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I. INTRODUCTION

P-time Event Graphs can be described by a new class of systems called interval systems [7]

[11] for which the time evolution is not strictly fixed but belongs to intervals. For interval systems,

lower and upper interval bounds depend on the operations of maximization, minimization and

addition, in general case. The algebraic model of P-time Event Graphs corresponds to the

semantic “And” of Time Stream Event Graphs where the lower and upper bound constraints

of P-time Event Graphs are (max, +) and (min, +) functions, respectively. P-time Event Graphs

define a set of trajectories which follows the specifications given by the model for a nominal

behavior. Firing dates of the transitions belong to the relevant time windows. Indeed, P-time

Petri nets are convenient tools to model manufacturing systems whose operation times must

be included between minimum and maximum values. A practical example is the electroplating

lines where the minimum and maximum immersion times guarantee the quality of the chemical

treatment [5]: Each chemical treatment must be sufficient otherwise the product will not be

ready for the next task or treatment; On the other hand, each chemical treatment must not be too

excessive, otherwise, the product would be damaged. Other practical examples can be given in

food industry. In good bakery practice, the dough stays in the fermentation room from three to

five hours, the time depending on room temperature and flour or gluten quality. The loaves need

to be baked between a minimal and maximal time. If these times are too short or too long (e.g. a

synchronization with another operation is not fulfilled), the product will be damaged (bad inner

structure and grain in the finished loaf, insufficient or excessive baking). P-time Event Graphs

can describe the losses of resources or parts and the failures to meet the time specifications.

However, even if the underlying graph of the Event Graph is live, the specifications can be

too restrictive and some synchronizations cannot follow the desired model, producing the losses
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of resources. A process is composed of machines, resources, etc. and the issue is to know if

they can work together following a schedule for a specified period. More particularly, a question

is to know if the different tasks can be sufficiently repeated during a period such that a normal

production can be performed without losses of parts. A practical problem can appear when a

machine is changed: using a slower/quicker machine can affect the nominal behavior of the

complete production line defined by a previous schedule. In this paper, we are interested in

avoiding this situation. The relevant notion is the consistency, which can be defined by the

existence of a time trajectory following the model. Many approaches as control, simulation,

optimization, etc. are based on a model and they usually assume that the process follows a

normal time evolution expressed by the considered model and not another one: the correctness

of the model is clearly a major problem and it must be checked before the application of any

approach.

An acceptable trajectory or a consistent trajectory can be defined as a time trajectory satisfying

the model. A second natural aim is to determine acceptable trajectories starting from an initial

state. In other words, the objectives are to check if there is an acceptable trajectory starting

from a given interval and to calculate the corresponding extremal (lowest and greatest, see [17])

trajectories, that is to say, the relevant earliest and latest trajectories. Their existences confirm

the consistency of the system. This also gives a model simulation for the earliest and latest

functioning.

In [18], the determination of acceptable trajectories has been considered in the particular case

of Timed Event Graphs. It has been shown that the initial state must satisfy a condition such that

the trajectory is nondecreasing in the counter representation. Analysis of consistency of interval

descriptor systems as Time Stream Event Graphs has been made by using the spectral vector
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[11] which introduces the topic of consistency of P-time Event Graphs in the field of (max, +)

algebra. [8] [14] and [9], introduce a new model of P-time Event Graph and a particular series

of matrices whose evolution determines the system behavior and the existence of a trajectory

without token deaths. The extremal trajectories obeying an interval of desired output are deduced.

The present paper improves these studies by presenting a graphical interpretation. Circuits in a

special associated graph will be highlighted.

In [1], the author considers a close model which is Timed Event Graphs with upper bounds

on the temporizations of the places. After [8] and [14], consistency has been considered in [20]

but without analysis of the generated graph and characterization of the circuits.

In this paper, the usual assumption of earliest behavior applied on the lower bound is not

made as in [1], [20]. This assumption will particularly be discussed in the last part of this paper.

Moreover, no hypothesis is made on the structure of Event Graphs. These need not be strongly

connected. The initial marking must only satisfy the classical condition of liveness (no circuit

without token), and the usual hypothesis First In First Out (FIFO) for tokens is made.

The paper is structured as follows: Notations and some previous results together with the

definitions of P-time Event graph are first given. Then we introduce the modeling of P-time

Event Graphs in the (max, +) algebra using the ”dater” form and we present the principle of the

approach using a pratical example. We study the behavior of the new model with the help of

a special series of matrices and deduce the extremal trajectories satisfying an initial condition

defined on an interval. Last but not least, a general example illustrates the approach.

II. PRELIMINARIES

A monoid is couple (S,⊕) where operation ⊕ is associative and presents neutral element ε.

Semi-ring S is triplet (S,⊕,⊗) where (S,⊕) and (S,⊗) are monoids, ⊕ is commutative, ⊗ is
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distributive in relation to ⊕ and zero element ε of ⊕ is the absorbing element of ⊗ (ε ⊗ a =

a⊗ ε = ε). Dioid D is an idempotent semi-ring (operation ⊕ is idempotent, that is a⊕ a = a).

Unit R∪ {−∞}, provided with the maximum operation denoted ⊕ and the addition denoted ⊗

is an example of dioid denoted Rmax = (R∪{−∞},⊕,⊗) . The neutral elements of ⊕ and ⊗ are

represented by ε = −∞ and e = 0, respectively. The absorbing element of ⊗ is ε. Isomorphic

to the previous one by bijection: x 7−→ −x, another dioid is R ∪ {+∞}, provided with the

minimum operation denoted ∧ and the addition denoted ¯. The neutral elements of ∧ and ¯

are represented by T = +∞ and e = 0 respectively. The absorbing element of ¯ is ε. The

following conventions are made: T ⊗ ε = ε and T ¯ ε = T. Expressions a ⊗ b and a ¯ b are

identical if at least either a or b is a finite scalar. The partial order denoted 6 is defined as

follows: x 6 y ⇐⇒ x⊕ y = y ⇐⇒ x ∧ y = x ⇐⇒ xi 6 yi , for i from 1 to n in Rn. Notation

x < y means that x 6 y and x 6= y. Dioid D is complete if it is closed for infinite sums, and the

distributivity of the multiplication with respect to addition applies to infinite sums : (∀ c ∈ D ) (∀

A ⊆ D) c⊗ (
⊕
x∈A

x) =
⊕
x∈A

c⊗x . For example, Rmax = (R∪{−∞}∪{+∞},⊕,⊗) is complete.

