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From Extremal Trajectories to Token Deaths in
P-time Event Graphs

Philippe Declerck

Abstract— In this paper, we consider the (max, +) model of
P-time Event Graphs whose behaviors are defined by lower
and upper bound constraints. The extremal trajectories of the
system starting from an initial interval are characterized with
a particular series of matrices for a given finite horizon. Two
dual polynomial algorithms are proposed to check the existence
of feasible trajectories. The series of matrices are used in the
determination of the maximal horizon of consistency and the
calculation of the date of the first token deaths.

Index Terms— P-time Petri Nets, (max,+) algebra, token death,
Kleene star, fixed point.

I. INTRODUCTION

Petri Nets (PNs) with time can express the time behavior
of Discrete Event Systems with their specifications. Two main
behaviors of the transitions can be distinguished: firing as soon
as possible in Timed PNs and firing in given time intervals
for Time PNs. Time can be associated with places, transitions
and arcs of the PNs. In Time Stream PNs, temporal intervals
are associated with arcs outgoing from places and the firing
interval of transitions is defined by different semantics ([5]
[11]). For Timed PNs, durations can be associated with places
(P-Timed PNs) or transitions (T-Timed PNs) and the relevant
subclasses are equivalent. For Time PNs, temporal intervals
can similarly be associated with places or transitions but the
corresponding subclasses ( P-Time PNs and T-Time PNs ) are
fundamentally different. In Time PNs, a temporal interval of
firing is associated with each transition enabled by the marking
while a temporal interval of availability is associated with
each token which enters a place in P-Time PNs. In this paper,
we focus on P-time Event Graphs [13] whose evolution can
undergo token deaths which express the loss of resources or
parts and failures to meet time specifications. Applications of
P-time Event Graphs can be found in production systems [10],
food industry [6] and transportation systems [9].

A natural aim is to characterize the trajectories followed
by the system starting from an initial state. In P-time Event
Graphs, it is well-known that a simple forward simulation does
not guarantee the correct synchronization of the transitions and
often leads to token deaths. A first objective is the determina-
tion of possible trajectories without token deaths. The concept
of extremal (lowest and greatest, see [14]) trajectories is
relevant for the class of P-time Event Graphs and corresponds
to the earliest and latest trajectories. In this paper, the objective
is to express the relations of these extremal trajectories from
the model and the initial condition, for a given horizon.
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An important notion is the consistency, which can be defined
by the existence of a time trajectory following the model.
A second question is to know if the different tasks can be
sufficiently repeated during a period such that a given pro-
duction plan can be performed. More precisely, our objective
is to know if the different tasks can be repeated infinitely or
during a finite period, and to determine the maximal horizon
(maximal number of events) where the synchronizations of the
transitions can be made.

A consequence is that the end of this horizon is also the limit
of consistency which leads to a non-synchronization of the
transitions: at least, a token death happens. The last objective
is the determination of the date of the first token deaths.

In (max, +) algebra, other studies naturally analyse the
trajectories. Using a fixed point approach, [8] considers the
control of Timed Event Graphs with specifications defined
by an interval model. Analysis of the consistency of interval
descriptor systems as Time Stream Event Graphs is made by
using the spectral vector for a given horizon while the greatest
state and control trajectories are numerically calculated by an
algorithm. In this paper, in-depth analysis of P-time event
graphs is performed and algebraic expressions of extremal
trajectories are derived. Polynomial algorithms are proposed
for the determination of the maximal horizon of temporal
consistency and the calculation of the first date of token deaths.
This improves the pseudo-polynomial algorithm of [8] for
similar problems.

Another possible approach is to rewrite the system in the
form of a polyhedron in conventional algebra [6]. A priori,
an application of the algorithms of linear programming can
check the existence of an arbitrary trajectory. But, recall that
the best algorithms of linear programming are polynomial
in the weak sense. Contrary to these generic algorithms, we
propose here algorithms specific to the considered problem
whose complexity is polynomial in the strong sense.

