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Optimal control synthesis of timed event

graphs with interval model specifications

Philippe Declerck and Mohamed Khalid Didi Alaoui

Abstract

The purpose of this paper is the optimal control synthesis of a Timed Event Graph when the state

and control trajectories should follow the specifications defined by an interval model. The problem

is reformulated in the fixed point form and the spectral theory gives the conditions of existence of a

solution.

Index Terms

Timed Event Graphs, P-time Petri nets, Time Stream Petri nets, (min, max, +) functions, cycle-time

vector, fixed point.

I. INTRODUCTION

In [7] and [6], we have shown that P-time Event Graphs and Time Stream Event Graphs can

be modeled by a new class of systems called interval systems, for which the time evolution is

not strictly deterministic, but is described by intervals which use the operations of maximization,

minimization and addition to define the lower and upper bound constraints. The consistency of

P-time Event Graphs can also be studied in tropical algebra using the spectral vector [6]. In this

paper, we focus on the following problem.

Some events are stated as controllable, meaning that the firing of the corresponding transitions

(input) may be delayed until some arbitrary time provided by a supervisor. Considering a desired

behavior of some transitions (output) of the Timed Event Graph such as a sequence of execution
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times (desired output), we wish to slow down the system as much as possible ensuring all output

events to occur before their desired execution time.

Moreover, we assume that the Timed Event Graph must follow specifications defined by a

second model. Expressed by an interval model, this desired behavior is expressed by inequalities

which introduce lower and upper bounds on the dates of firing of all the transitions. As the

specifications can be incoherent or too restrictive with respect to the Timed Event Graph, a first

problem is to determine whether there exist control actions which will restrict the system to

that behavior. If the trajectories of the Timed Event Graph can follow additional specifications,

a second objective is to determine the greatest input in order to obtain the desired behavior

defined by the static constraints (the desired output) and the dynamic constraints (expressed by

an interval model).

In this field, a first class of approaches analyzes the state space and develops controllers in order

to keep trajectories inside a space deduced from a given specification. The aim is the extension

of the concept of (A,B)-invariant subspace to linear systems over the max-plus semiring. The

computation of the maximal set of the initial states is analyzed in [2] [11]. Another group of

methods [13] [7] [6] considers extremal points of the state space and develops optimal control

in order to keep trajectories close to a reference trajectory following additional constraints. The

aim is the extension of the principle of the well-known model predictive control.

Let us point out two main differences between these two classes of methods. In feedback

approaches, the technique is based on the addition of new structures such as loops which

modifies the initial Timed Event Graph. This technique can improve the boundedness of the

Petri net but also reduce its production rate and modify its liveness. In predictive approaches,

the Petri Net and all its characteristics are kept as we can assume that a preparation composed

of scheduling, resources optimisation,... has established an optimized model. Another difference

is that predictive approaches can be applied to a large class of models. Particularly, approaches

based on a feedback defined by a Petri net are limited by the condition that the temporisation and

initial marking of each added place are non-negative. The existence of a linear state feedback

is discussed in [11] (see part V and in particular example 4): this problem is reminiscent of

difficulties of the theory of linear dynamical systems over rings [10].

In [7] and [6], the control synthesis has been considered by the authors for P-time Event

Graphs and Time Stream Event Graphs. Extending these studies, the present paper proposes the
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control synthesis of a Timed Event Graph (plant) following an interval system (specifications)

which can express a set of Event Graphs. Based on a fixed point technique, the main advantage

of the approach is that it allows adding (min, max, +) lower and upper bound constraints on all

the transitions. It contains new material including a new fixed-point algorithm and an everyday

example.

In this paper, the usual hypothesis that places of the Event Graphs should be First In First Out

(FIFO) is taken. No hypothesis is taken on the structure of the Event Graphs, which does not

need to be strongly connected. No closed-loop structure of control is given a priori. The initial

marking should only satisfy the classical liveness condition.

In the next part, we present the optimal control problem and we analyze the existence of a

finite solution through spectral theory. This section is followed by an algorithm which determines

the greatest control. The notations and a brief review of preliminary results are presented in the

Appendix.

