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Abstract—The aim of the paper is the estimation of sequences
in Timed Petri nets. We propose a a general strategy composed of
two phases: The first phase considers the logical aspect only and
suggests candidate count vectors where the second one checks
the existence of a relevant time sequence for a Timed Petri net
and generate a subspace of time sequences for a given candidate
vector.

I. INTRODUCTION

In Petri nets, the state observer aims to give an on-line
picture of the process and to provide an estimation of the
system state based on the observation of a set of events. Ex-
ploiting the observation of events available from the Petri net,
the state observer estimates the events that cannot be directly
detected by an external agent called observer or estimator.
In this paper, the goal is to consider a Timed Petri nets and
to compute the complete set of possible sequences consistent
with the set of the observed events. This topic is crucial as
a natural application of estimation is fault detection. Indeed,
the correct behavior of a real-world application is the ultimate
requirement, particularly for systems such as communication
protocols, manufacturing and real-time systems: A drift from
an expected behavior can produce material and financial costs.
A failure can be of crucial importance as it can even lead to
severe consequences including human losses in extreme cases.

The assumptions of acyclic unobservable induced Petri
net, backward- or forward-conflict-freeness, contact-freeness,...
are current in estimation and approximations of the spaces
are usual. Up to now, the consideration of the time factor
as intervals in a general Petri net containing conflicts and
synchronizations, remains an open problem. In fact, more
the model can express complex time phenomena as in P-
time models, Time Stream models with complex semantics
(AND, OR,...) and any possible generalizations, more the
consideration of complex structure of a Petri net with conflicts
seems difficult. This point of view is based on the two key-
structures which are the Event Graphs and the State Graphs
which are clearly described by the figure 25 in [18] and are
analyzed by two close but different communities. Event Graphs
are based on the synchronizations which operate at given dates
over the real numbers: The consideration of complex time
synchronizations is made for Event Graphs in many papers.

Symmetrically, the resolution of a conflict needs boolean choi-
ces. The logical aspect is an important characteristic for this
model. To summarize, the introduction of the time factor over
the real numbers (Respectively, boolean choices) is difficult for
State Graphs (Respectively, Event Graphs). This opposition is
also present in the used algebraic tools: in Petri nets without
time, the sequences are naturally defined with counter vectors
while a more spontaneous tool is the dater vectors if time is
considered for Event Graphs. A more detailed description can
be seen in Chapter 1 in [8] where Fig. 1.4 gives a synthesis.

Therefore, we can conclude that no approach can solve
directly the general estimation problem for any time model. To
solve this problem, we introduce a general strategy composed
of the following phases.

- The first phase I is to simplify the P-time Petri net and
to take the untimed Petri net [17]. Therefore, we can consider
complex structures and estimate the firing count vectors (or
minimal firing count vectors) (or the complete set of ...)
relevant to the unobservable transitions such that it leads to
the observed events. In fact, only a subset of these vectors
corresponds to real sequences and the obtained firing vector
are named untimed candidate vectors. A candidate vector is
chosen arbitrarily.

- The second phase II is to consider the Timed Petri net
and to determine the sequence relevant to the chosen untimed
candidate vector. In other words, we analyze the schedulability
of this candidate vector by building the relevant schedule, that
is, the counters of the transition firings. We assume that the
dates of the firings of the observable transitions are known.

As the general principle of estimation of the current unob-
servable sequence is to treat separately and successively the
firing of a unique observable transition, this procedure does
not always start from the initial marking and the first dates of
transition firings but restarts from the last estimated marking
and firing dates which is used as a new initial condition.
Therefore, the technique is not based on a sliding horizon: a
shorter time horizon is considered and the calculations for each
count vector are reduced as they exploit the past computing.

In this paper, no assumption is made on the cyclicity of the
unobservable induced subnet. The occurrences of observable
events are assumed to be non-simultaneous contrary to the
firing of unobservable transitions which can be simultaneous.
The incidence matrices and the initial marking are assumed
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to be known. We assume the feasibility of the system and
the presence of observations during the application of the
estimation procedure.