The set of n.n matrices with entries in complete dioid D including the two operations ⊕ and ⊗

is also a complete dioid, which is denoted Dn.n. The elements of the matrices in the (max, +)

expressions (respectively (min, +) expressions) are either finite or ε (respectively T ). We can deal

with nonsquare matrices if we complete them with rows or columns provided the entries equal

ε (respectively T ). The different operations obey the usual rules of algebra: notation ¯ refers to

the multiplication of two matrices in which the ∧−operation is used instead of ⊕. Mapping f is

said to be residuated if for all y ∈ D, the least upper bound of subset {x ∈ D | f(x) ≤ y} exists

and lies in this subset. Mapping x ∈ (Rmax)
n 7→ A ⊗ x, defined over Rmax is residuated (see

[3]) and the left ⊗−residuation of B by A is denoted by: A\B = max{x ∈ (Rmax)
n such that
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A⊗ x 6 B}; moreover, A \B = (−A)t ¯B or A¯B = (−A)t \B (see the proof of theorem

3.21 in part 3.2.3.2 of [3]) with convention −∞− (−∞) = +∞ and +∞− (+∞) = +∞.

The Kleene star is defined by: A∗ =
⊕+∞

i=0 Ai . Denoted as G(A), an associated graph of

square matrix A is deduced from this matrix by associating node i with column i and line i and

an arc from node j towards node i with Aij 6= ε. Weight | p |w of path p is the sum of the labels

(weights) on the edges in the path. Length | p |l of path p is the number of edges in the path.

A circuit is a path which starts from and ends at the same node. Using the Kleene star, the two

following theorems are dual and will be considered in the dioid of matrices.

Theorem 1: (Theorem 4.75 part 1 in [3]) Consider equation

x = A⊗ x⊕B (1)

and inequality

x ≥ A⊗ x⊕B (2)

with A and B in complete dioid D. Then, A∗ ⊗B is the least solution of (1) and (2). ¥

Theorem 2: (Theorem 4.73 part 1 in [3]) Consider equation

x = A\x ∧B (3)

and inequality

x ≤ A\x ∧B (4)

with A and B in complete dioid D. Then, A∗\B is the greatest solution of (3) and (4). ¥

For Aij and Bi belonging to Rmax, A \ x ∧B can be written (−A)t ¯ x ∧B .

We shall need the following result in the sequel

Corollary 1: Corollary x ≥ A⊗ x⊕B ⇐⇒ x ≥ A⊗ x and x ≥ A∗B.

x ≤ A\x ∧B ⇐⇒ x ≤ A\x⊗ x and x ≤ A∗\B.
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Proof. We only consider the first result. The proof is dual for the second part. a) =⇒: it is

an application of Theorem 1. b) ⇐=: x ≥ A∗B implies x ≥ B. ¥

III. MODELS AND PRINCIPLE OF THE APPROACH

In a first part, the definition of P-time Event Graphs is given and the firing interval of each

transition is described. Using the dater form, the algebraic model is built. This model will be

analyzed in the next parts. An elementary production system is described and the principle of

the approach is presented.

A. P-time Event Graphs

Event Graphs constitute a subclass of Petri nets in which each place has exactly one upstream

and one downstream transition. We shall use the following notations. The set of places is denoted

P . The initial marking of place pl ∈ P is denoted ml. Let •pl denote the set of input transitions

of place pl ∈ P and p•l the set of output transitions of pl. Similarly, •xi (respectively x•i ) denotes

the set of the input (respectively, output) places of transition xi.

In P-time Event Graphs [16], time constraints of the token stay are associated with each

place. We associate with each place pl ∈ P temporal interval [al, bl] with 0 ≤ al ≤ bl and [al, bl]

∈ R+ × (R+ ∪ {+∞})

Interval [al, bl] is the static interval of residence time or duration of a token in place pl belonging

to the set of places P . The token must stay in place pl during the minimal sojourn time al. Before

this duration, the token is in unavailability state to firing unique transition xj ∈ p•l . Value bl is

the maximal sojourn time after which the token must leave place pl. If not, the system is found

in a token-dead state. So, the token is available to fire transition xj in time interval [al, bl] with

al the lower bound of the temporization ( respectively, bl the upper bound).
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A consequence is a possible bad synchronization of each transition which is the outgoing

transition of more than one place. This situation occurs when the firing dates of the ingoing

transitions of at least two places are incoherent. This non-synchronization can be solved by a

prediction of the evolution of the tokens in the places.

For instance, let us consider two places P1 and P2 associated with intervals [a1, b1] and [a2, b2]

respectively, where a1 = 1, b1 = 2, a2 = 3 and b2 = 4. The two places share same outgoing

transition x2. If the firing date of ingoing transition x1 of place P1 is 100, the firing date of its

outgoing transition x2 must be between 100+a1 and 100+ b1. However, transition x2 cannot be

fired and the token in P1 will die if the firing date of ingoing transition x3 of place P2 is equal

to 10. Therefore, the firing date of transition x3 must be chosen such that transition x2 can be

fired: x2 ∈ [100 + a1, 100 + b1] ∩ [x3 + a2, x3 + b2]. As ingoing transition x3 is before outgoing

transition x2, this choice must predict the future phenomena. Therefore, the main difference with

usual Timed Event Graphs is that the evolution of P-time Event Graphs needs an anticipation

of its trajectory. This characteristic will determine the form of following algebraic models and

the results of this paper.

Now, we consider the dater form which will give an efficient description.

B. Dater form

We consider the “dater” description in the (max, +) algebra: each variable xi(k) represents

the date of the kth firing of transition xi. If we assume a FIFO functioning of the places which

guarantees that the tokens do not overtake one another, a correct numbering of the events can

be carried out.

In an Event Graph, card(•pl)=card(p•l )=1 for each place pl ∈ P and we can associate only a

pair (xi, xj) with each place pl ∈ P , such that transition xj is ingoing ( xj ∈• pl ) and transition
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xi is outgoing ( xi ∈ p•l ). Time interval [al, bl] and initial marking ml are also associated with

place pl. The evolution of the P-time Event Graph is described by the following inequalities

expressing relations between the firing dates of transitions:

∀pl ∈ P with xj ∈• pl and xi ∈ p•l , al + xj(k −ml) ≤xi(k) and xi(k) ≤ bl + xj(k −ml)

Now, let us consider a pair of transitions (xi, xj) and a given marking m. These conditions

define a set of places Pi,j,m which can be empty or contain more than one place: Each place pl

of Pi,j,m satisfies {xj} =• pl, {xi} = p•l and ml = m . ∀pl ∈ Pi,j,m , we can take the maximum

of lower bounds al and the minimum of upper bounds bl and we denote the corresponding values

a−i,j,m ∈ R+ and a+
i,j,m ∈ R−. More formally, a−i,j,m =

⊕
∀pl∈Pi,j,m

al and a+
i,j,m =

∧
∀pl∈Pi,j,m

bl.

Remark. Naturally, if for each pair of transitions ( xi, xj), there is a unique place pl ∈ P in

the Event Graph, we can simplify the notation and replace a−i,j,m by a−i,j and a+
i,j,m by a+

i,j . In

the figures of the paper, each temporisation is directly indexed with the index l of the relevant

place pl.