If we only consider the problem of consistency, a possible
technique is the model-checking which is an enumerative
method based on the construction of a state class graph and its
analysis. Some authors [2] apply this approach to T-Time Petri
nets where each state class is defined by its marking and a set
of firing times of the transitions. Starting from a given class,
the firing of each enabled transition generates another class
and a procedure establishes the list of the different classes and
its connections. Generally speaking, model checking faces a
combinatorial blow up of the state-space, commonly known as
the state explosion problem, even for small systems [15]: the
elementary event graph of the example of Figure 4 in [2] which
is composed of two places and two transitions, illustrates this
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fact. As a consequence, these approaches generally consider
a class of models where the graph is finite, that is, the Time
Petri Nets are bounded and the bounds of the time intervals
are defined in the rational numbers. In this paper, these
assumptions are not taken as the considered models are non-
bounded Event Graphs where the values of the temporisations
are defined in R+. Contrary to the polyhedra of the classes
which generally are approximations of the possible dates [3],
the spaces considered in this paper are exact because the
concept of lattice is relevant in the event graphs.

In this paper, no hypothesis is made on the structure of the
Event Graphs which do not need to be strongly connected.
The initial marking must only satisfy the classical condition
of liveness (no circuit without token), and the usual hypothesis
First In First Out (FIFO) for tokens is made.

The paper is structured as follows: We first define P-time
Event Graphs and briefly introduce their algebraic model.
Then, we study the time behavior of this model with the help
of a special series of matrices. Notations and some previous
results in the (max, +) algebra are given in Appendix I while
the proof of Theorem 1 is given in Appendix II.

II. (MAX, +) MODEL OF P-TIME EVENT GRAPHS

Consider the following notations. The set of places is
denoted P . The initial marking of a place pl ∈ P is denoted
ml. Let •pl denote the set of input transitions of place pl ∈ P
and p•l the set of output transitions of pl. Similarly, •xi

(respectively x•i ) denotes the set of the input (respectively,
output) places of transition xi for i ≥ 1. In an Event Graph,
card(•pl)=card(p•l )=1 for each place pl ∈ P and we can
associate only a pair (xi, xj) with each place pl ∈ P , such
that transition xj is ingoing ( xj ∈• pl ) and transition xi is
outgoing ( xi ∈ p•l ). Initial marking ml is also associated with
place pl.

Moreover, we associate with each place pl ∈ P a temporal
interval [al, bl] with 0 ≤ al ≤ bl and [al, bl] ∈ R+ × (R+ ∪
{+∞}). Time constraints can be defined as follows. After the
arrival of a token into a place pl at time t, it is available to fire
its unique downstream transition xj ∈ p•l in a given interval
[t + al, t + bl] and dies if the firing of transition xj does not
occur before t+bl. In other words, the token must stay in place
pl during a duration between al and bl. Before the minimal
sojourn time al, the token is unavailable for firing transition
xj ∈ p•l . After the maximal sojourn time bl, the token dies.

Example.
Let us consider the P-time Event Graph of Fig. 1. The initial

marking is
(

1 1 1 1
)t

and the temporal intervals are:
[a1,+∞] = [3,+∞], [a2,+∞] = [6,+∞], [a3, b3] = [1, 2]
and [a4, b4] = [3, 11] . Let us consider the following simulation
for k = 0, 1 and 2.

k 0 1 2
x1 4 11 11
x2 0 7 14
x3 0 6 13

Fig. 1. P-time Event graph

k 0 1 2
p1 [7,+∞] [14,+∞] [14,+∞]
p2 [6,+∞] [13,+∞] [20,+∞]
p3 [5, 6] [12, 13] [12, 13]
p4 [3, 11] [9, 17] [16, 24]

The first table contains the firing dates while each column
k of the second table is the bounds of the sojourn time (in
absolute time) of the tokens, produced by the kth firing of
the transitions x1, x2 and x3 in each place. We assume that
the tokens of the initial marking are available immediately at
k = 0. Let us consider the firing of transition x3 for k = 3
which needs to use the tokens present in its upstream places
p2 and p3 produced at k = 2. However, this synchronization
does not occur because the interval [20,+∞] ∩ [12, 13] is
empty. A consequence is the death of the token in place p3

at time t = 13.
However, transition x1 can be fired at t = 18 because the

interval of sojourn time of the token in place p4 is [16, 24].
Therefore, a token is added in place p3 with time interval
[19, 20] and the firing of transition x3 can occur at time t = 20
because the interval [20,+∞] ∩ [12, 13] is replaced by the
interval [20,+∞] ∩ [19, 20] . �

We now consider the “dater” description in the (max, +)
algebra: each variable xi(k) represents the date of the kth

firing of transition xi for i ≥ 1 . If we assume a FIFO
functioning of the places which guarantees that the tokens do
not overtake one another, a correct numbering of the events
can be carried out. The evolution of the P-time Event Graph
is described by the following inequalities expressing relations
between the firing dates of transitions:
∀pl ∈ P with xj ∈• pl and xi ∈ p•l , al + xj(k − ml)

≤xi(k) and xi(k) ≤ bl + xj(k −ml)
From these relations, we can derive an equivalent descrip-

tion of the system in (max, +) algebra [7]. By usual (max,+)
algebraic notation, maximization and addition operations are
denoted respectively⊕ and⊗. The notations and a brief review
of preliminary results are presented in Appendix I. Without
loss of generality, we assume that the initial marking of each
place is equal to zero or one. Hence the (max, +) algebra
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model is as follows

(
x(k)
x(k + 1)

)
≥

(
A= A+

A− A=

)
⊗

(
x(k)
x(k + 1)

)
(1)

for k ≥ 0, where the initial condition is x(0) = x0, matrix A−

(respectively, A+) contains the temporizations al (respectively,
bl with minus sign) associated with each place ∀pl ∈ P
with ml = 1. We have A= = A−0 ⊕ A+

0 where matrix A−0
(respectively, A+

0 ) is defined as A− (respectively, A+) but
with ml = 0.

Example continued.

A= = ε, A− =

 ε ε 3
3 ε ε
1 6 ε

 and A+ = ε ε −2
ε ε ε

−11 ε ε

 . �

Now, we analyze the time evolution of model (1).

III. EXTREMAL ACCEPTABLE TRAJECTORIES BY SERIES OF
MATRICES

Unlike a Timed Event Graph which defines a unique trajec-
tory according to the earliest firing rule, a P-time Event Graph
defines a set of trajectories which depend on matrices A= , A−

and A+. The aim of this section is to give the relations of the
extremal (lowest and greatest) trajectories satisfying an initial
condition given by x(0) ∈ [x−0 , x+

0 ] (that is, box [x−0 , x+
0 ]

defines a set of initial conditions) and model (1) for k = 0,
. . ., h − 1 where h ∈ N is a finite horizon. In the sequel,
we will show that these relations allow the determination of
the maximal horizon of consistency (possibly infinite) and the
calculation of the date of the first token deaths.

A. Expressions of the extremal state trajectories

We consider below a pair of trajectories corresponding to
the earliest and greatest trajectories. The dimension of vector
x is denoted n. Symbols ∧ and \ respectively correspond to
the minimization operation and the left ⊗− residual defined
in Appendix I.

Theorem 1: Given horizon h ∈ N , the lowest and greatest
state trajectories (x−(k), x+(k))∈ ((Rmax)nx(Rmax)n) for
k = 0,...,h respectively starting from an initial condition
x−(0) ≥ x−0 ∈ (Rmax)n and x+(0) ≤ x+

0 ∈ (Rmax)n, are
given by the following equalities:

a) Coefficients of matrix wk by forward iteration
Initialization: w0 = A=

For k = 1 to h, wk = A= ⊕A− ⊗ (wk−1)∗ ⊗A+

b) First estimate (β−k , β+
k ) by forward iteration

Initialization: (β−0 , β+
0 )=(x−0 , x+

0 )
For k = 1 to h, (β−k , β+

k )=(A− ⊗ (wk−1)∗ ⊗ β−k−1 ,
A+\(wk−1)∗\β+

k−1)
c) Trajectory (x−(k), x+(k)) by backward iteration

Initialization: (x−(h), x+(h))=( (wh)∗ ⊗ β−h , (wh)∗\β+
h )

For k = h − 1 to 0, (x−(k), x+(k))=( (wk)∗ ⊗ [A+ ⊗
x−(k + 1)⊕ β−k ], (wk)∗\[A−\x+(k + 1)∧β+

k ])
Proof. The proof is given in Appendix II. �

The three steps of the theorem make up two for-
ward/backward algorithms. Identical in the calculation of the
two bounds, the first step a) is the forward calculation of
parameters wk which only depends on the model. Starting
from the initial condition x−0 (respectively, x+

0 ), the second
step b) is also based on a forward iteration. It expresses a
first estimate of the lowest (resp., greatest) trajectory denoted
β−k (resp., β+

k ), which is finally improved by a maximisation
(resp., a minimisation) in step c). The final result is the lowest
(resp., greatest) trajectory denoted by x−(k) (resp., x+(k)).
Note that each bound can be derived from the other one
by duality and each lower (resp., upper) matrix respectively
corresponds to an upper (resp., lower) matrix by replacing ⊕
by ∧, ⊗ by \ and conversely.