The paper is organized as follows. We first present a brief
reminder of the basics of untimed Petri nets. The following
section covers the procedure of the sequence estimation in the
untimed case. Then, we describe the Timed Petri nets and make
a schedulability analysis of the untimed sequences. Finally, we
shortly discuss the schedulability analysis of P-time Petri nets.
A pedagogical example containing a self-loop and a circuit
illustrates the approach.

II. PRELIMINARY REMARKS

The notation |Z| is the cardinality of set Z and the
notation AT corresponds to the transpose of matrix A.
A Place/Transition net (P/TR) is the structure N =
(P, TR,W+,W−), where P is a set of |P | places and TR
is a set of |TR| transitions. The matrices W+ and W− are
respectively the |P | × |TR| post and pre-incidence matrices
over N, where each row l ∈ {1, ..., |P |} specifies the weight
of the incoming and outgoing arcs of the place pl ∈ P . The
incidence matrix is W = W+−W−. The preset and postset of
the node z ∈ P

⋃

TR are denoted by •z and z•, respectively.
The marking of the set of places P is a vector M ∈ N

|P | that
assigns to each place of a P/TR net a non-negative integer
number of tokens, represented by black dots. The notation Ω∗

represents the set of firing sequences, noted σ, consisting of
transitions of the set Ω ⊂ TR. Given the sequence σ ∈ TR∗,
we call π : TR∗ → N

|TR| the function that associates with σ a
vector π(σ) ∈ N

|TR|, named the firing vector or count vector
of σ, where π(σ)i is the firing number of transition i which is
fired π(σ)i times in σ. The marking M reached from the initial
marking M init by firing the sequence σ can be calculated by
the fundamental relation: M = M init+W.π(σ). The transition
is enabled at M if M ≥ W−(., t) and may be fired yielding
the marking M ′ = M +W (., t). We write M [σ ≻ to denote
that the sequence of transitions σ is enabled at M , and we
write M [σ ≻ M ′ to denote that the firing of σ yields M ′.

III. PHASE I FOR UNTIMED PETRI NETS

A. Principle of estimation

In a partial observed Petri net, we assume that the set of
transitions TR can be partitioned as TR = TRob

⋃

TRun,
where TRob is the set of observable transitions and TRun

is the set of unobservable transitions. Notation ti expresses
an observable transition belonging to TRob and xi is an
unobservable transition, belonging to TRun.

The problem considered in the paper is as follows. Let
us consider a Petri net where the incidence matrix W and
the initial marking M init are known. Given a sequence of
observed firing events of transitions of TRobs generated by
the activity of the Petri net, we want to find the sequences of
unobservable firing events of transitions of TRun (denoted
σun ∈ TR∗

un ) that are coherent (or consistent) with the
observations.

The general principle of estimation of the current unobserva-
ble sequence is based on the treatment of the data produced by

the observed transitions successively in an on-line procedure.
If there is an observed firing of transition t<i>

ob for a current
marking M<i>, then there are an unobservable sequence
σ<i>
un and a marking M ′ such that M<i>[σ<i>

un ≻ M ′ and
M ′[t<i>

ob ≻. Thus, M ′ is the marking reached from the
marking M<i> by firing the unobservable sequence σ<i>

un and
this marking M ′ allows the observation of the firing of the
observed transition t<i>

ob .

The general technique taken in this paper is to estimate the
firing count vectors associated to the unobservable transitions
that are coherent with the firing of the observed transition.
The count vector associated with the set TRun of unobser-
vable transitions is denoted xun. When they correspond to a
sequence that can be followed by the Petri net, these count
vectors are named explanation vectors.