Therefore, the system can be described as follows

∀Pi,j,m ⊂ P , a−i,j,m + xj(k −m) ≤xi(k) and xi(k)≤ a+
i,j,m+xj(k −m)

After permutation of indexes i and j,

and application of simple transformations, the latter inequality is equivalent to −a+
j,i,m+xj(k+

m)≤xi(k)

In short,

a−i,j,m + xj(k −m) ≤ xi(k) and −a+
j,i,m + xj(k + m) ≤ xi(k)

The system can now be expressed with matrices in (max, +) algebra. This allows the writing
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of a synthetic description on a horizon defined by the maximal initial marking M =
⊕

∀pk∈P

mk.

x(k) ≥
⊕

0≤m≤M

A−
m ⊗ x(k −m) (5)

x(k) ≥
⊕

0≤m≤M

A+
m ⊗ x(k + m) (6)

with (A−
m)ij = a−i,j,m if a−i,j,m exists in R or ε otherwise,

(A+
m)ij = −a+

j,i,m if a+
j,i,m exists in R or ε otherwise.

For instance, in figure 1., (A−
0 )3,1 = a−3,1,0 = ap3 = a3 and (A+

0 )1,3 = −a+
3,1,0 = −bp3 = −b3

for place P3.

This model completely describes the relevant P-time Event Graph by giving a lower bound

of state x(k). This lower bound depends on values x(k−m) and x(k + m) for m = 0 to M in

respectively, inequalities (5) and (6). As inequality (5) corresponds to a classical Timed Event

Graph (without assumption of earliest functioning), a P-time Event Graph can be seen as a Timed

Event Graph (5) following additional specifications (6). The Timed Event Graph can express the

physical limitations of the process as the minimal cooking time while the upper bounds describe

quality criteria on the finished parts and products: The respect of these constraints needs an

anticipation of the future behavior of the process. Therefore, the calculation of the lower bound

trajectory cannot be made from only the past trajectory like a Timed Event Graph working in

the earliest functioning, but must use a prediction of the future evolution. In the sequel, we will

see that this remark also holds for the upper bound.

Remark. Some authors add the additional assumption of earliest behavior and replace the

inequality in (5) by an equality. Therefore, they limit the possibility of modeling of P-time

Event Graphs which does not describe a unique trajectory but a set of trajectories. Particularly,

P-time Event Graphs can describe uncertainties on sequence time of the process [2] [5] [12]

while the minimal and maximal times of each task are exactly known. For instance, the choice of
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Fig. 1. Principle

a cooking time in the middle of interval [Tmin,Tmax] guarantees the quality of the final product

but other choices are possible. Choices Tmin and Tmax are risky (underdone, overdone) as the

parameters of the oven can change.

The aim of the paper is the analysis of the implicit model defined by (5) and (6). Before

considering the general model, we first introduce the principle of the general approach with a

simple example. This part only uses usual algebra. A more general study will be given in the

sequel.

C. Principle of the approach

Let us consider an elementary production system composed of two lines in parallel which

start at the same time. The process is described by a P-time Event Graph in figure 1. The first

line is composed of two tasks while the second one only corresponds to the cooking of a product

(a3). The tasks of line 1 are successively the making of a packet (a1) and its moving (a2). When

the activities are completed, the finished product is packed (a4). Naturally, the cooking time b3

must not be too excessive, otherwise, the product would be damaged (x3 > b3 + x1).

The following inequalities describe the two lines. a1 + x1 ≤ x2, a2 + x2 ≤ x3 and a3 + x1 ≤

x3 ≤ b3 + x1.
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a1
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a4
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-b3
X3X1

X2

X4

Fig. 2. Associated graph 1

Therefore, a1 + a2 + x1 ≤ x3 for line 1, and a3 + x1 ≤ x3 ≤ b3 + x1 for line 2. So,

a1 + a2 + x1 ≤ x3 ≤ b3 + x1 and consequently, condition a1 + a2 ≤ b3 is necessary otherwise,

the system is inconsistent. In other words, the process does not work if time b3 is less than the

sum of the temporizations a1 and a2.

Another explanation is as follows. Inequality x3 ≤ b3 + x1 can be written −b3 + x3 ≤ x1.

From a1 +x1 ≤ x2; a2 +x2 ≤ x3 ; −b3 +x3 ≤ x1, we can deduce that −b3 + a2 + a1 +x1 ≤ x1.

A necessary and sufficient condition of existence of a solution is −b3 + a2 + a1 ≤ 0.

These inequalities can be described by a graph (see Figure 2.) defined as follows. The vertices

correspond to the transitions of the Petri net and a directed arc from j to i is associated with

each inequality a + xj ≤ xi.

This graph shows that term −b3 + a2 + a1 is the weight of the circuit defined by transitions

x1, x2, x3 and x1. We can say that the system will be consistent if any circuit of the graph

has a negative or null weight. In this case, a sequence of firing dates meeting the consistent

system can be found. If the process follows these dates, the production will be satisfactory as

each cooked product never waits in oven after delay b3.

Now, we generalize this first intuitive study and consider the case where the initial marking

is null.
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IV. ANALYSIS IN THE STATIC CASE

Let us assume that the process is static or, in other words that the marking is null: M = 0.

Therefore, the model described by (5) and (6) is reduced to the following form.

x ≥ (A−
0 ⊕ A+

0 )⊗ x (7)

Inequalities of this form are classical in the (max, +) context. The following well-known result

clearly shows that the consistency analysis of (7) needs an analysis of the circuits in the static

case.

Proposition There is a finite vector x ∈ Rdim(x) satisfying (7) if and only if the associated

graph of matrix A−
0 ⊕ A+

0 has only circuits with only non-positive weight.

Recall that (A∗)i,i is the greatest weight of the circuits going by vertex i of the associated

graph of matrix A. Another formulation of the proposition is that a necessary and sufficient

condition for the existence of a state in R (not in Rmax) is that ((A−
0 ⊕ A+

0 )∗)i,i converges on

Rmax and not on T = +∞ for any index i.

The following form makes the connection with the study in [22]. First, let us note that x ≥A+
0 ⊗

x is equivalent to x ≤ A+
0 \x. So, inequality x ≥ (A−

0 ⊕A+
0 )⊗ x is equivalent to A−

0 ⊗ x ≤ x ≤

A+
0 \x. This system implies the following expression

A−
0 ⊗ x ≤ A+

0 \x = (−A+
0 )t ¯ x (8)

which has been analyzed in the proposition below. It is given with a slightly modified notation.

Proposition [22]
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There is a finite vector x ∈ Rdim(x) satisfying A−
0 ⊗ x ≤ (−A+

0 )t ¯ x if and only if the

associated graph of A+
0 ⊗ A−

0 contains circuits with only non-positive weight.

The relation defined by (8) has been deduced from (7) or, in other words, the set defined by

(8) includes the set defined by (7) but the relations are not mathematically equivalent as shown

in the following counter-example.

Example A−
0 =



−10 −20

−15 0


 and (−A+

0 )t =




1 1

1 1




x =




11

1




A−
0 ⊗ x =




1

1


 ≤ (−A+

0 )t ¯ x =




2

2


 but




1

1


 ≤




11

1


 �




2

2




The following results allow a comparison of the consistency of (7) and (8) based on the

circuits of the associated graphs. The usual multiplication is denoted by a dot below.