The following property compares the intermediate trajecto-
ries (β−k , β+

k ) with (x−(k), x+(k)).
Property 1: The pair (β−k , β+

k ) for k = 0 to +∞ is a box
(interval vector) containing the extremal trajectories (x−(k),
x+(k)) for any finite horizon h, for a given pair of initial
conditions (x−0 , x+

0 ).
Proof. Immediate: x−(k) (respectively, x+(k)) is the result

of a maximization (respectively, a minimization) in step c).
�

Therefore, step b) gives intermediate trajectories (β−k , β+
k )

for a given interval [x−0 , x+
0 ], which are formally defined in

the infinite horizon. As they are independant of step c), a
calculation on a given finite horizon h1 can be reused in
new calculation of the extremal state trajectories for another
horizon h2 6= h1. If h1 < h2, only the calculation of (β−k ,
β+

k ) for k = h1 + 1, .., h2 is necessary.
Remark. Defined on a box [x−0 , x+

0 ], the initial condition
is less restrictive than the more usual x(0) = x0 which
is a particular case (x−0 = x+

0 = x0). Assuming that the
system is consistent, the two dual algorithms allow checking
the existence of an initial condition x(0) ∈ [x−0 , x+

0 ] in R
which is the starting point of a finite trajectory: indeed, if
A− has no null row, trajectory x− is finite and the check
is the verification of inequality x−(0) ≤ x+

0 for the lower
bound x−(k). Also, the equality x−(0) = x−0 clearly allows
checking the acceptability of x−0 or, in other words, if there
is a trajectory starting from x−0 . The same remarks hold for
the dual algorithm under the condition that matrix A+ has no
null column.

B. Maximal horizon of temporal consistency

Assuming the liveness of the Event Graph, we consider the
temporal consistency of P-time Event graphs. Clearly, if we
can calculate an arbitrary finite trajectory (that is, in R) starting
from x(0) ∈ (R)n , the system is consistent on the given
horizon. Therefore, the liveness of tokens is guaranteed and
it does not lead to any deadlock situation. In fact, we can
prove that the existence of a finite trajectory only depends on
matrices wk and more precisely, that a finite trajectory exists
if and only if matrices (wk)∗ converge in Rmax [7].

Let us now consider the problem of the determination of
the maximal horizon of temporal consistency. In step c) of
the algorithms, the calculations of the state trajectory x−(k)
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start from values wh , β−h and β+
h and consequently depend

on horizon [0, h] where h is a datum. Contrary to step c),
the calculations of wk, β−k and β+

k start from A=, x−0 and
x+

0 in steps a) and b): they depend on index k, but not on
horizon h as the calculations can continue after h. Therefore,
the problem is now to determine the maximal horizon hmax

where the system can follow a finite trajectory. As the horizon
can be finite or infinite, we consider the two following cases.
• Case 1. Matrix (wk)∗ does not belong to Rmax . As there

is at least an infinite entry ((wk)∗)i,j = +∞ , the system
is not consistent on horizon [0, h] with h ≥ k .

• Case 2. Matrix (wk)∗ belongs to Rmax. If wk = wk−1 ,
then the P-time Event graph is consistent on an infinite
horizon and hmax = +∞.

A practical way to determine the horizon of consistency
hmax is as follows.

Algorithm
Initialization: k ← 0. Calculate and analyze (wk)∗ for k ≥

0. Stop if case 1 (hmax = k− 1 if k ≥ 1) or case 2 (hmax =
+∞) defined above is satisfied or repeat with k ← k +1. �

As the series wk is non-decreasing (the proof is given in
[7]), each entry converges to a stable finite value or the infinite
value +∞ .

Example continued.

w0 = A= = ε, w1 =

 −8 ε ε
ε ε 1
ε ε −1

, w2 = −8 ε ε
ε ε 1
−4 ε −1

, w3 =

 −8 ε −3
ε ε 1
−4 ε 1

 and (w3)∗ = +∞ ε +∞
+∞ 0 +∞
+∞ ε +∞

.