Definition 1: Let σ<i>
un be a sequence of unobservable

transitions that permits the firing of the observed transition
t<i>
ob , from a given marking M . An explanation vector of

this sequence is the relevant count vector π(σ<i>
un ). The sets

of all possible sequences and explanation vectors are denoted
SEQ(M, t<i>

ob ) and E(M, t<i>
ob ), respectively. Formally:

SEQ(M, t<i>
ob ) = {σ<i>

un |σ<i>
un ∈ TR∗

un such that

M [σ<i>
un ≻ M ′ and M ′[t<i>

ob ≻}

E(M, t<i>
ob ) = {π(σ<i>

un )|σ<i>
un ∈ SEQ(M, t<i>

ob )}.

Moreover, the next marking M<i+1> used in step < i+1 >
is obtained from the firing of t<i>

ob at marking M ′. Hence,

M ′[t<i>
ob ≻ M<i+1>.

Definition 2: Denoted M<i+1> , the set of current possible
markings at iteration < i + 1 > is determined by the consi-
deration of all the firing sequences σ<i>

un ∈SEQ(M, tob) for
any marking M obtained at iteration < i− 1 > . After noting
that M<1> = {M init} where M init is the initial marking,
the notations SEQ(M, t<i>

ob ) and E(M, t<i>
ob ) are extended

to SEQ(M<i>, t<i>
ob ) and E(M<i>, t<i>

ob ).

B. Polyhedron of the candidate vectors

In this section, we present a linear algebraic approach that
is based on the fundamental equation of marking and the con-
ditions of firing transitions in a Petri net. The TRun−induced
subnet of the Petri net N is defined as the new net Nun =
(P, TRun,W

+
un,W

−
un), where W+

un (respectively, W−
un) is the

restriction of W+ (respectively, W−) to P×TRun. Therefore,
Wun = W+

un − W−
un. For simplicity, the index < i > is

removed in the following parts as we focus on one iteration
of the estimation procedure. For each unobservable transition,
the relevant count is denoted with the same notation xi with
i ∈ {1, . . . , |TRun|}; i.e., the count number of unobservable
transition xi is (xun)i = xi.

The algebraic formulation of a possible explanation vector
is made using the above reasoning for a given marking M ∈
M<i> and the observation tob. As M [σun ≻ M ′, the marking
M ′ satisfies the following equation:

M ′ = M +Wun · xun (1)
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where xun = π(σun) is a count vector associated with σun

and Wun is the incidence matrix of unobservable transitions.
In addition, the transition tob is enabled for M ′. As M ′[tob ≻,
we can write the inequality:

M ′ ≥ W−
obs(., tob) (2)

By replacing M ′ by its expression (1), we obtain:

−Wun.xun ≤ M −W−
obs(., tob) (3)

Futhermore, we must have the constraint of non-negativity
xun ≥ 0. Finally, the vector xun must verify the following
matrix inequality:

A.xun ≤ b (4)

where A =

(

−Wun

−In×n

)

and b =

(

M −W−
obs(., tob)

0n×1

)

.

A is a matrix of an m × n dimension with n = |TRun|
and m = |P | + n . The number of rows m can be re-
duced if we remove the null rows corresponding to places
not connected to an unobservable transition or describing a
self-loop. The relevant solution is denoted Sad

un(M, tob) =
{xun ∈ R

n|A.xun ≤ b} (ad=admissible solutions). We denote
Snat
un (M, tob) = Sad

un(M, tob) ∩N
n (nat=natural numbers)

Accordingly, the obtained algebraic model always includes
the set of explanation vectors E(M, tob) for an iteration < i >.
Conversely, this inclusion can possibly be strict as the firing
conditions of the unobservable transitions are neglected in this
part. As a result, we have:

Sad
un(M, tob) ⊃ Snat

un (M, tob) ⊃ E(M, tob) (5)

which defines the context of this paper. As the solutions of
Sad
un(M, tob) and Snat

un (M, tob) are possible explanation vec-
tors, they are named candidate solutions or candidate vectors
over R or N.