Proposition (∀k ∈ N)(A⊕B)2.k ≥ (A⊗B)k

Proof

The inductive proof is as follows. The hypothesis is Hk:(A⊕B)2.k ≥ (A⊗B)k.

Initial Step. H1 defined by (A⊕B)2 ≥ (A⊗B)1 is true as (A⊕B)2 = A2⊕A⊗B⊕B⊗A⊕B2

Inductive Step. Let us assume that Hk is true for a given k∈ N. We must prove the formula

is true for k+1.

(A⊕B)2.(k+1) = (A⊕B)2.k ⊗ (A⊕B)2 ≥ (A⊗B)k ⊗ (A⊗B)1 = (A⊗B)k+1 and Hk+1 is

proved. ¥

Proposition (A⊕B)∗ ≥ (A⊗B)∗

Proof
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By definition, (A⊕B)∗ =
⊕
i∈N

(A⊕B)i ≥ ⊕
k∈N

(A⊕B)2.k.

The previous proposition implies that
⊕
k∈N

(A ⊕ B)2.k ≥ ⊕
k∈N

(A ⊗ B)k = (A ⊗ B)∗ and the

proposition is proved. ¥

Therefore, the application of the previous result gives:

(A−
0 ⊕ A+

0 )∗ ≥ (A−
0 ⊗ A+

0 )∗ ⊕ (A+
0 ⊗ A−

0 )∗. Particularly,

((A−
0 ⊕ A+

0 )∗)i,i ≥ ((A−
0 ⊗ A+

0 )∗)i,i ⊕ ((A+
0 ⊗ A−

0 )∗)i,i

Consequently, even if ∀i ∈ ((A+
0 ⊗ A−

0 )∗)i,i ≤ 0 , term ((A−
0 ⊕ A+

0 )∗)i,i can be positive.

Therefore, if the associated graph of (A+
0 ⊗A−

0 ) contains circuits with only non-positive weight,

the associated graph of matrix (A−
0 ⊕ A+

0 ) can have circuits with positive weights. Therefore,

application of the previous two propositions shows that inequality (7) can be inconsistent while

inequality (8) is consistent.

In conclusion, this part shows that the consistency depends on the circuits in an associated

graph. This analysis will now be generalized to an arbitrary initial marking in the sequel. The

implicit model described by (5) and (6) will first be rewritten on a short horizon in order to

simplify the analysis. Then this new form will be used to calculate extremal trajectories and to

analyze the consistency in the following sections.

V. DYNAMICAL MODEL

Now, we consider an arbitrary initial marking. Recall that M is the maximal initial marking:

M =
⊕

∀pk∈P

mk. The following proposition is about the existence of a state trajectory in R (and

not in Rmax).

Proposition. A necessary condition for the existence of a state trajectory in R is that the

associated graph of matrix A−
0 ⊕ A+

0 has only circuits with only non-positive weight.

Proof. From inequalities (5) and (6) of the model, we have
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x(k) ≥ ⊕
0≤m≤M

A−
m ⊗ x(k −m)⊕ ⊕

0≤m≤M

A+
m ⊗ x(k + m) =

(A−
0 ⊕ A+

0 )⊗ x(k)⊕
⊕

1≤m≤M

A−
m ⊗ x(k −m)⊕

⊕
1≤m≤M

A+
m ⊗ x(k + m) (9)

We can deduce that x(k) ≥ (A−
0 ⊕ A+

0 )⊗ x(k) and apply the first Proposition in part IV. ¥

From (9), we deduce the following inequalities, where the right hand term of the first

inequality represents the least solution of (9) .





x(k) ≥ (A−
0 ⊕ A+

0 )∗ ⊗ [
⊕

1≤m≤M

A−
m ⊗ x(k −m)⊕ ⊕

1≤m≤M

A+
m ⊗ x(k + m)]

x(k) ≥ (A−
0 ⊕ A+

0 )⊗ x(k)

(10)

The following property shows that (10) completely expresses the model.

Proposition. The inequalities (10) and the implicit model defined by (5) and (6) are equivalent.

Proof: Immediate from Corollary 1.¥

Now, let us introduce the following notations.



A=
0 = A−

0 ⊕ A+
0

A−m = (A−
0 ⊕ A+

0 )∗ ⊗ A−
m , for m = 1 to M .

A+
m = (A−

0 ⊕ A+
0 )∗ ⊗ A+

m , for m = 1 to M .

Therefore, the model (10) can be rewritten

as follows.





x(k) ≥ A=
0 ⊗ x(k)

x ≥ ⊕
1≤m≤M

A−m ⊗ x(k −m)⊕ ⊕
1≤m≤M

A+
m ⊗ x(k + m)

(11)

System (11) can be simplified by defining an augmented state vector. The new state vector

denoted X , includes variables x(k), x−i (k) and x+
i (k), for i = 1 to M − 1 defined as follows.

x−1 (k) = x(k − 1), x+
1 (k) = x(k + 1),

x−i (k) = x−i−1(k − 1) and x+
i (k) = x+

i−1(k + 1), for i = 2 to M − 1.
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X =

(
(x−M−1)

t . . . (x−2 )t (x−1 )t (x)t (x+
1 )t (x+

2 )t . . . (x+
M−1)

t

)t

(t: transpose). The

dimension of X is denoted n which is equal to the product of the dimension of x by 2.M − 1.

The following inequalities completely describe both static part and dynamic part of the system.

x−1 (k) = x(k − 1) ⇔ x−1 (k) ≥ x(k − 1) and x(k) ≥ x−1 (k + 1)

x+
1 (k) = x(k + 1) ⇔ x+

1 (k) ≥ x(k + 1) and x(k) ≥ x+
1 (k − 1)

x−i (k) = x−i−1(k − 1) ⇔ x−i (k) ≥ x−i−1(k − 1) and x−i−1(k) ≥ x−i (k + 1), for i = 2 to M − 1.

x+
i (k) = x+

i−1(k + 1) ⇔ x+
i (k) ≥ x+

i−1(k + 1) and x+
i−1(k) ≥ x+

i (k − 1), for i = 2 to M − 1.

Finally, the simplified inequalities are as follows.