As some coefficients of w∗3 are equal to +∞ , hmax = 2
and a trajectory can only be defined on horizon [0, 2]. System
(1) is only consistent for k = 0 and 1.

C. Date of the first token deaths
If the system is only consistent on horizon hmax, an

admissible trajectory can be calculated but the tokens produced
by the firing at date x(hmax) do not lead to a complete
firing of the transitions at the following number of events
hmax + 1. Below, we consider only the case of places with
unitary initial marking: by reason of the lack of space, the case
of places with a null initial marking is omitted but follows
a similar technique. If ml = 1, the time interval of token
stay is [A−ig ⊗ xg(k), A+

gi\xg(k] for a token generated par
the kth firing of transition g in a place pl ∈ P such that
xg ∈• pl and xi ∈ p•l . As there is at least one transition i
such that relation

⊕
j∈•(•xi)

A−ij ⊗ xj(hmax) ≤ xi(hmax + 1) ≤∧
j∈•(•xi)

A+
ji\xj(hmax) is not satisfied, the non-synchronization

of transition i leads to some token deaths. Let G be the
set of transitions g ∈• (•xi) such that A+

gi\xj(hmax) =∧
j∈•(•xi)

A+
ji\xj(hmax). Each input transition g ∈ G generates

a token which dies in the place pl ∈ (xg)•
⋂ •(xi) at the date

A+
gi\xj(hmax).

However, the firing of transition i is still possible if a new
firing of each transition g ∈ G produces another token. This
can be expressed by a shift in the numbering of the events.
Therefore, relation A−ig⊗xg(k) ≤ xi(k +1) ≤ A+

gi\xg(k) for
k < hmax, becomes relation A−ig ⊗ xg(k + 1) ≤ xi(k + 1) ≤
A+

gi\xg(k + 1) for k ≥ hmax, in the new algebraic model.
Example continued.
For x−0 =

(
1 0 0

)t
, Theorem 1 provides the lowest

trajectory x− which is also trajectory x given in the first table
of the example in part II. Using these dates, we can deduce
that the date of the first token death is 13. The new model is
as follows: for k ≥ 2, matrices B=, B− and B+, replace the
previous one in system (1).

B= =

 ε ε −2
ε ε ε
1 ε ε

 , B− =

 ε ε 3
3 ε ε
ε 6 ε

 and B+ = ε ε ε
ε ε ε

−11 ε ε

. �

IV. CONCLUSION

Considering the (max, +) model of P-time Event Graphs,
our first objective is the determination of the extremal state
trajectories satisfying an initial condition defined on an in-
terval. Based on a specific series of matrices, the proposed
resolution is composed of three steps: using the Kleene star,
the iterative calculation determines the values of the greatest
paths for different horizons; a forward iteration generates a box
containing the extremal trajectories; a backward iteration gives
the extremal trajectories. The introduction of a nondecreasing
series of matrices alleviates the storage as the dimension
is the size of the model, which depends on the number
of the transitions and the initial marking. Therefore, each
calculation processes reduced matrices of dimension (n× n).
The approach can be applied to important processes for large
horizons because the algorithms are strongly polynomial: the
complexity is O(h.n3) for a given horizon h if the complexity
of the used algorithm of Kleene star is O(n3) ( [7] gives the
CPU time for different dimensions and horizons).

The determination of the maximal horizon of temporal
consistency is the second objective. The technique is based
on the analysis of convergence of matrices w∗k: each entry can
converge to a stable finite value or the infinite value +∞ . For
a given P-time Event Graph, the case of a convergence to a
constant matrix after a transitory period hmax, facilitates the
storage and the reuse in the calculation of a new trajectory for
any horizon. If the system is only consistent on horizon hmax,
a non-synchronization cannot be avoided at hmax + 1 and we
calculate the date of the first token deaths.

APPENDIX I

In this section, we shall review a few basic theoretical
notions about dioids. For more extensive presentations, the
reader is invited to consult the following reference [1].