If each transition in the labeled net is associated with a
nonnegative cost which captures its likelihood (e.g., in terms
of the amount of workload or power required to execute the
transition), we can minimize the cost of the count vector c.xun

where c is the cost associate with transition i.

min c.xun such that A.xun ≤ b

The obtained result is relevant to a least-cost transition se-
quence if xun ∈ E(M, tob). Otherwise, the same optimisation
must be made with a restriction of the considered space. The
approach is out the scope of the paper.

In the next section, we focus on the consistency of an
arbitrary candidate vector of Snat

un (M, tob) with respect to the
Timed Petri net which introduces time constraints. Precisely,
we desire to know if the Timed Petri net can follow a time
trajectory corresponding to the candidate vector.

IV. PHASE II: SCHEDULABILITY ANALYSIS IN TIMED

PETRI NETS

A. Counter

With language misuse, each transition and its corresponding
variable is denoted with the same letter. Each transition is

associated with the number of events which happen before or
at time t. The numbering is absolute as it starts at the origin of
time zero contrary to relative numbering in the previous part
where the counts are about the new transition firings such that
M [σun ≻ M ′ where M is the last ”initial” marking. Called
a ‘counter’, the number of events which are the firings of the
transition is denoted by x(t). In this paper, time is discrete
(t ∈ Z) and the occurrence of each event is synchronized with
an external clock. Assuming that the events can only occur at
t ≥ 1, we have x(t) = 0 for t ≤ 0. For any t ∈ N

∗, it may
be that no event takes place at t, a single event happens at t,
or several events occur simultaneously at t. Remember that it
leads to non-decreasing sequences. For a given transition, the
arrival of two events at times 3 and 5 implies that the sequence
of numbers of events starting at t = 0 and finishing at t = 7
is 0, 0, 0, 1, 1, 2, 2, 2, that is, x(t = 3) = 1 and x(t = 5) = 2
but also x(t = 4) = 1 and x(t = 7) = 2.

B. Objective 2

Let t<i> be the date of last observed transition firing at
iteration < i > and the candidate vector xun produced by the
phase I. Let xobs(θ) (respectively, xun(θ)) be the subvector
of the state vector x(θ) such that the relevant transitions
belong to the set of observable transitions TRobs (respectively,
unobservable transitions TRun). The objective for each time
t<i> is to check the candidate vector xun estimated at iteration
< i > by analyzing the existence of an estimate sequence
x(θ) for θ ≤ t<i> . If it exists, we can conclude the candidate
vector xun is an explanation vector.

Let us precise the data. If the observable firing events are
known at times t<i−2>, t<i−1> t<i> , we can deduce the count
vector for the observed transition at time t<i−1> knowing
its complete history or past evolution. The same operations
for all the observable transitions lead to the complete vec-
tor xobs(t<i−1>) which is denoted xobs . We also obtain
xobs(θ) = xobs for θ = t<i−1>+1, t<i−1>+2, . . . ,≤ t<i>−1
as there is no new firing. Moreover, xobs(t<i>) = xobs + ∆
(denoted xobs ) where a unique non-null component of ∆ equal
to 1 corresponds to the firing of the observed transition at time
t<i>.

In addition, if we have the absolute count vector deduced
from the past estimations until iteration < i−1 > and denoted
xun , then we have xun(t<i>) = xun + xun (denoted xun)
where xun is the relative estimate which is chosen for iteration
< i >. The unknown vectors are xun(θ) for θ ∈ {t<i−1> +
1, t<i−1> + 2, ..., t<i> − 1, t<i>} = {t<i> − h + 1, t<i> −
h+ 2, ..., t<i> − 1, t<i>} if the time horizon h ∈ N

∗ is equal
to t<i> − t<i−1>.

C. Model

Timed Petri nets allow the modeling of discrete event
systems with sojourn time constraints of the tokens inside the
places. Each place pl ∈ P is associated with a temporization
Tl ∈ N. Its initial marking is the entry l of the vector M0 which
is denoted by (M0)l. A token remains in place pl at least for
time Tl. Assuming that the tokens of the initial marking are
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immediately available at t = 1, the evolution can be described
by the following inequalities expressing relations between the
firing event numbers of transitions. For each place pl, we can
write that the output flow of tokens at time t ∈ N

∗ is lower
than or equal to the addition of the input flow and the initial
marking of pl.