X (k) ≥ A= ⊗X (k)

X (k) ≥ A− ⊗X (k − 1)

X (k) ≥ A+ ⊗X (k + 1)

(12)

We shall now illustrate the procedure for the synthesis of matrices A= , A− and A+ in

inequalities (12). Let M = 3. So, X =

(
(x−2 )t (x−1 )t (x)t (x+

1 )t (x+
2 )t

)t

x(k) ≥A−3 ⊗ x−2 (k − 1) ⊕A−2 ⊗ x−1 (k − 1)⊕ A−1 ⊗ x(k − 1)⊕ (A−0 ⊕ A+
0 )⊗ x(k)

⊕A+
1 ⊗ x(k + 1)⊕ A+

2 ⊗ x+
1 (k + 1)⊕ A+

3 ⊗ x+
2 (k + 1)

x−1 (k) = x(k − 1) ⇔ x−1 (k) ≥ x(k − 1) and x(k) ≥ x−1 (k + 1)

x+
1 (k) = x(k + 1) ⇔ x+

1 (k) ≥ x(k + 1) and x(k) ≥ x+
1 (k − 1)

x−2 (k) = x−1 (k − 1) ⇔ x−2 (k) ≥ x−1 (k − 1) and x−1 (k) ≥ x−2 (k + 1)

x+
2 (k) = x+

1 (k + 1) ⇔ x+
2 (k) ≥ x+

1 (k + 1) and x+
1 (k) ≥ x+

2 (k − 1)
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A= =




ε ε ε ε ε

ε ε ε ε ε

ε ε A=
0 ε ε

ε ε ε ε ε

ε ε ε ε ε




,A− =




ε I ε ε ε

ε ε I ε ε

A−3 A−2 A−1 I ε

ε ε ε ε I

ε ε ε ε ε




, andA+ =




ε ε ε ε ε

I ε ε ε ε

ε I A+
1 A+

2 A+
3

ε ε I ε ε

ε ε ε I ε




Also, the diagonal of A− can be modified such that the nondecrease of state trajectory

is guaranteed. This operation keeps expressions x−1 (k) = x(k − 1), x−2 (k) = x−1 (k − 1), ...

unchanged, because x−2 (k) ≥ x−1 (k− 1)⊕ x−2 (k− 1) = x−1 (k− 1)⊕ x−1 (k− 2) = x−1 (k− 1), for

instance.

These expressions describe the “lower” constraints on X produced by the model which can

maximize the state estimation. The set of inequalities (12) clearly describes a forward part

(X (k) ≥ A− ⊗X (k − 1), a backward part and a static (i.e neither backward, nor forward) part

(X (k) ≥ A=⊗X (k)). These relations lead to complex backward/forward interconnections which

can produce inconsistencies in the model.

Symmetrically, as mapping A=⊗X (k), A−⊗X (k−1) and A+⊗X (k+1) are residuated, the

application of property f3 in [3] part 4.4.4) gives the following form: it expresses every “upper”

constraint on X (k) which can minimize it.



X (k) ≤ A=\X (k)

X (k) ≤ A−\X (k + 1)

X (k) ≤ A+\X (k − 1)

Each model can be deduced from the other one by duality and each lower (upper) matrix

respectively corresponds to an upper (lower) matrix with the same notation: symbols ≥, ⊕ and

⊗, respectively correspond to ≤, ∧ and \; Number of events k − 1 is replaced by k + 1 and

conversely.
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In the following part, the time evolution of the model (12) is analyzed.

VI. EXTREMAL ACCEPTABLE TRAJECTORIES BY SERIES OF MATRICES

Unlike the class of Timed Event Graphs which define a unique trajectory on assumption of

earliest behavior, P-time Event Graphs define a set of trajectories which depend on matrices A= ,

A− and A+. The aim of this section is the determination of the lowest (respectively, greatest)

acceptable trajectories satisfying an initial condition given by X (0) ∈ [X−
0 ,X+

0 ]. In the sequel,

we will show that the existence of a trajectory depends on special new matrices denoted wk.

As a finite horizon h ∈ N is considered, the model behavior must be clarified. A realistic

assumption is that the model operates on the same horizon. Therefore, the process starts at k = 0

and the constraints before zero are not considered. So, the only constraint on X (k) for k = 0 is

X (0) ≥ A+ ⊗X (1)⊕X−
0 . Symmetrically, as the process can stop after the horizon denoted h,

the only constraint on X (k) for k = h is X (h) ≥ A− ⊗X (h− 1).

A. Lowest state trajectory

The following algorithms give the lowest and greatest trajectory satisfying the objective. The

first step a) is the forward calculation of parameters wk which only depend on the model. Starting

from the initial condition X−
0 (resp. X+

0 ), the second step b) is also based on a forward iteration.

It expresses a first estimate of the lowest (resp. greatest) trajectory denoted β−k (resp. β+
k ), which

is finally improved by a maximisation (respectively, a minimisation) in step c). The final result

is the lowest (resp. greatest) trajectory denoted by X−
k (resp. X+

k ).

Theorem 3: If the process operates on horizon h ∈ N and if matrices wk defined below have

no positive circuit, the lowest state trajectory in R∪{−∞} satisfying X (0) ≥ X−
0 ∈ (R∪{−∞})n

is given by the following forward/backward algorithm.
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Forward/backward algorithm

a) Coefficients of wk by forward iteration

Initialization: w0 = A=

for k = 1 to h, wk = A= ⊕A− ⊗ (wk−1)
∗ ⊗ A+

b) First estimate β−k by forward iteration

Initialization: β−0 = X−
0

for k = 1 to h, β−k = A− ⊗ (wk−1)
∗ ⊗ β−k−1 ,

c) Trajectory X−
k by backward iteration

Initialization: X−
h = (wh)

∗ ⊗ β−h

for k = h− 1 to 0, X−
k = (wk)

∗ ⊗ [A+ ⊗X−
k+1 ⊕ β−k ]

Proof Theorem 1 shows that the smallest solution satisfying X ≥ (γ0A=⊕γ1.A−⊕γ−1.A+)⊗

X with X (0) ≥ X−
0 also satisfies the corresponding equality. These can be written by the

following equations.





X (0) = A= ⊗X (0)⊕A+ ⊗X (1)⊕X−
0

X (k) = A= ⊗X (k) ⊕A− ⊗X (k − 1)⊕

A+ ⊗X (k + 1) for k = 1 to h− 1

X (h) = A= ⊗X (h)⊕A− ⊗X (h− 1)

(13)

The following proposition P(k) is now proved by recursion.

P(k): X−(k) = (wk)
∗ ⊗ [A+ ⊗X−(k + 1)⊕ β−k ]

Base case: P(0)

From the first equality of (13), we can write

X (0) = w0 ⊗ X (0)⊕A+ ⊗ X (1) ⊕ β−0 where w0 = A= and β−0 = X−
0 . Therefore, X (0) =

(w0)
∗[A+ ⊗X (1)⊕ β−0 ], which proves P(0).
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Case: P(1)

From the second equality of (13), we can write for k = 1

X (1) = A= ⊗X (1)⊕A− ⊗X (0)⊕A+ ⊗X (2)

If P(0) is used,

X (1)=A= ⊗X (1)⊕A− ⊗ [(w0)
∗[A+ ⊗X (1)⊕ β−0 ]]⊕A+ ⊗X (2)

The distributivity of ⊗ with respect to ⊕ leads to

X (1) = [A=⊕A− ⊗ (w0)
∗ ⊗A+]⊗X (1)⊕A− ⊗ (w0)

∗⊗β−0 ⊕A+ ⊗X (2) =

w1 ⊗ X (1) ⊕ β−1 ⊕ A+ ⊗ X (2) where w1 = A=⊕A−(w0)
∗A+ and β−1 = A−(w0)

∗ ⊗ β−0 .

