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Abstract: A state-based approach for detection of changes in systems modelled
as Timed Event Graph and Time Stream Event Graph is presented. We assume
that the net in its nominal behavior is known and transitions are partitioned as
observable and unobservable transitions. Considered faults are (possibly small)
variations of dynamical models by respect to this nominal behavior. Using the
algebra of dioids, the approach follows the same principle as the observers used in
continuous systems.Copyright c©2007 IFAC
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1. INTRODUCTION

The detection of changes as limited deteriora-
tions or significant faults in the systems play a
crucial role in increasing operational time and
productivity. In Discrete-Event Systems, the ap-
proaches generally consider drastic failures such
as ”valve stuck-closed” or ”sensor short-circuited”
(S. Hashtrudi Zad 2003) (D. Lefebvre 2006). This
article focus on a different type of faults, for
applications as transportation systems and pro-
duction systems. We assume that the process has
been previously optimized and that a scheduling
has been realized. The nominal behavior is ex-
pressed by a Petri Net which is an Event Graph
in many cases. In this paper, we suppose that the
model is a Timed Event Graph or a Time Stream
Event Graph. Faults are considered as variations
of dynamical models by respect to this nominal
behavior expressed by a Petri Net. The conceptual
point of view is that each fault is relevant to a
specific Petri net. At an upper level, the set of the
models (M0, M1, M2,...) corresponds to a set of

the system states (normal state, fault case 1, fault
case 2,...) of the process which are linked in a state
machine. At this upper level, the appearance of a
fault leads to a fault state and its repairing, to
the nominal state. Theses two events are assumed
unknown. Firing sequences are observed and the
coherence of the model is analyzed using an ob-
server. If the data are incoherent with the model
of the nominal behavior, a fault is detected. If
the data are coherent with the model of a fault
case, the relevant fault is diagnosed. If the fault
is repaired, the new data will be again coherent
with the nominal model.

We assume that the nominal model is known and
is described by an event graph where the delays
are associated to the places if the model is a Timed
Event Graph. In this paper, we consider a simple
fault which is a sudden variation of delay and
therefore, the model has the same graph with a
different temporisation. The transitions of the set
of models are partitioned as T = Tob ∪ Tun where
Tob is the set of observable transitions, and Tun



is the set of unobservable transitions. Fault and
repairing events are modelled at an upper level in
the state machine.

An objective of this paper is to propose an on-line
optimal observer (A. Giua 2005)which estimates
the greatest state (see (F. Baccelli 1992).The
lowest state in not necessary in the approach.
Moreover, only a sub-optimal solution can be
calculated) in Timed Event Graphs and Time
Stream Event Graphs (M.Diaz 2001) and analyzes
the consistency of the data. Moreover, the Petri
Net can contain input and output transitions
which can be observable or not. For instance, they
can express respectively the input or the output
of a vehicle in a bus line.

The paper is organized as follows: We first present
the motivation and the principle of the proposed
approach. Then, the modelling of Timed Event
Graphs and Time Stream Event Graphs in the
(min, max, +) algebra is given. Based on a fixed
point approach, we present an observer which
allows the detection of changes in the process.
Finally, the approach is applied to a simple Timed
Event Graph. These parts are preceded by nota-
tions and by a brief review of previous results.

2. PRINCIPLE OF THE PROPOSED
APPROACH

Let us consider the sequence of two places which
describes a non-bounded Event Graph. The first
place describes the journey of a vehicle from the
town A to B which lasts between 2 and 3 hours.
The second represents the following journey from
B to C with a temporization between 5 and 6
hours. If the time u1 of departure of the vehicle
is known, the arrival at the intermediate town B
can obviously be estimated: [u1 + 2, u1 + 3]. Sym-
metrically, If the time y1 of arrival to the town C is
known, the arrival at the intermediate town B can
also be estimated: [y1 − 6, y1 − 5]. Consequently,
the estimate of the date associated with B can
be calculated by a forward-backward approach:
[max(u1+2, y1−6), min(u1+3, y1−5)]. If the date
is out this interval, we can conclude that there
is a break-down, an unpredictable event or more
generally a bad modelling. Here the estimation
allows the analysis of the past journey.

But, the model can equivalently be described by
the form x ≤ f(x) which gives : x ≤ min(u1 +
3, y1 − 5) , u1 ≤ x − 2 and y ≤ x + 6. The first
inequality allows the estimation of the greatest
x. This value can be introduced in the two other
inequalities: a fault is detected when they are not
satisfied. This situation arrives when the model
has changed: for instance, a breakdown of the
vehicle between the two towns B and C entails

that the temporization associated to the second
place equals 9 which does not belong to [5, 6] .
If the real data are u = 10 and y = 21, the
greatest estimate x is 13 and u1 ≤ x−2 is satisfied
(10 ≤ 13 − 2 = 11) contrary to y ≤ x + 6
(21 ≤ 13 + 6 = 19) which shows an incoherence
between the used model and the evolution of the
current trajectory.