∑

i∈p•

l

xi(t) ≤
∑

i∈•pl

xi(t− Tl) + (M0)l (6)

In this inequality, each weight 1 of xi(t−Tl) (respectively,
1 of xi(t)) corresponds to the weight of an incoming arc going
from input transition xi to place pl (respectively, the outgoing
arc going from place pl to output transition xi) which is equal
to W+

li (respectively, W−
li ).

After applying a classical technique described in [8] , the set
of the previous inequalities can be expressed in the following
way such that the temporization of each place is equal to zero
or one:

G ·

(

x(t− 1)
x(t)

)

≤ M0 (7)

where the lth row of G contains the weights of the incoming
and outgoing arcs of place pl: Roughly speaking, the general
idea in [8] is to split each place pl associated with a tempo-
rization Tl > 1 into Tl places, such that the temporization of
each place is equal to one. Matrix G = [G1 G0] has an order
(|P | × 2.|TR|) and the submatrices G1 and G0 are defined
as follows:

• The row l ∈ {1, 2, ..., |P |} of matrix Gi for i ∈ {0, 1}
contains the unitary weights of the incoming arcs of
place pl with temporization i (Tl = 0 or 1), with negative
sign (usually expressed by the entries of −W+).

• In addition, the row l of matrix G0 contains the unitary
weights of the arc outgoing from place pl, with positive
sign (usually expressed by the entries of W−).

Note that an inequality using ‘dater’ in the space of real
numbers can also be written for Timed Event Graphs [8] and
P-time Event Graphs. This form, which presents symmetry
with (7), does not directly allow the deduction of the marking
M(t) from the fundamental relation of marking, contrary to
the counter form used in this paper.

D. Solution space

The following results are relevant to each couple ( xun, xobs,
xun, xobs ) where (xun, xobs) is the starting point and (xun,
xobs ) the final point. System (7) for time θ ∈ {t<i> − h +
1, t<i>−h+2, ..., t<i>−1, t<i>} can be rewritten as follows:

( G1,un G0,un ) ·

(

xun(θ − 1)
xun(θ)

)

≤

MO − ( G1,obs G0,obs ) ·

(

xobs(θ − 1)
xobs(θ)

) (8)

after an adequate permutation of the columns of ma-
trix G with respect to the observable/unobservable transi-
tions: The columns of ( G1,un G0,un ) (respectively, of

( G1,obs G0,obs )) correspond to the unobservable transiti-
ons (respectively, to the observable transitions).

An equivalent form describing the set of trajectories on
horizon h is as follows:

A1 · xun ≤ C1 −B1 · xobs (9)

with

xun=















xun

xun(t<i> − h + 1)
xun(t<i> − h + 2)
. . .

xun(t<i> − 1)
xun















, xobs=















xobs

xobs

xobs

. . .

xobs

xobs















, A1 =











G1,un G0,un 0 . . . 0 0
0 G1,un G0,un . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . G0,un 0
0 0 0 . . . G1,un G0,un











B1 =











G1,obs G0,obs 0 . . . 0 0
0 G1,obs G0,obs . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . G0,obs 0
0 0 0 . . . G1,obs G0,obs











and

C1 =











M0

M0

. . .

M0

M0











.

The dimension of vector xun is denoted by n = (h +
1).|TRun| while the dimension of vector xobs is (h +
1).|TRobs|. The dimensions of matrices A1, B1, C1 and
column vector b1 = C1−B1 ·xobs are respectively (h.|P | x n),
(h.|P | x (h+1).|TRobs|), (h.|P | x 1) and (h.|P | x 1). In addi-
tion, below we express that the trajectories are non-decreasing,
that is, xun(θ−1) ≤ xun(θ) for θ ∈ {t−h+1, t−h+2, ..., t}
which can easily be rewritten under the form of a polyhedron

A2 · xun ≤ 0h.|TRun|x1 (10)

where the dimension of matrix A2 is (h.|TRun| x n).