II. CONTROL PROBLEM

By usual (max,+) algebraic notation, maximization, minimization and addition operations are

noted respectively ⊕ , ∧ and ⊗. Variable xi(k) (respectively, ui(k)) is the date of the kth firing

of internal transition xi (respectively, of input transition ui). Assuming that the following models

are available for k ≥ ks + 1 with k ∈ Z (’s’ for ’start’), we consider the control of an event

graph modeled as a (max, +) system

x(k) = A1 ⊗ x(k − 1)⊕ A0 ⊗ x(k)⊕B0 ⊗ u(k) , (1)

with state x subject to the following interval constraints

f−(x(k − 1), x(k), u(k)) ≤ x(k) ≤ f+(x(k − 1), x(k), u(k)) , (2)

and the desired output y(k) ≤ z(k) where

y(k) = C ⊗ x(k) ,

is the output of the event graph and z(k) for k ∈ [ks +1, kf ] (’f’ for ’final’) is the desired output.

The goal is to find the greatest control u(k) for k ∈ [ks + 1, kf ].

In this paper, the following usual assumptions on the plant defined by Timed Event Graph

(1) are made. The Timed Event Graph is structurally observable and controllable [1]: every
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Fig. 1. Timed Event Graph (plant: tasks of the professor)

internal transition can be reached by a path from one input transition at least and, from every

internal transition, there exists a path to one output transition at least. The structural observability

(respectively controllability) gives a condition to observe an effect in the output (resp. transition)

whose origin comes from one internal transition (resp. input) at least. We also suppose that the

system works at the earliest time and the Timed Event Graph is defined by equality (1).

Moreover, the following assumption on additional specifications defined by interval model

(2) is made: the lower bound f− is max-only (see appendix) and is defined by f−(x(k −

1), x(k), u(k)) = A−1 ⊗x(k−1)⊕A−0 ⊗x(k)⊕B−⊗u(k). No assumption is made on f+ which

is a (min, max, +) function. Except the form of functions in (2), there is no assumption on the

interval model which can describe a set of non-connected Event Graphs.

Example. A simple real-world problem: education system

Plant. Described by the Timed Event Graph in Figure 1, the plant corresponds to the following

work of a professor: the lesson is composed of a lecture (duration: T1) followed by practical

work (duration: T2). Transitions express the following events. x1: beginning of the lecture; x2:

beginning of practical work; x3: end of practical work; u1: decision to start the lecture; u2:

decision to start practical work. From Figure 1, we can deduce the following matrices. A0 =
−∞ −∞ −∞

T1 −∞ −∞

−∞ T2 −∞

 , B0 =


0 −∞

−∞ 0

−∞ −∞

 and C =
(
−∞ −∞ 0

)
. As the state

trajectory is non-decreasing (x(k) ≥ x(k − 1)), A1 = I .

Interval system. Moreover, the teacher must follow the official instructions: a lesson must

not exceed T+
3 and not be less than T−3 . These specifications can be described by a new Event

Graph which can be a simple P-time Event Graph. As T−3 ⊗ x1(k) ≤ x3(k) ≤ T+
3 ⊗ x1(k), the
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corresponding interval system is as follows.

A−1 = −∞, A−0 =


−∞ −∞ −∞

−∞ −∞ −∞

T−3 −∞ −∞

, B− = −∞ and f+(x(k − 1), x(k), u(k)) =


+∞

+∞

T+
3 ⊗ x1(k)

 .

Problem. The lesson must stop before the daily closing time of school which corresponds to

the desired output z. A problem can be the determination of the latest times to begin the lesson

such that each specification is satisfied. If the teacher begins the lesson after this date which

corresponds to the greatest control u, the practical work cannot be finished (y � z).

III. APPROACH

In the sequel, the problem is reformulated as a fixed point problem which describes all the

relations between components of state trajectory and control trajectory. A relaxation presented

in part III-B allows the analysis of existence of a finite control while the determination of the

greatest control u(k) for k ∈ [ks + 1, kf ] is made in part III-C. The resolution also proposes a

state trajectory x(k) for k ∈ [ks, kf ] which can be followed by the system if the corresponding

control u(k) is applied.

A. Fixed point form

Any feasible control trajectory u(k) to the control problem is considered in the following

theorem.