Therefore, this simple example shows an appli-
cation of fixed point theory in fault detection.
Based on the well-known principle of redundancy,
the fault detection needs the calculation of only
one bound. Therefore, coherence between data
(estimate, input and outputs) is checked.

3. PRELIMINARIES

A monoid is a couple (S,⊕) where the operation
⊕ is associative and presents a neutral element.
A semi-ring S is a triplet (S,⊕,⊗) where (S,⊕)
and (S,⊗) are monoids, ⊕ is commutative, ⊗ is
distributive relatively to ⊕ and the zero element
ε of ⊕ is the absorbing element of ⊗ (ε ⊗ a =
a⊗ ε = ε) . A dioid D is an idempotent semi-ring
(the operation ⊕ is idempotent, that is a⊕ a = a
). Let us notice that contrary to the structures of
group and ring, monoid and semi-ring do not have
a property of symmetry on S. The unit R∪{−∞}
provided with the maximum operation denoted ⊕
and the addition denoted ⊗ is an example of dioid.
We have : Rmax = (R∪{−∞},⊕,⊗) . The neutral
elements of ⊕ and ⊗ are represented by ε = −∞
and e = 0 respectively. The absorbing element
of ⊗ is ε. Isomorphic to the previous one by the
bijection: x 7−→ −x , another dioid is R ∪ {+∞}
provided with the minimum operation denoted ∧
and the addition denoted ¯. The neutral elements
of ∧ and ¯ are represented by T = +∞ and
e = 0 respectively. The absorbing element of ¯
is ε. The following convention is taken: T ⊗ ε =
ε and T ¯ ε = T. The expression a⊗ b and a¯ b
are identical if at least either a or b is a finite
scalar. The partial order denoted ≤ is defined
as follows: x ≤ y ⇐⇒ x ⊕ y = y ⇐⇒ x ∧
y = x ⇐⇒ xi ≤ yi , for i from 1 to n in Rn.
Notation x < y means that x ≤ y and x 6= y.
A dioid D is complete if it is closed for infinite
sums and the distributivity of the multiplication
with respect to addition extends to infinite sums
: (∀ c ∈ D ) (∀ A ⊆ D) c ⊗ (

⊕
x∈A

x) =
⊕

x∈A

c ⊗ x .

For example, Rmax = (< ∪ {−∞} ∪ {+∞},⊕,⊗)
is complete. The set of n.n matrices with entries
in a complete dioid D endowed with the two
operations ⊕ and ⊗ is also a complete dioid which
is denoted Dn.n. The elements of the matrices
in the (max,+) expressions (respectively (min,+)
expressions) are either finite or ε ((respectively
T ). We can deal with non-square matrices if we



complete by rows or columns with entries equals
to ε ( respectively T ). The different operations
operate as in the usual algebra: The notation ¯
refers to the multiplication of two matrices in
which the ∧-operation is used instead of ⊕. The
mapping f is said residuated if for all y ∈ D, the
least upper bound of the subset {x ∈ D | f(x) ≤
y} exists and lies in this subset. The mapping x∈
(Rmax)n 7→ A⊗ x defined over Rmaxis residuated
(F. Baccelli 1992) and the left ⊗−residuation of
B by A is denoted by: A\B = max{x ∈ (Rmax)n

such that A⊗ x ≤ B}.

4. MODELS OF TIME EVENT GRAPHS

4.1 Interval models

The interval models are now described. The vari-
able xi(k) is the date of the kth firing of transition
i and a trajectory of a transition xi is a firing
date sequence {xi(k)} for k ∈ Z . Any trajectory
can be represented by the following formal power
series in γ : x(γ) =

⊕
k∈Z

x(k) ⊗ γk. Variables may

also be regarded as the backward shift operator
in event domain (formally, γx(k) = x(k− 1)) and
γ-transforms of functions can express this effect.
The set of formal power series in one variable
γ and coefficients in R = R ∪ {±∞}, is usually
noted Rmax[[γ]]. The evolution of the system is de-
scribed by the following model, called an ”interval
descriptor system” or ”interval model”, where f−

and f+ are (min, max, +) functions on the set of
formal power series Rmax[[γ]].

f−(x(γ), u(γ)) ≤ x(γ) ≤ f+(x(γ), u(γ)) (1)

The vectors x and u are the state and the input,
respectively.