As xun and xun are known, we can write the
polyhedron defining the vector x =(xun(t<i> − h +
1)T , xun(t<i> − h + 2)T , . . . , xun(t<i> − 1)T )T and
x =(xun

T ,xT , xun
T )T . transpose ?

A1 =











G1,un G0,un 0 . . . 0 0
0 G1,un G0,un . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . G0,un 0
0 0 0 . . . G1,un G0,un











The partition of A1 is A1 =
(

D1 D2 D3

)

with

D1 =











G1,un

0
. . .

0
0











, D2 =











G0,un 0 . . . 0
G1,un G0,un . . . 0
. . . . . . . . . . . .

0 0 . . . G0,un

0 0 . . . G1,un











and

D3 =











0
0
. . .

0
G0,un











The partition of A2 is A2 =
(

E1 E2 E3

)

with

E1 =











I

0
. . .

0
0











, E2 =











−I 0 . . . 0
I −I . . . 0
. . . . . . . . . . . .

0 0 . . . −I

0 0 . . . I











and E3 =











0
0
. . .

0
−I













5

Finally, we obtain

A · x ≤ N +Q · xobs +R.

(

xun

xun

)

(11)

with A =

(

D2

E2

)

, N =

(

C1

0

)

, Q = −

(

B1

0

)

and

R = −

(

D1 D3

E1 E3

)

.

As the trajectory starts from xun ≥ 0, the vector x is non-
negative and the addition of a relevant condition in the system
is not necessary. Finally, we obtain a simple polyhedron

A · x ≤ b (12)

with b = N +Q · xobs +R.

(

xun

xun

)

.

It is important to note that the polyhedron (12) completely
describes the problem without giving an approximation of the
counter vectors contrary to (4) which is an over-space.

E. Checking of the existence

The consistency of system (12) can be checked by integer
linear programming. We can make an arbitrary optimization:

min c.xun with c > 0 such that A · xun ≤ b over Z (13)

If the space is non empty, the minimization of c.xun with
c > 0 converges to a finite optimal solution as the space is
lower-bounded by zero otherwise an error message is given
by the software. Therefore, we can conclude that this sequence
satisfies the untime Petri net.

Remark. Applying a fixed point approach is tentameous but
this technique can only be used if we consider unobservable
induced Petri nets which are Backward Conflict Free (BCF),
i.e., any two distinct unobservable transitions have no common
output place.

Remark. The approach is based on known observable dates
of firings produced by a processus. To make a theoretical
analysis, it can also be extended to the simulation of an untime
Petri net where an arbitrary timed Petri net is associated with:
Each temporization is taken unitary and the horizon h is taken
sufficiently large such that the time evolution is not limited
between two observed events.

V. EXAMPLE 1

Let us consider the Petri net of figure 1 which contains
a self-loop and a circuit. The temporization of each place is
unitary and we have TRun = {x1, x2} and TRobs = {y1} .

The incidence matrices relevant to TRun and TRobs and
the starting marking are as follows:

Wun =





+1 0

0 +1

+1 −1



 , W
−

ob
=





1

0

0



 and M =





0

0

1





Phase I.
So, the relations describing the problem are (−Wun.xun ≤

M −W−
obs(., tob))

x1x1x1x1x1x1x1x1
x2xxxxx 1

y

p
2

p3

p1

Fig. 1. Petri net of Example 1

{

−x1 ≤ −y1
−x2 ≤ 0
−x1 + x2 ≤ 1

with y1 = 1.

The following count vectors belong to Snat
un (M init,y1) :

( 1 0 )
⊤
, ( 1 0 )

⊤
,

( 1 2 )
⊤
, . . .. As the TRun-induced subnet is not acyclic,

we cannot use the results in [5] [9] and deduce immediately
that these vectors are explanation vectors.

Phase II.