Theorem 1: Given the desired output z(k), the system composed of models (1), (2) and

constraint y(k) = C ⊗ x(k) ≤ z(k) where k ∈ [ks + 1, kf ], is equivalent to the following

inequality system:


x(k) ≤ C\z(k)

∧[A0 ⊕ A−0 ]\x(k) ∧ g+(x(k − 1), x(k), u(k))

x(k − 1) ≤ [A1 ⊕ A−1 ]\x(k)

u(k) ≤ [B0 ⊕B−]\x(k)

, (3)
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where k ∈ [ks + 1, kf ] and, g+(x(k − 1), x(k), u(k)) =

[A1 ⊗ x(k − 1)⊕ A0 ⊗ x(k)⊕B0 ⊗ u(k)] ∧ f+(x(k − 1), x(k), u(k)) . (4)

Proof:

Equality (1) is equivalent to A1 ⊗ x(k − 1)⊕ A0 ⊗ x(k)⊕B0 ⊗ u(k) ≤ x(k)

x(k) ≤ A1 ⊗ x(k − 1)⊕ A0 ⊗ x(k)⊕B0 ⊗ u(k)
, (5)

and using the residuation (see Appendix), we obtain


x(k − 1) ≤ A1\x(k)

x(k) ≤ A0\x(k) ∧ [A1 ⊗ x(k − 1)⊕ A0 ⊗ x(k)

⊕B0 ⊗ u(k)]

u(k) ≤ B0\x(k)

. (6)

From (2), we similarly obtain
x(k − 1) ≤ A−1 \x(k)

x(k) ≤ A−0 \x(k) ∧ f+(x(k − 1), x(k), u(k))

u(k) ≤ B−\x(k)

. (7)

Finally, system (3) is found after adding the classical relation x(k) ≤ C\z(k) which is directly

deduced from C ⊗ x(k) ≤ z(k) .

The above equivalences are based on well-known properties of residuation (see Appendix).

Note that we can deduce an upper bound on the state by using x(k) ≤ C\z(k) knowing z(k).

Using this calculated upper bound, we can calculate an upper bound on the control by using the

last inequality of (3). Let us develop system (3) algebraically on horizon [ks, kf ].
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x(ks) ≤ [A1 ⊕ A−1 ]\x(ks + 1)

x(k) ≤ C\z(k) ∧ [A0 ⊕ A−0 ]\x(k) ∧ [A1 ⊕ A−1 ]\x(k + 1)

∧g+(x(k − 1), x(k), u(k)) for k ∈ [ks + 1, kf − 1]

u(k) ≤ [B0 ⊕B−]\x(k) for k ∈ [ks + 1, kf − 1]

x(kf ) ≤ C\z(kf ) ∧ [A0 ⊕ A−0 ]\x(kf )

∧g+(x(kf − 1), x(kf ), u(kf ))

u(kf ) ≤ [B0 ⊕B−]\x(kf )

(8)

We now introduce the following notation. Denoted Xl, vector (x(ks)
t, x(ks + 1)t, u(ks +

1)t, x(ks + 2)t, u(ks + 2)t, ...., x(ks + l)t, u(ks + l)t)t is the concatenation of state trajectory

(x(ks)
t, x(ks+1)t, x(ks+2)t, ...., x(ks+l)t)t and input trajectory (u(ks+1)t, u(ks+2)t, ...., u(ks+

l)t)t where l = kf − ks denotes the length of the horizon. System (8) can be rewritten as the

following fixed point form

Xl ≤ hl(Xl) , (9)

where hl is clearly a (min, max, +) function. Therefore, we must analyze and solve a fixed-

point problem of type x ≤ f(x) (if x exists) over horizon [ks, kf ]. System (9) contains a

“Backward” part as x(k − 1) ≤ [A1 ⊕ A−1 ]\x(k) but also, a “Forward” part with expression

x(k) ≤ g+(x(k−1), x(k), u(k)). This fact forbids the immediate writing of forward or backward

recurrences such as the state equations or the classical backward equations used in control for

Timed Event Graphs. Let us note that g is a (min, max, +) function even if there is no function

f+(x(k − 1), x(k), u(k)) in the specifications.

B. Existence of a finite solution

The aim of this part is to verify the existence of a finite solution (not just the greatest solution)

in the control synthesis. Presented in the appendix, the property of homogeneity of (min, max,

+) functions belonging to F (n, n) is necessary to use Theorem 3. However, function hl in (9)

is not homogeneous as hl contains desired output z which is a datum of the problem (see terms

C\z(k) in (8)). To apply the spectral theory, we will use a relaxation by associating a new

variable x0 with every constant which leads to slight modifications of (8). All terms of system

(8) are kept except terms C\z(k) which become C\(z(k)⊗ x0) for k ∈ [ks + 1, kf ]. Moreover,
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inequality x0 ≤ x0 which is always satisfied, is added and consequently, the system defined

by (9) can also be defined by following system (10) with condition x0 = 0. Therefore, with

nonhomogeneous function hl is associated a homogeneous function Hl, denoted with the same

letters but in capitals.

 x0

Xl

 ≤ Hl

 x0

Xl

 (10)

If

 x0

Xl

 is an arbitrary solution of (10) in R (without condition x0 = 0), then

(x0)
−1 ⊗

 x0

Xl

 = (−x0)⊗

 x0

Xl

 =

 0

(−x0)⊗Xl

 , (11)

is a solution of (10) with condition x0 = 0. We can interpret variable x0 as a possibly negative

period added to the desired output which delays or anticipates all calculated dates with respect

to the origin of time. Particularly, all the input dates can be postponed or anticipated with the

same duration. A similar technique is used in part V of [11] and the relevant variable can be

interpreted as an increase or decrease of every temporisation of the Timed Event Graph.