Therefore,

X (1) = (w1)
∗⊗ [A+⊗X (2)⊕β−1 ] and P(1) is proved. Now, this approach is generalized for

k = 1 to h− 1.

Case: P(k) for k from 1 to h− 1.

Let us assume P(k − 1): X (k − 1) = (wk−1)
∗ ⊗ [A+ ⊗ X (k) ⊕ β−k−1]. We will prove that

P(k − 1) entails P(k).

From the second equality of (13), we can write

X (k) = A= ⊗X (k) ⊕A− ⊗X (k − 1)⊕A+ ⊗X (k + 1)

As X (k − 1) = (wk−1)
∗ ⊗ [A+ ⊗X (k)⊕ β−k−1], the expression below is deduced:

X (k) = A= ⊗X (k)⊕A− ⊗ (wk−1)
∗ ⊗ [A+ ⊗X (k)⊕ β−k−1]⊕A+ ⊗X (k + 1)

The distributivity of ⊗ with respect to ⊕ yields

X (k) = [A= ⊕A− ⊗ (wk−1)
∗ ⊗A+]⊗X (k)⊕A− ⊗ (wk−1)

∗ ⊗ β−k−1 ⊕A+ ⊗X (k + 1) =

wk ⊗ X (k) ⊕ β−k ⊕ A+ ⊗ X (k + 1), where wk = A= ⊕ A− ⊗ (wk−1)
∗ ⊗ A+and β−k =

A− ⊗ (wk−1)
∗ ⊗ β−k−1
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Therefore, X (k) = (wk)
∗[A+⊗X (k + 1)⊕ β−k ] and the desired expression is obtained: P(k)

has been deduced from P(k − 1). Moreover, as P(0) is true, P(k) has been proved for k from

1 to h − 1: the recursion is finished. Knowing β−k , the calculation of X (k) uses a backward

iteration, while the calculation of β−k is relevant to a forward iteration.

Now, the final case will be proved.

Case: P(h)

The last equality of (13) can be considered like the second equality but without A+⊗X (k+1):

the argument of case P(k) can be taken and we can write

X (h) = (wh)
∗ ⊗ β−h with wh = A= ⊕A− ⊗ (wh−1)

∗ ⊗A+and β−h = A− ⊗ (wh−1)
∗ ⊗ β−h−1

Finally, as matrices wk have no positive circuit and X−
0 belongs to (R ∪ {−∞})n, the state

trajectory is defined in R ∪ {−∞}. ¥

B. Greatest state trajectory

The following theorem can be deduced from the previous one by duality. Steps a) are identical.

Theorem 4: If the process operates on horizon h ∈ N and if matrices wk defined below

have no positive circuit, the greatest state trajectory in R ∪ {+∞} satisfying X (0) ≤ X+
0 ∈

(R ∪ {+∞})n is given by the following forward/backward algorithm.

Forward/backward algorithm

a) Coefficients of wk by forward iteration

Initialization: w0 = A=

for k = 1 to h, wk = A= ⊕A− ⊗ (wk−1)
∗ ⊗A+

b) First estimate β+
k by forward iteration

Initialization: β+
0 = X+

0

for k = 1 to h, β+
k = ((wk−1)

∗ ⊗A+)\β+
k−1
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c) Trajectory X+
k by backward iteration

X+
h = (wh)

∗\β+
h

for k = h− 1 to 0, X+
k = (wk)

∗\[A−\X+
k+1∧β+

k ]

Proof The proof is omitted as it can be deduced by duality from the previous theorem. ¥

To sum up, the two algorithms allow the determination of the lowest (respectively, greatest)

acceptable trajectories satisfying X (0) ≥ X−
0 (respectively, X (0) ≤ X+

0 ). Also they allow the

checking of the existence of a trajectory satisfying X (0) ∈ [X−
0 ,X+

0 ] if constraints X (0) ≤ X+
0

and X (0) ≥ X−
0 are respectively added in the corresponding algorithms.

Remark 1: Defined on a box [X−
0 ,X+

0 ], the initial condition is less restrictive than the more

usual X (0) = X0 which is a particular case. In a natural way, checking this case is made as

follows. The determination of the lowest trajectory such as X (0) ∈ [X0,X+
0 ] with X0 ≤ X+

0 ,

allows checking the acceptability of X0 or in other words, if there is a solution X so that

X (0) = X0. Similarly, the determination of the greatest trajectory such as X (0) ∈ [X−
0 , X 0]

with X−
0 ≤ X0 also allows checking the existence of a solution X so that X (0) = X 0.

Remark 2: The calculation of the state trajectories starts from values (wh)
∗⊗β−h and (wh)

∗\β+
h

and consequently depends on horizon h. The calculation of wk, β−k and β+
0 depends on index

k, but not on horizon h.

VII. CONSISTENCY

In this paper, an acceptable behavior of the considered P-time Event Graph is defined by

any operation guaranteing the liveness of tokens. Therefore, it does not lead to any deadlock

situation. As this behavior is represented by the algebraic model (12), the aim of this part is to

study the existence of a state trajectory solution to these inequalities. Clearly, if we can calculate
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an arbitrary trajectory starting from box [X−
0 ,X+

0 ], we can deduce that the system is consistent

on the considered horizon. We introduce the following notation.

Definition 1: A dynamic associated graph of square matrices A, B and C on horizon h,

denoted by Gh(A,B, C), is deduced from these matrices by associating for k = 0 to h, a node

jk with column j and a node ik with row i . The pattern is as follows: a) An arc from node

jk−1 towards node ik if Aij 6= ε; b) An arc from node jk towards node ik if Bij 6= ε; c) An arc

from node jk towards node ik−1 if Cij 6= ε.

In this paper, we consider Gh(A−,A=,A+). An example is given in figure 4. The dimension

of each column k is dimension n of the state. As in the static case presented in section IV,

the system is consistent if the dynamic associated graph Gh(A−,A=,A+) has no circuit with

positive weight. These circuits can simply be situated in the associated graph of the static part

(A=) or of the dynamic part (A− and A+). Figure 5 shows that the circuits can present a complex

form.

Assuming the liveness of the Event Graph, the following theorem considers the temporal

consistency of P-time Event graphs. This theorem is about the existence of a state trajectory in

R, and not in Rmax.

Theorem 5: A live P-time Event Graph is consistent on arbitrary horizon h if and only if the

dynamic associated graph Gh(A−,A=,A+) contains circuits with only non-positive weight.

Proof The model can completely be represented by system (13) after replacing symbol =

with ≥. This system can be rewritten in Rmax under the global form x ≥ A ⊗ x ⊕ B which

includes every inequality. The relevant dynamic associated graph is Gh(A−,A=,A+). As the

least solution is A∗B, this system has at least a solution in Rmax if the global matrix A has no

strictly positive circuits. This gives a sufficient condition for the existence of a solution in Rmax.
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Moreover, X−
0 can be taken finite: as X (0) ≥ X−

0 and as the trajectory is nondecreasing by

construction of A−, each component of the state trajectory is different from ε and the trajectory

belongs to R. Conversely, if finite X satisfies the model of the P-time Event Graph, it can only

satisfy subsystems with non-positive circuits. ¥

The following result is immediate.