Let us check the count vector ( 1 2 )
⊤

. As we consider
the first iteration in this example, the starting count vector

is ( 0 0 )
⊤

. The problem is now to determine a time
sequence connecting these two vectors. The time relations

are



















x1(θ − 1) ≥ y1(θ)
x1(θ − 1) + x2(θ − 1) ≥ x1(θ)
x1(θ − 1) + 1 ≥ x2(θ)
x1(θ) ≥ x1(θ − 1)
x2(θ) ≥ x2(θ − 1)

for time θ ∈

{t<i> − h+ 1, t<i> − h+ 2, ..., t<i> − 1, t<i>}

Consider that the firing of y1 is at time t = 3. So, y1(t) = 0
for t ≤ 2 and y1(t) = 1 for t = 3.

t 0 1 2 3
y1 0 0 0 1
x1 0 0 1 1
x2 0 1 1 2

and the relevant sequence is x2 x1x2 as the relevant firings
appears at time 1, 2 and 3. Note that the second firing of x2

and the first firing of y1 are simultaneous. So, the count vector

( 1 2 )
⊤

is an explanation vector.

Let us check ( 1 0 )
⊤

t 0 1 2 3
y1 0 0 0 1
x1 0 − 1 1
x2 0 0 0 0

.

We can deduce that x2(θ) = 0 for θ ∈ {0, 1, 2, 3} as
x2(0) = 0 and x2(3) = 0. Moreover, x1(θ− 1)+x2(θ− 1) ≥
x1(θ) and x1(θ) ≥ x1(θ − 1) for θ ∈ {1, 2, 3}. As x2(θ) = 0
for θ ∈ {0, 1, 2, 3}, we deduce the equality x1(θ− 1) = x1(θ)
for θ ∈ {1, 2, 3} which is not possible since x1(0) = 0 and

x1(3) = 1. Therefore, the count vector ( 1 0 )
⊤

is not an
explanation vector. �
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A. Discussion about P-time Petri nets

In a next study, we will show that the consideration of a
P-time Petri net which introduces new constraints can also be
made. It leads to a phase III which is a final checking based on
daters for a given untimed sequence deduced from the phase II.
Contrary to the previous part which is based on the numbering
of the events, we focus on the firing dates of the sequence. We
take here a simplified form of the dater approach used in max-
plus community.

As the model of P-time Petri net is rather complex, the
Timed Petri net brings an usual simplification by taking
the lower bound of each temporization: It allows to check
the logical aspect of the candidate vector and to produce
the relevant sequence. It is important to note that there is
no guarantee that P-time Petri net can follow the minimum
trajectory of the Timed Petri net even if the Petri net is an
event graph.

We will show that the concept of minimum date vector exists
for a non-empty subspace and the vector can be computed. The
notion of maximum date vector is pertinent under an algebraic
condition. If the subspace is empty, the explanation vector
cannot be followed by the P-time Petri net. The technique is
as follows:

• Firstly to deduce an untimed firing sequence from an
arbitrary counter vector obtained for Timed Petri nets;

• Secondly to express the relevant time subspace for a
P-time Petri net and check if this model can follow
the same sequence. The technique is to determine the
evolution of the tokens by exploiting their availability.
More details on the determination the firing dates can
be found in [16].

VI. CONCLUSION

In this paper, we have shown that a general strategy can deal
with time models. The first phase is based on a simplification
leading to an over-space of the admissible sequences. The
introduction of time in Timed Petri nets allows the checking
of the candidate vector and the verification of the logical
aspect of the untimed Petri net: if the relevant time subspace
is not empty, the candidate vector is an explanation vector
and a sequence which gives the order of the events is gene-
rated as shown in the example. The transition firings of the
unobservable transitions can be simultaneous. Moreover, we
show that the approach can consider circuits and self-loops as
illustrated by the example. The general procedure is efficient
as the algorithms of linear programming are used.

Natural perspective is a generalization to P-time Petri net
(as discussed in the previous part) and also to more general
models as Time Stream Petri nets or new types of P-time Petri
nets.
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