Using the cycle time vector χ (see Appendix), the following theorem analyzes the existence

of a finite vector Xl. Therefore, it gives the conditions such that the plant can follow a finite

state trajectory obeying the specifications.

Theorem 2: There exists a finite vector Xl satisfying models (1), (2) and constraint y(k) =

C ⊗ x(k) ≤ z(k) on horizon [ks, kf ] if and only if χ(Hl) ≥ 0.

Proof: As Hl is a homogeneous function, spectral vector χ(Hl) can be calculated and

Theorem 3 (see appendix) applies. If the cycle time satisfies the corresponding condition of

existence, system (10) has a solution

 x0

Xl

. For any solution, an obvious translation can be

applied in such a way that the first component x0 equals zero. If x0 = 0, then this solution

satisfies (8) which is equivalent to system which is made up of (1), (2) and constraint y(k) =

C ⊗ x(k) ≤ z(k).

Example (education system continued)
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The calculation of the spectral vector of the above function denoted H1 leads to χ(H1) = 0

for the following values: T1 = 60;T2 = 90;T−3 = 165;T+
3 = 175. Therefore, the above system

is consistent. The following subsystem can be deduced from (8).
x1(1) ≤ −T1 + x2(1)

x2(1) ≤ −T2 + x3(1)

x3(1) ≤ +T+
3 + x1(1)

(12)

Therefore, x1(1) ≤ −T1−T2 +T+
3 +x1(1). If T1 = 60, T2 = 90 and T+

3 = 175 , the inequality

becomes x1(1) ≤ −60− 90 + 175 + x1(1) = 25 + x1(1) which is consistent.

Now, if we take T−3 = 135 and T+
3 = 145, we obtain −T1 − T2 + T+

3 = −5 < 0. An

incoherency appears as inequality x1(1) ≤ −T1−T2 +T+
3 +x1(1) gives x1(1) ≤ −5+x1(1): the

interpretation is that the lesson time of the professor is inconsistent with the official instructions.

The calculation shows that several components of spectral vector χ(H1) are negative: χ(H1) =

(0,−5
3
,−5

3
, ....,−5

3
)t. Consequently, χ(H1) � 0 and the above system (10) has no solution. �

C. Determination of the greatest solution

The previous part considers the existence of an arbitrary finite solution Xl. Let us now consider

a particular solution which is the greatest solution. The greatest control trajectory and also, the

greatest state trajectory are clearly found if the greatest solution is determined.

The existence of the greatest solution on complete lattices can be proved by using the famous

fixed point theorem of Knaster-Tarski [14] whose conditions are already satisfied: in our problem,

hl (.) is an isotone function defined on a complete lattice Rmax=(R∪ {−∞}∪ {+∞},≤). If an

algorithm gives the greatest solution of x ≤ f(x), this solution also satisfies the relevant equality.

Function hl (.) is also discontinuous but Knaster-Tarski Theorem does not require continuity of

the function.

The effective calculation of the greatest control of inequality (9) can be made by a classical

iterative algorithm of Mc Millan and Dill [12] which particularizes the algorithm of Kleene to

(min, max, +) expressions. The general resolution of x ≤ f(x) is given by the iterations of

xi ← xi−1 ∧ f(xi−1) if the finite starting point is greater than the final solution. Here, number

i represents the number of iterations and not the number of components of vector x. Following

this framework, we provide an algorithm specific to the determination of the greatest state and
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control. Described below, algorithm 1 uses a decomposition of system (8) in its backward part

and forward part. For instance, the second relation of (8) is divided into two parts x(k) ≤ C\z(k) ∧ [A0 ⊕ A−0 ]\x(k) ∧ [A1 ⊕ A−1 ]\x(k + 1)

x(k) ≤ g+(x(k − 1), x(k), u(k))
, (13)

for k ∈ [ks + 1, kf − 1]. In the following algorithm, the input is the desired output trajectory

z(k) from k = ks + 1 to kf . The outputs are the greatest control trajectory u(k) from k = ks + 1

to kf and the greatest state trajectory x(k) from k = ks to kf . Term x(k, i) is the state estimate

at event number k and iteration i.