Corollary 2: A live P-time Event Graph with a null initial marking, is consistent if and only

if the dynamic associated graph of matrix A= contains circuits with only non-positive weight.

Remark. A live P-time Event Graph whose initial marking is null is without circuit (in the

Event Graph), but the dynamic associated graph of matrix A= can have circuits.

Now, we consider matrices wk which allow a characterization of the circuits. The following

property gives a graphical interpretation of the calculation of these matrices.

Property 1: Entry ((wh)
∗)ih,jh

represents the maximum weight of all the paths from vertices

jh to vertices ih for i, j ∈ [1..n] in the dynamic associated graph Gh(A−,A=,A+) except the

paths containing an arc from index 0 node to index 0 node.

Proof

Let us consider the relations inside horizon [0, 1]. So, X (1)i ≥ (A−)i,l ⊗ X (0)l ≥ (A−)i,l ⊗

(A+)l,jX (1)j but also, X (1)i ≥ (A=)i,jX (1)j . So, (w1)i,j = (A= ⊕A− ⊗A+)i,j represents the

greatest weight on the following paths:

- an arc (j1 → i1) (matrix A=)

- or two successive arcs (j1 → l0) and (l0 → i1) (product A− ⊗A+).

Expression ((w1)
∗)i,j represents the greatest weight on the following paths (by default, the

weight is zero if there is no path between two vertices) going successively through,

- nodes of indexes j1 to i1 and again (expressed by (A=)∗),
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- or nodes of indexes j1 to l0 and l0 to i1 and again (expressed by (A− ⊗A+)∗),

- or nodes of indexes j1 to l1, then l1 to k0 and k0 to i1 (expressed by (A− ⊗A+)(A=)),

, and so on.

Remark: as there is no term as A−⊗A=⊗A+, (w1)
∗ is not the result of paths containing an

arc from node of index j0 to node of index i0 directly.

For horizon [0, 2], (w2)ij = (A=⊕A−⊗ (w1)
∗⊗A+)ij represents the greatest weight on the

following paths: :

- an arc (j2 → i2) (matrix A=)

- or, an arc (j2 → l1) (matrix A+), the previous paths from l1 to m1 expressed by matrix

(w1)
∗ (described above) and an arc (l1 → i2) (matrix A−).

Consequently, (w2)
∗ represents the greatest weight of every path (and circuit) of the associated

graph on horizon [0, 2] and defined by a path from i2 to i2 and going possibly to nodes of indexes

1 and 0, except the paths containing an arc from nodes of indexes 0 to 0.

The argument can be repeated until k = h. ¥

The following Theorem improves Theorem 5 by giving a practical way to check the consis-

tency.

Theorem 6: A live P-time Event Graph is consistent if and only if the associated graph of

each matrix wk for any k ≥ 0 contains circuits with only non-positive weight.

Proof. Property 1 says that matrices (wk)
∗ represent the greatest weight of almost every path

and circuit in Gh(A−,A=,A+). The weights of circuits which are not ”present” in (wk)
∗ are

”present” in (wk+1)
∗ for Gh+1(A−,A=,A+) as the associated graph is the repetition of a pattern.

Consequently, each circuit is expressed and the proof can be deduced from Theorem 5. ¥
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Therefore, if there is an index k1 such that an entry ((wk)
∗)i,j is infinite, we can conclude that

there is a path from j to i, containing a circuit with a positive weight in Gk1(A−,A=,A+). So,

the system is not consistent on horizon greater than h ≥ k1. An example of circuit with positive

circuit is given in figure 5.

The following result will facilitate the analysis of the consistency and its checking.

Property 2: wk ≥ wk−1 for k ≥ 1

Proof

Let us suppose that wk−1 ≥ wk−2 , wk = A= ⊕A− ⊗ (wk−1)
∗ ⊗A+ =

A= ⊕A− ⊗A+ ⊕A− ⊗ (wk−1)⊗A+ ⊕A− ⊗ (wk−1)
2 ⊗A+ ⊕ ...

As wk−1 ≥ wk−2 and by isotony of the product, wk ≥ A=⊕A−⊗A+⊕A−⊗ (wk−2)⊗A+⊕

A− ⊗ (wk−2)
2 ⊗A+ ⊕ ... = wk−1

Moreover, w1 ≥ w0 = A= as w1 = A= ⊕ A− ⊗ (w0)
∗ ⊗ A+. So, the series w0 = A=

and wk = A= ⊕A− ⊗ (wk−1)
∗ ⊗A+ for k ≥ 1 is nondecreasing. ¥

Suppose that there is an index k1 such that matrix wk does not increase ( wk1+1 = wk1) with

wk belonging to Rmax. From Property 2, we can conclude that no matrix wk has positive circuit

for any index k. Consequently, the P-time Event graph is consistent on an infinite horizon. In

this case, the tests show that the convergence of consistent P-time Event Graphs is fast.

VIII. EXAMPLES

The following example illustrates the results about consistency and extremal trajectories.

Computation tests are made using the max-plus toolbox in Scilab.
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Fig. 3. P-time Event graph

A. Model

A slight modification of the example in figure 1 gives the closed-loop structure of figure 3

which describes a limitation of resources. An upper bound on packing (b4) is added. The initial

marking is
(

1 1 1 1

)t

a1 = 3, a2 = 3, a3 = 1, a4 = 3, b3 = 2, b4 = 11. Therefore,

A−
0 =




ε ε ε

ε ε ε

ε ε ε




A+
0 =




ε ε ε

ε ε ε

ε ε ε




A=
0 = A−

0 ⊕ A+
0 = ε

A−
1 =




ε ε 3

3 ε ε

1 3 ε




A+
1 =




ε ε −2

ε ε ε

−11 ε ε




Matrices A=, A− and A+ are now deduced.

A= = A=
0 = A−

0 ⊕ A+
0 = ε, A− = A−1 = (A=

0 )∗ ⊗ A−
1 =A−

1 and A+ = A+
1 = (A=

0 )∗ ⊗ A+
1 =

A+
1 The relevant associated graph is in figure 4.
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Fig. 4. Associated graph in consistent case

B. Series

w0 = A= =ε

w1 =




−8 ε ε

ε ε 1

ε ε −1




, w2 =




−8 ε ε

ε ε 1

−7 ε −1




, w3 =




−8 ε −6

ε ε 1

−7 ε −1




, w4 =




−8 ε −6

−14 ε 1

−7 ε −1




The calculation of matrices wk shows that they are constant after a short transitory period (

wk = w4 for k ≥ 5) and that they have no positive circuit. Consequently, the system is consistent

on an arbitrary horizon.

Now, assume that a failure appears in the moving of the packet whose normal duration a2

associated with P2 is equal to 3, which corresponds to (A−
1 )3,2: the duration is now equal to 6.