The functions f− and f+ will be defined in the
following parts for each Event Graph. As the
type of the system is defined by the types of
the functions f− and f+, we can characterize
the model by the following pair (type of f−,
type of f+). The type ((min, max, +), (min,
max, +)) naturally represents the more general
mathematical case. Assuming the existence of
a solution, they define corresponding classes of
interval systems.

In the following part, we will show that Timed
Event Graphs, P-time Event Graphs and Time
Stream Event Graphs can be modelled under the
form of interval model.

4.2 Time Stream Event Graphs

Definition 2.1 (Time Stream Event Graph)
Let Ii be a set of upstream arcs of a transition

i and Pi be the corresponding set of upstream
places. A Time Stream Event Graph is an Event-
Graph such as:
1) an interval [αj , βj ] ∈ (R+∪{0})×(R+∪{+∞})
associated with each aj ∈ Ii (usually defined on
Q+, the limits of intervals are generalized to R+,
which does not introduce new difficulties);
2) a special semantic policy of firing associated
with each transition is defined below.

Considering one outgoing arc from a given place,
when a token is received by that place at time x
, the token should remain in the place during an
amount of time defined by a value within the range
[x+α, x+β] associated with the arc. As the firing
time of a transition which has more than one input
arc, depends on the nature of the processes which
will be synchronized, different semantic policies of
firing may be associated with a transition. In this
paper, we consider two types of semantic policies,
And and Weak-And, which we will use later. They
are defined by a pair [x+αj , x+βj ] associated to
each ingoing arc.

Definition 2.2 A transition i of the type ”And”
(respectively, ”Weak-And”) is firing at time xi

if and only if the two following conditions are
satisfied:

1) transition i is enabled for the current marking:
every upstream place j of Pi contains at least one
token. Let xj be the entrance date of the token
which is also the date of firing of the upstream
transition of this place.

2) For the semantic policy And, the value of
xi is as follows: (xj + αj) ≤ xi ≤ (xj + βj) for
every place pj ∈ Pi and arc aj ∈ Ii (every time
condition has to be fulfilled).

Respectively, for the semantic policy Weak-
And, the value of xi is as follows: (xi+αi) ≤ xi for
every place pj ∈ Pi and arc aj ∈ Ii and ∃j ∈ Pi,

xi ≤ (xj + βj) (the firing may wait until the last
time interval).

Therefore, if mj is the number of the tokens
present in each place pj at the instant t = 0 (initial
marking), for each transition, we can write
⊕

j∈Pi

(xj(k−mj)+αj) ≤ xi(k) ≤ ∧
j∈Pi

(xj(k−mj)+

βj) if the semantic policy is And;⊕
j∈Pi

(xj(k−mj)+αj) ≤ xi(k) ≤ ⊕
j∈Pi

(xj(k−mj)+

βj) if the semantic policy is Weak-And.

For Time Stream Event Graphs for semantic poli-
cies And and Weak-And, f−(x(γ), u(γ)) can be
a (max, +) function and f+(x(γ), u(γ)) a (min,
max, +) function. Therefore, any Time Stream
Event Graph can be modelled under the following
general form :







f−(x(γ), u(γ)) = A− ⊗ x(γ)⊕B−u(γ)

f+(x(γ), u(γ)) =
j(i)∧

i=1

A+
i ⊗ x(γ)⊕B+

i u(γ)

(2)

with (A−)ij , (B−)ij , (A+
i )jk ,(B+

i )jk ∈ Rmax[[γ]]

Particularly, the general form 2 includes the state
equation of Timed Event Graphs because the
relevant interval model is found by taking: imax =
1; A− = A+

1 = A; B− = B+
1 = B . Consequently,

the algebraic model of Timed Event Graphs may
be seen as a particular case of the interval model.
Consequently, f−(x(γ), u(γ)) = f+(x(γ), u(γ)) =
Aγ ⊗ x(γ)

⊕
B ⊗ u(γ)

Moreover, it can be proved that P-time Event
Graphs can be modelled by inequalities corre-
sponding to semantic policy And. Therefore, the
interval model 1 is an algebraic generalization
of Timed Event Graphs, P-time Event Graphs
and Time Stream Event Graphs for the semantic
policies And and Weak-And.

5. ESTIMATION AND DETECTION OF
CHANGES

Now, we consider an arbitrary subpart of a given
Event Graph, and the notation below are relevant
to this graph. The only condition is that the
subgraph is an Event Graph. The consideration
of the complete graph allows the detection of
changes in the process while the consideration of
subgraphs allows their isolation.