Algorithm 1

Step 0 (initialization): i = 1 ; x(k, i− 1)← T for k ∈ [ks, kf ]

Repeat

- Step 1: backward calculation of the state

x(kf , i)← x(kf , i− 1) ∧ C\z(kf ) ∧ [A0 ⊕ A−0 ]\x(kf , i− 1)

x(k, i)← x(k, i− 1)∧C\z(k)∧ [A0⊕A−0 ]\x(k, i− 1)∧ [A1⊕A−1 ]\x(k+ 1, i) from

k = kf − 1 to ks + 1

x(ks, i)← x(ks, i− 1) ∧ [A1 ⊕ A−1 ]\x(ks + 1, i)

- Step 2: backward calculation of the control

u(k)← (B0 ⊕B−)\x(k, i) from k = kf to ks + 1

- Step 3: forward calculation of the state

x(k, i)← x(k, i) ∧ g+(x(k − 1, i), x(k, i), u(k)) from k = ks + 1 to kf

Until no x(k, i) changes for ks ≤ k ≤ kf

Using a “Backward” approach, the first iteration of step 1 allows the determination of the

starting state trajectory of the general algorithm. In step 2, the control is directly calculated

by a unique relation from the state and the memorization of their previous calculated values

is useless as x(k, i) is minimized at each step i. In step 3, state minimization improves the

calculated values of step 1 by a forward recurrence. These steps are repeated until convergence.

When the minimization of the state stops, the algorithm gives the optimal state and control

which satisfy the inequalities of the plant (described by a Timed Event Graph (1) ) following

the specifications (expressed by an interval system (2)).

Step 1 corresponds to the well-known backward equality described in part 5.6 in [1] if we

consider the case of a Timed Event Graph without specification. Classical handlings can reduce
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the writing of step 1 and a relation similar to (5.62) in [1] can be obtained. Let us recall

that the greatest solution (the latest times) of the control problem is explicitly given by the

“Backward” recursive equations. The development of the algorithm is easy and only requires

the memorization of the matrices of the different models and the estimated trajectory x(k, i). In

the general case, it is difficult to carry out a theoretical analysis of the number of iterations as

in many algorithms in this field [3]. The general algorithm of Mc Millan and Dill [12] is known

to be pseudo-polynomial in practice.

Example (education system continued)

The lesson must now stop before the daily closing time of school from Monday (first day:

k = 1) to Friday (k = 5): Assume that desired output sequence z(k) from k = 1 to 5 is 1140,

2580, 3600, 5460, 6480. So, ks = 0 and kf = 5. The corresponding output sequence is as

follows.

k 1 2 3 4 5

u1 975 2415 3435 5295 6315

u2 1050 2490 3510 5370 6390

�

IV. CONCLUSION

This paper solves the problem of optimal control synthesis of a Timed Event Graph when

the state and control trajectories are constrained by specifications defined by an interval model.

The interval descriptor system can describe the time behavior of a lot of models such as Timed

Event Graphs, P-time Petri nets and Time Stream Event Graphs for semantic rules “And” and

“Weak-And” [4]. The problem is reformulated in a fixed point form. The spectral theory gives

conditions of existence of a solution while a proposed algorithm makes it possible to determine

the greatest state and control. The application of the calculated control generates a state trajectory

obeying the specifications.

V. APPENDIX

In this section, we shall review a few basic theoretical notions about dioids. For more extensive

presentations, the reader is invited to consult the following references: [1] and [5].

A monoid is a couple (S,⊕) where operation ⊕ is associative and presents a neutral element.

A semi-ring S is a triplet (S,⊕,⊗) where (S,⊕) and (S,⊗) are monoids, ⊕ is commutative,
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⊗ is distributive in relation to ⊕ and the zero element ε of ⊕ is the absorbing element of ⊗

(ε⊗ a = a⊗ ε = ε). A dioid D is an idempotent semi-ring (operation ⊕ is idempotent, that is

a⊕ a = a). Let us note that unlike the structures of group and ring, monoids and semi-rings do

not have a property of symmetry on S. The set R∪{−∞} provided with the maximum operation

denoted ⊕ and the addition denoted ⊗ is an example of dioid which is usually denoted Rmax =

(R ∪ {−∞},⊕,⊗). The neutral elements of ⊕ and ⊗ are represented by ε = −∞ and e = 0,

respectively.

