the
determination of X. In the case of the
model (without noise) the two determination
must give the same result. In reality, due
to measurement noises and modelization
errors, a vector of residuals exists.It
will be tested by the fault detection
procedure. Thus , B” is the structural
representation of the part of the system in
which the fault detection and isolation
procedure can be introduced.

CONCLUSION

The design of model based FDI procedures
for complex industrial plants supposes the
handling of large scale models. These
plants are often constituted by the
interconnexion of a great number of
elementary activities, each of them being
represented by an elementary model, more or
less precesely known.Structural analysis
gives a means tc identify those parts of
the overall system whose instrumentation
gives enough information for fault
detection and isolation. The problem is
that of the decomposition of a digraph into
its three canonical composents, namely the
under, just and overdetermined subsystems.
Starting with the initial digraph, we use
an embedding procedure in order to
construct an overgraph on which some simple
manipulations lead to the canonical
decomposition. The overdetermined subsystem
represents the structure of the part of the
overall system which can be monitored via
the FDI procedure.
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APPENDICE
EXAMPLE

F= (f1,f2,f3,f4,f5,f6,f7,fg8,f9,f10,f11,%22)
¢ ={ cy,¢2,03,¢4 }
X = { X1,%X2,%3,%4/X5,X6,%X7,%X8,%9,X10 }
f1( €1,Ca,%X1,%3 ) =
fa( cga,%1,%2,%3 ) =0
3 (c3 , ¢4 ;% ) =0
fa ( X1,%3 ) =0
f5 ( ®3,%2 ) =0
fe ( €4 + X1,%3 ) =0
£f7 ( X2,%4 ) =20
fg ( ©3,%5,X%s ) =0
£f7 ( %X2,%4 ) =0
fg ( c3,%¥5,%g ) = 0

fg ( %3,%X5,%g ) =0
fi10 ( X3,%5,%7,Xg,%10 ) = 0

f11 ( ©1,C3,%6,Xg,¥g ) = 0
f12 ( C1,C4 ) =0

Ey = F\ { f12 } ( f12 is a RRA )

The bigraph By is presented in Fig. 1 . The
arc of the disjoint subgraph W are :

@ ( W) { (f4,x1},(f5,x2),(f5,X3) ’
(f7.%4) ,(fg,%5),(f9,%6),£10,%7) ,E11.%g) }
I (W) { f1,£2,f3 } ¢+ J( W) = { %g,%x10}
;f = f11f2rf31f4:§§rf6 y p*= {xlfxzrx3}
c%: = 1 £{6.L99 ¥ ﬁ* : { X7,%Xg,%g9,%¥10 )
oN\tx = ( £7,f8,f0 }i B N\Bx = ( %4,%5,%g )
Xy = { Xa4,¥24+%34 }

I

Vo = { (£f1,%X14) ¢ (£2,%24),(£3,%34) }
Fy = { fo+,f10+ )
Ve = { (f9+lx9) P f10+1x10 ) )