The transitions of the set of models are parti-
tioned as T = Tob ∪ Tun where Tob is the set
of observable transitions, and Tun is the set of
unobservable transitions. Some on the input tran-
sitions of the Petri Net are observable transitions
and Uob ⊂ Tob is the set of observable input tran-
sitions. The set of observable transition t of Tob

with t /∈ Uob is denoted Yob and Tob = Uob ∪ Yob.
Each transition t of Yob is connected to the graph
with places with a null initial marking otherwise
some places can be added such that the following
equality can be written.

yob(γ) = Cob ⊗ x(γ) with (Cob)ij ∈ Rmax

Therefore, some input and output transitions
(which often models the input and output of parts,
products, messages,... in the system) can be un-
observable and Tun = Uun ∪ Yun with an obvious
notation.

The objective is to find the least upper bound
of x(k) knowing the values of the input uob(k)
and the output yob(k) for k going from ks to kf

with ks and kf as the numbers of start and final
events. We are supposing the model is known on
the same horizon of observation. This problem

of estimation is thus different from the control
synthesis which considers that the control, the
state and the output are the unknown data.

The initial marking is supposed known contrary
to the state x(k) and the initial condition x(0)
(the first date of firing of the transitions) which
are unknown.

5.1 Fixed point formulation

In this part, the choice of the semantic policies
And and Weak-And causes function f − (2) to
be residuated .The problem can consequently, be
reformulated as a fixed point problem.

Theorem 4.1 For Time Stream Event Graphs
with the semantic policies And and Weak-And,
the problem of the greatest estimate of x(γ) can
be written as follows: from ks to kf , search the
greatest state of the following inequality x(γ) ≤
h (x(γ)) with

h (x(γ)) =




γ−1x(γ) ∧ [A−\x(γ)] ∧ [Cob(γ)\yob(γ)]∧

[
j1∧

i=1

((A+
i )′ ⊗ x(γ)⊕ (B+

ob,i )′ ⊗ uob(γ))]




(3)

with the constraints
{

uob(γ) ≤ B−
ob\x(γ)

yob(γ) ≤ Cob(γ)⊗ x(γ) (4)

Proof: omitted.

Clearly, the equation set (3) contains (min, max,
+) functions which are defined below. Let us
notice, that the first expression presents a usual
backward part A−\x(γ) but also, in the case
where A+

i and B+
i have positive exponents, a for-

ward part γ−1x(γ)∧ [
j1∧

i=1

((A+
i )′⊗x(γ)⊕(B+

ob,i )′⊗
uob(γ))]. This fact increases the complexity of the
problem and forbids the writing of simple equa-
tions such as the classical backward equations in
control. In other words, we must solve a (min,
max, +) fixed-point problem of type x ≤ f(x) (if x
exists) over the horizon of the known values of the
control u and the output y with function f defined
by the following grammar: f = b, x1, x2, . . . , xn |
f ⊗ a | f ∧ f | f ⊕ f where a, b are arbitrary reals.

Moreover, the constraints uob(γ) ≤ B−
ob\x(γ) and

yob(γ) ≤ Cob(γ) ⊗ x(γ) must always be satisfied
in a nominal behavior. They verify coherence be-
tween known data and model and show partic-
ularly that the Event Graph follows its nominal
model. The two constraints make it possible in
particular to check that the event graph follows
its nominal model.



5.2 Algorithm of calculation of the greatest state

The effective calculation of the greatest control
can be made by a classical iterative algorithm.
The resolution of (3) whose form is x ≤ f(x), is
given by the iterations of xi+1 ← f(xi)∧ xi if the
starting point is finite and greater than the final
solution. Here, the index i represents the number
of iterations and not the number of components
of the vector x.

Following this framework, we below give an al-
gorithm specific to the estimation of the greatest
state for Time Stream Event Graph. It can also
be applied to Timed and P-time Event Graphs.

Algorithm

Step 0 (initialization) : µ(kf ) ← T ; λ(kf ) ← T

Repeat

Step 1 : for k = kf to ks , λ(k) ← µ(k) ∧ λ(k +
1) ∧ [A−\λ(k + 1)] ∧ [Cob\yob(k)]

Step 2 : µ(ks) ← λ(ks)

for k = ks+1 to kf , µ(k) ← λ(k)∧f+
i (µ(k), u(k))

Until λ(k) = µ(k) for ks ≤ k ≤ kf

The function f+
i (µ(k), u(k)) equals

j(i)∧
l=1

[A+
l ⊗µ(k−

1)⊕B+
ob,l⊗uob(k)] for Time Stream Event Graphs,

equals A+¯ x(γ)∧B+
ob¯ uob(γ) for P-time Event

Graphs and equals [A+
l ⊗µ(k−1)⊕B+

ob,l⊗uob(k)]
for Timed Event Graphs.