A dioid D is complete if it is closed for infinite sums and the distributivity of the multiplication

with respect to addition extends to infinite sums: (∀ c ∈ D ) (∀ A ⊆ D) c⊗ (
⊕
x∈A

x) =
⊕
x∈A

c⊗x.

For example, (R ∪ {−∞} ∪ {+∞},⊕,⊗) usually denoted Rmax, is complete. The set of nxn

matrices with entries in a complete dioid D included with the two operations ⊕ and ⊗ is also

a complete dioid, which is denoted Dnxn. Nonsquare matrices can be considered if they are

completed with rows or columns with entries equal to ε. The sum and product of matrices are

defined conventionally from the sum and product in D.

Let Γ be a subset of vectors over Rmax. The partial order denoted ≤ is defined as follows:

v ≤ w ⇐⇒ v ⊕ w = w. It is also a componentwise order which allows the comparison of any

pair of vectors (v, w) i.e. v ≤ w ⇐⇒ vi ≤ wi, for each component i. In the paper, this concept

is applied to control and state trajectories. The element v of subset Γ is called greatest element

or maximum element if and only if w ≤ v for all w ∈ Γ. In other words, it is greater than

any other element of the subset: (see part 4.3.1 of [1] for more details). If this greatest element

exists, it is unique as the existence of two different maximum elements v and w implies w ≤ v

and v ≤ w. Let v ∧ w denote the lower bound of v and w.

A mapping f is monotone or isotone if x ≤ y implies f(x) ≤ f(y). Let f : E→ F be an

isotone mapping, where (E, ≤) and (F,≤) are ordered sets. Mapping f is said to be residuated

if for all y ∈ F, the least upper bound of subset {x ∈ E | f(x) ≤ y} exists and belongs to

this subset. The corresponding mapping, denoted fd(y) is called the residual of f . When f is

residuated, fd is the only isotone mapping, such that f ◦ fd ≤ IdF and fd ◦ f ≥ IdE where

IdF and IdE are identity mappings. Mapping x ∈ (Rmax)n 7→ A ⊗ x, defined over Rmax is

residuated [1] and the left ⊗− residual of b by A is denoted by: A\b = max{x ∈ (Rmax)n such

that A⊗ x ≤ b}. Moreover, (A\b)i =
m∧

j=1

Aji\bj where A is an m× n matrix.
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A (min, max, +) function of set F (n, 1) is any function f : Rn −→ R1, which can be written

as a term in the following grammar: f = x1, x2, . . . , xn | f ⊗ a | f ∧ f | f ⊕ f where a is

an arbitrary real number (a ∈ R). The vertical bars separate the different ways in which terms

can be recursively constructed. A (min, max, +) function of set F (n,m) is any function f

: Rn −→ Rm, such that each component fi is a (min, max, +) function of F (n, 1).

Let f ∈ F (n, 1). If f can be represented by a term that does not use ∧, it is said to be

max-only or (max, +). If f can be represented by a term that does not use ⊕, it is said to be

min-only or (min, +). If f can be represented by a term that does not use ∧ and ⊕, it is said

to be simple. As the type of the interval model is defined by the types of functions f− and f+

∈ F (n,m), we can characterize the model by the following pair (type of f−, type of f+) which

defines different types of systems. Type ((min, max, +), (min, max, +)) naturally represents the

more general mathematical case.

The following iterative form where number i represents the number of iterations, is considered:

x(i) = f(x(i − 1)), ∀i ≥ 1 and x(0) = ξ ∈ Rn, where f is a (min, max, +) function of

F (n, n). Every function of F (n, n) has the property of homogeneity which is defined as follows:

∀λ ∈ R, ∀x ∈ Rn f(λ⊗ x) = λ⊗ f(x) in the usual vector-scalar convention: (λ⊗ x)i = λ⊗ xi.

In the following fundamental theorem, the notion of cycle time makes it possible to verify the

existence of a solution of different inequalities and equalities. The cycle time vector is classically

defined by χ(f) = lim
i→∞

x(i)/k and always exists in F (n, n). It does not depend on ξ.

Theorem 3: [9] Let f be a function of F (n, n). The following two conditions are equivalent:

(i) There is a finite x such that x ≤ f(x) (respectively, x ≥ f(x))

(ii) χ(f) ≥ 0 (respectively, χ(f) ≤ 0) . �
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