The relevant matrices wk are as follows. We also give w∗
3.

w0 = A= =ε

w1 =




−8 ε ε

ε ε 1

ε ε −1




, w2 =




−8 ε ε

ε ε 1

−4 ε −1




, w3 =




−8 ε −3

ε ε 1

−4 ε 1




, w∗
3 =




T ε T

T 0 T

T ε T



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Fig. 5. Circuit with positive weight in inconsistent case

, w4 =




T ε T

T ε T

T ε T




As some coefficients of w∗
3 and also, w4 are equal to T = +∞ , the system is not consistent.

Therefore, even if the underlying graph of the Event Graph is live in the usual sense, it is

not consistent for a2 = 6. So, as (w3)3,3 = 1, χ−3 (k) ≥ 1 ⊗χ−3 (k) which is inconsistent. This

incoherence comes from the following inequalities. Figure 5 shows the relevant circuit with

positive weight.

χ−3 (k) ≥ 6 ⊗χ−2 (k − 1)

χ−2 (k − 1) ≥ 3 ⊗χ−1 (k − 2)

χ−1 (k − 2) ≥ (−2) ⊗χ−3 (k − 1)

χ−3 (k − 1) ≥ 6 ⊗χ−2 (k − 2)

χ−2 (k − 2) ≥ 3 ⊗χ−1 (k − 3)

χ−1 (k − 3) ≥ (−2) ⊗χ−3 (k − 2)

χ−3 (k − 2) ≥ (−11) ⊗χ−1 (k − 1)

November 16, 2009 DRAFT



31

χ−1 (k − 1) ≥ (−2) ⊗χ−3 (k)

The trials show that the tolerance margin of a2 where the system is consistent, is [0, 5.5].

C. Lowest and greatest state trajectories

Now, we apply the algorithms of Theorems 3 and 4 which provide lowest and greatest state

trajectories, χ+ and χ+ respectively. The arbitrary initial conditions are χ−0 =

(
1 0 0

)t

and χ+
0 =

(
1 0 0

)t

. In step b), intermediate values β− and β+, which are given in the

following tables, are deduced from matrices wk and initial conditions χ−0 and χ+
0 by a forward

approach. They give a first estimate of the lowest and greatest trajectories.

k 0 1 2 3 4 5 6 7 8 9 10

β−1 1 3 6 10 14 18 22 26 30 34 38

β−2 0 4 6 9 13 17 21 25 29 33 37

β−3 0 3 7 11 15 19 23 27 31 35 39

k 0 1 2 3 4 5 6 7 8 9 10

β+
1 1 11 14 24 27 36 40 49 53 62 66

β+
2 0 T T T T T T T T T T

β+
3 0 3 13 16 25 29 38 42 51 55 64

Intermediate values β− and β+ are now improved by the backward step c). The following

tables contain lowest and greatest state trajectories, χ− and χ+ respectively.
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k 0 1 2 3 4 5 6 7 8 9 10

X−
1 1 5 9 13 17 21 25 29 33 37 38

X−
2 0 4 8 12 16 20 24 28 32 36 40

X−
3 0 3 7 11 15 19 23 27 31 35 39

k 0 1 2 3 4 5 6 7 8 9 10

X+
1 1 10 14 23 27 36 40 49 53 62 66

X+
2 0 9 13 22 26 35 39 48 52 61 T

X+
3 0 3 12 16 25 29 38 42 51 55 64

The following table is the state trajectory of the Timed Event Graph using the lower bound

of the temporisations of the P-time Event Graph (see figure 3). With the assumption of earliest

behavior,

x(k) = A⊗ x(k) with A = A−
1 . As x(0) = χ−0 =

(
1 0 0

)t

, a comparison can be made.

k 0 1 2 3 4 5 6 7 8 9 10

x1 1 3 6 10 12 15 19 21 24 28 30

x2 0 4 6 9 13 15 18 22 24 27 31

x3 0 3 7 9 12 16 18 21 25 27 30

Figure 6 shows the trajectories of transition x1: The lowest and greatest trajectories for the

P-time Event Graph ; The trajectory of the relevant Timed Event Graph. The three trajectories

are clearly different (x(k) ≤ χ−(k) ≤ χ+(k)) as their rates (the calculation of the different cycle

times is made in [10]).
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Fig. 6. Trajectories

Remark. It is important to note that each extremal trajectory depends on the lower and upper

bounds of the temporisations and not only, on one of those. The calculation of the minimal

trajectory naturally requires not only the inequalities corresponding to Timed Event Graphs (5)

but also the upper constraints (6): the example in figure 6 shows that the earliest functioning

of a Timed Event Graph using the relevant equality of (5) does not satisfy the inequalities of

the P-time Event Graph in the autonomous case. This fact entails that the trajectories of P-time

Event Graphs cannot always be deduced by a direct forward iteration like in the state equation

in Timed Event Graphs. Note that in this example, the P-time Event Graph is consistent.
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IX. COMPUTATIONAL COMPLEXITY

The following curve gives indications on the possible CPU times needed to compute the

different matrices wk, and the lowest and greatest trajectories on an ordinary Pentium 1.3 GHz

for a horizon h= 100. Computation tests are made using maxplus toolboxes under Scilab. The

matrices A− and A+ are completely full: there is a place containing a token between each couple

of transitions. For instance, if n = 50, the relevant Petri net contains 50 transitions and 2500

places. The matrix A− is generated randomly and A+ is deduced from A− such that the system

is temporally live on the desired horizon: the complete calculations are made, therefore. In that

objective, we also take A= = ε which do not effect significantly the time. At the moment, the

code is not completely optimized and contains redundant operations.

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

60

80

100

120

Fig. 7. CPU time for different dimensions from 3 to 200 and h=1000

The algorithms use elementary operations on matrices as ⊗, ⊕, \, ∧ and the more complex
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operation Klenne Star ∗. The last one determines the computational complexity of each step and

the complexities of the different known algorithms are polynomial. Therefore, the complexity of

calculation of the greatest trajectory is about O(h.n2) with h the horizon and n the dimension

of the matrices. The space needed for the matrices wk is l.n2 with l the minimum of the horizon

h and the length of the transient period. In short, the algorithm can consider important sizes of

Event Graphs and horizon of calculation. Future papers will also consider sparse matrices.

X. CONCLUSION

P-time Event Graphs express a temporal behavior defined by lower and upper limits. This

paper shows that they can be modeled using a model in (max, +) algebra. The complexity of

the state equation resolution in P-time Event Graph depends on the paths and circuits of the

associated graph generated by matrices A= , A− and A+.

The introduction of a nondecreasing series of matrices enables the determination of the

extremal state trajectories satisfying an initial condition defined on an interval. The circuit

weights of these matrices define natural conditions of existence. A possible convergence to

a constant matrix after a transitory period, facilitates the analysis. The resolution is based on

a unique forward/backward iteration, requiring the calculation of Kleene star; consequently, the

calculation time is polynomial for a given horizon. As the size of the matrices corresponds to

the size of the forward/backward model, which depends on the number of transitions and on

the initial marking, these series give an efficient way to calculate the extremal trajectories and

to solve the consistency problem.
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