As the general algorithm is known to be pseudo-
polynomial, the above algorithm converges to the
greatest state for Time Stream Event Graphs
(with semantic policies And and Weak-And) in
a finished number of iterations.

6. EXAMPLE

In the aim of clearly illustrating the approach, we
consider only a Timed Event Graph. Calculations
has been realized with Scilab.

Model of the Petri Net

Fig. 1. A Timed Event Graph

We consider a simple Timed Event Graph whose
nominal model M1is as follows. The temporiza-
tions are denoted T .

T1 = 1, T2 = 2 , T3 = 3, T4 = 10, T5 = 5, T6 = 5,
T7 = 1 and T8 = 0.

a = T2 + T6 + T7 ; b = d + T5 + T7 ; c = T2 + T3 ;
d = T4 ; f = T1 + T2 + T3

A =




0 0 ε ε
a 0 b ε
ε c 0 0
ε ε d 0


 , B1 =




T1

ε
f
ε


 and C1 =

(
T2 + T6 ε d + T5 ε

T2 ε ε ε

)

The transition x1 is an input transition. The
observable transitions are: x1, x3 and x6. An
observer on the overall system can be developed
using the transitions x1 and x6.

Scenario of the simulation

Now, a control is applied to the system with
x1 = 0 and for i = 1 to 69, x1(i + 1) = x1(i) + 1.
Moreover, the following faults are considered. We
successively consider a fault in zone 1 and two
faults in zone 2. The normal value of T2 is 2 and
from k = 10 to15, T2 = 12. Then, in zone 2, the
normal value of T4 is 4 for 1 ≤ k ≤ 28 and the fault
is T4 = 13 from k = 29 to 35. The temporisation
T4 is restored to its normal value for 36 ≤ k ≤ 49.
Finally, T4 = 15 from k = 50 to 55 and T4 is
restored to its normal value for 56 ≤ k ≤ 70.

Each following curve gives the number of incon-
sistent relations function of the number of event
from 1 to 70. The horizon of calculation of the
observers is equal to 5.

Detection
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Fig. 2. Global observer

The global observer is sensitive to the three faults.

Isolation

The analysis of the Event Graph show the exis-
tence of two input/output sub-models where the
input and output are observable. Therefore, each
zone can be checked by an observer.

Zone 1

The observer uses observable transitions x1, x3

and x6.

A− = A+ =




0 0 ε
ε 0 T7

ε ε 0


 B− = B+ =




T1 ε
ε ε
ε 0




C− = C+ =
(
T2 ε ε

)



Fig. 3. Observer of the zone 1

Zone 2

Fig. 4. Observer of the zone 2

The observer uses observable transitions x3 and
x6.

A− = A+ =




0 0 ε
T4 0 ε
ε ε 0


 B− = B+ =




T3

ε
0




C− = C+ =
(
T4 + T5 ε T6

)

The observer of the zone 1 reacts to the fault
which appeared in zone 1. It is not sensitive to the
two faults of zone 2. The observer of the zone 2 has
a symmetric behavior. Consequently, the isolation
of the fault in zone 1 or zone 2, has been realized.
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Fig. 5. Observer of zone 1
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Fig. 6. Observer of zone 2

Diagnostic

The following specific observer checks the coher-
ence of the nominal model of the zone 2 but with
T4 between 4 and 14.

A− =




0 0 ε
T4 0 ε
ε ε 0


 A+ =




0 0 ε
T4 + 10 0 ε

ε ε 0


 B− =

B+ =




T3

ε
0




C− =
(
T4 + T5 ε T6

)
C+ =

(
T4 + 10 + T5 ε T6

)
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Fig. 7. Observer of T4 in zone 2

The observer does not react to the fault where
T4 = 13 but is sensitive to the third fault where
T4 = 15.

7. CONCLUSION

The formulation introduces two constraints rel-
evant to input and output data, which can be
used to check the correctness of the model and
the data and to detect the existence of a change
or the deterioration in the process as shown in
the simulation. This approach has been improved
by considering subparts of the complete model.
The simulation illustrates that the different con-
sistencies of faulty subpart and no-faulty subpart
allows the isolation of the fault: an observer of
a zone is insensible to the fault of another part
of the system. Moreover, in the last test, small
changes in the process has been detected by a
specific observer.
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