A monoid is a couple (S,⊕) where operation ⊕ is asso-
ciative and presents a neutral element. A semi-ring S is a
triplet (S,⊕,⊗) where (S,⊕) and (S,⊗) are monoids, ⊕
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is commutative, ⊗ is distributive in relation to ⊕ and the
zero element ε of ⊕ is the absorbing element of ⊗ (ε⊗ a =
a⊗ ε = ε). A dioid D is an idempotent semi-ring (operation
⊕ is idempotent, that is a ⊕ a = a). Let us note that unlike
the structures of group and ring, monoids and semi-rings do
not have a property of symmetry on S. The set R ∪ {−∞}
provided with the maximum operation denoted ⊕ and the
addition denoted ⊗ is an example of dioid which is usually
denoted Rmax = (R ∪ {−∞},⊕,⊗). The neutral elements of
⊕ and ⊗ are represented by ε = −∞ and e = 0, respectively.

A dioid D is complete if it is closed for infinite sums and
the distributivity of the multiplication with respect to addition
extends to infinite sums: (∀ c ∈ D ) (∀ A ⊆ D) c⊗ (

⊕
x∈A

x) =⊕
x∈A

c⊗ x. For example, (R ∪ {−∞} ∪ {+∞},⊕,⊗) usually

denoted Rmax, is complete. The set of nxn matrices with
entries in a complete dioid D included with the two operations
⊕ and ⊗ is also a complete dioid, which is denoted Dnxn.
Nonsquare matrices can be considered if they are completed
with rows or columns with entries equal to ε. The sum and
product of matrices are defined conventionally from the sum
and product in D.

Let Γ be a subset of vectors over Rmax. The partial natural
order denoted ≤ is defined as follows: v ≤ w ⇐⇒ v⊕w = w.
It is also a componentwise order which allows the comparison
of any pair of vectors (v, w) i.e. v ≤ w ⇐⇒ vi ≤ wi, for each
component i. In the paper, this concept is applied to control
and state trajectories. The element v of subset Γ is called
greatest element or maximum element if and only if w ≤ v
for all w ∈ Γ. In other words, it is greater than any other
element of the subset: (see part 4.3.1 of [1] for more details).
If this greatest element exists, it is unique as the existence of
two different maximum elements v and w implies w ≤ v and
v ≤ w. Let v ∧ w denote the lower bound of v and w.

A mapping f is monotone or isotone if x ≤ y implies
f(x) ≤ f(y). Let f : E→ F be an isotone mapping, where
(E, ≤) and (F,≤) are ordered sets. Mapping f is said to be
residuated if for all y ∈ F, the least upper bound of subset
{x ∈ E | f(x) ≤ y} exists and belongs to this subset. The
corresponding mapping, denoted fd(y) is called the residual
of f . When f is residuated, fd is the only isotone mapping,
such that f ◦ fd ≤ IdF and fd ◦ f ≥ IdE where IdF and
IdE are identity mappings. Mapping x ∈ (Rmax)n 7→ A⊗ x,
defined over Rmax is residuated [1] and the left ⊗− residual
of b by A is denoted by: A\b = max{x ∈ (Rmax)n such

that A ⊗ x ≤ b}. Moreover, (A\b)i =
m∧

j=1

Aji\bj where A

is an m× n matrix. Using the Kleene star defined by: A∗ =⊕+∞
i=0 Ai, the following theorem will be considered in the

dioid of matrices.
Theorem 2: (Theorem 4.75 part 1 in [1]) Consider equation

x = A ⊗ x ⊕ B and inequality x ≥ A ⊗ x ⊕ B with A and
B in complete dioid D. Then, A∗⊗B is the least solution of
these two relations. �

APPENDIX II
Proof. System (1) for k = 0, . . ., h − 1 with x(0) ≥ x−0

can be rewritten as follows.


x(0) ≥ A= ⊗ x(0) ⊕A+ ⊗ x(1)⊕ x−0
x(k) ≥ A− ⊗ x(k − 1)⊕A= ⊗ x(k) ⊕A+ ⊗ x(k + 1)
for k = 1 to h− 1

x(h) ≥ A− ⊗ x(h− 1)⊕A= ⊗ x(h)
(2)

Theorem 2 shows that the smallest solution to this system
also satisfies the corresponding equality and we can now
consider the above system with equalities. The following
proposition P(k) is now proved by recursion.
P(k): x−(k) = (wk)∗ ⊗ [A+ ⊗ x−(k + 1)⊕ β−k ]
Base case: P(0)
From the first equality of (2), we can write x(0) = w0 ⊗

x(0) ⊕ A+ ⊗ x(1) ⊕ β−0 where w0 = A= and β−0 = x−0 .
Therefore, x(0) = (w0)∗[A+⊗x(1)⊕β−0 ], which proves P(0).

Case: P(1)
From the second equality of (2), we can write for k = 1,

x(1) = A= ⊗ x(1) ⊕ A− ⊗ x(0) ⊕ A+ ⊗ x(2) . If P(0) is
used, x(1)=A= ⊗ x(1) ⊕ A− ⊗ [(w0)∗[A+ ⊗ x(1) ⊕ β−0 ]] ⊕
A+⊗ x(2). The distributivity of ⊗ with respect to ⊕ leads to
x(1) = [A= ⊕ A− ⊗ (w0)∗ ⊗ A+] ⊗ x(1) ⊕ A− ⊗ (w0)∗ ⊗
β−0 ⊕ A+ ⊗ x(2) = w1 ⊗ x(1) ⊕ β−1 ⊕ A+ ⊗ x(2) where
w1 = A=⊕A−(w0)∗A+ and β−1 = A−(w0)∗⊗β−0 . Therefore,
x(1) = (w1)∗ ⊗ [A+ ⊗ x(2)⊕ β−1 ] and P(1) is proved. Now,
this approach is generalized for k = 1 to h− 1.

Case: P(k) for k from 1 to h− 1.
Let us assume P(k − 1): x(k − 1) = (wk−1)∗ ⊗ [A+ ⊗

x(k)⊕β−k−1]. We will prove that P(k−1) entails P(k). From
the second equality of (2), we can write x(k) = A= ⊗ x(k)
⊕A−⊗x(k−1)⊕A+⊗x(k +1) . As x(k−1) = (wk−1)∗⊗
[A+ ⊗ x(k) ⊕ β−k−1], the following expression is deduced:
x(k) = A=⊗ x(k)⊕A−⊗ (wk−1)∗⊗ [A+⊗ x(k)⊕ β−k−1]⊕
A+⊗x(k+1) . The distributivity of ⊗ with respect to ⊕ yields
x(k) = [A=⊕A−⊗(wk−1)∗⊗A+]⊗x(k)⊕A−⊗(wk−1)∗⊗
β−k−1⊕A+⊗x(k+1) = wk⊗x(k)⊕β−k ⊕A+⊗x(k+1), where
wk = A= ⊕A− ⊗ (wk−1)∗ ⊗A+and β−k = A− ⊗ (wk−1)∗ ⊗
β−k−1 . Therefore, x(k) = (wk)∗[A+⊗x(k +1)⊕β−k ] and the
desired expression is obtained: P(k) has been deduced from
P(k − 1). Moreover, as P(0) is true, P(k) has been proved
for k from 1 to h− 1: the recursion is finished. Knowing β−k ,
the calculation of x(k) uses a backward iteration, while the
calculation of β−k is relevant to a forward iteration. Now, the
final case will be proved.

Case: P(h)
The last equality of (2) can be considered like the second

equality but without A+⊗x(k+1): the argument of case P(k)
can be taken and we can write x(h) = (wh)∗⊗β−h with wh =
A= ⊕A− ⊗ (wh−1)∗ ⊗A+and β−h = A− ⊗ (wh−1)∗ ⊗ β−h−1

The proof of the greatest trajectory is omitted as it can
be deduced by duality from the previous proof. Indeed, as
mapping A= ⊗ x(k), A− ⊗ x(k − 1) and A+ ⊗ x(k + 1)
are residuated, the application of property f3 in [1] part 4.4.4)
gives the following form: it expresses every “upper” constraint
on x(k) which can minimize it.

x(0) ≤ A=\x(0) ∧A−\x(1) ∧ x+
0

x(k) ≤ A+\x(k − 1) ∧A=\x(k) ∧A−\x(k + 1)
for k = 1 to h− 1

x(h) ≤ A+\x(h− 1) ∧A=\x(h) �
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temporisés et temporels : vivacité, estimation et commande, available
from http://www.istia.univ-angers.fr/∼declerck/, PhD Thesis, University
of Angers, France, 2005.

[13] W. Khansa, J-P. Denat and S. Collart Dutilleul, P-time Petri nets for
manufacturing systems, WODES’96, Edinburgh, UK, 1996.

[14] R. Kumar, and V.K. Garg, Extremal solutions of inequations over lattices
with applications to supervisory control, Theoret. Comp. Sci., No. 148,
pp. 67-92, 1995.
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