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Abstract The aim of this paper is a trajectory tracking control of Timed Event
Graphs with specifications defined by a P-time Event Graph. Two problems are
solved on a fixed horizon knowing the current state: The optimal control for favor-
able past evolution; The prediction of the earliest future evolution of the process.
These two parts make up an on-line control which is used on a sliding horizon.
Completely defined in (max, +) algebra, the proposed approach is a Model Predic-
tive Control using the componentwise order relation.

1 Introduction

In this paper, we focus on the trajectory tracking control of Timed Event Graphs
with reference model defined by a P-time Event Graph. The P-time Event Graph
describes the desired behavior of the interconnections of all the internal transitions.
Some events are stated as controllable, meaning that the corresponding transitions
(input) may be delayed from firing until some arbitrary time provided by a supervi-
sor. We wish to determine the greatest input in order to obtain the desired behavior
defined by the desired output and the specifications. This problem is denoted prob-
lem 1 in the document.

Moreover, the aim of this paper is also the extension of problem 1 to Predictive
Control on infinite horizon. This extension is denoted problem 2. Using a receding
horizon principle, Model Predictive Control is a form of control in which the current
control is obtained by solving on-line, a finite open-loop optimal control problem
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at each sampling instant. The current state of the process is considered as the initial
state. The optimization yields an optimal control sequence but only the first control
in this sequence is applied to the plant. This procedure can be repeated infinitely.

In this paper, we complete the approaches developed in [4] and [6] by introducing
specifications defined by a P-time Event Graph as in the preliminary study [5] which
is generalized to a sliding horizon. The framework of this proposed study can be
found in [6] where a comparison with [15] is given in the standard algebra. The
approach is based on the concept of earliest desired output which was introduced in
[4] to the best of our knowledge. A similar concept was also considered in [11]: as
this last approach uses the past control and not the current state, we can prove that
the relevant updated desired output (called reference input in [11]) can be lower. Let
us recall that a simple forward technique gives the earliest desired output while the
control is given by the classical backward approach. However, this simple technique
does not hold if some specifications are introduced in the problem as shown in parts
2 and 3: the structure of matrix Dh in part 2.2 shows the forward and backward
connections of inequality X ≥ Dh⊗X for instance.

In this paper, we consider that each transition is observable: the event date of
each transition firing is assumed to be available. Let us note that we have developed
software written in Scilab composed of estimation, prediction and control. No hy-
pothesis is taken on the structure of the Event Graphs which does not need to be
strongly connected. The initial marking should only satisfy the classical liveness
condition and the usual hypothesis that places should be First In First Out (FIFO)
is taken. In the context of the trajectory tracking control (problem 2), we consider
different structures of matrix B. Defined in part 3.3.2, the case of fully controlled
transitions can be found in the modeling of railway system where each departure
of train must be controlled [2] [14]. This structure is also considered in urban bus
networks where the timetable must be respected at each stop [9].

The paper is structured as follows: The optimal control on a fixed horizon (prob-
lem 1) and its extension to a sliding horizon (problem 2) are successively considered.
The resolution of problem 2 is based on the prediction of the earliest desired output.
By reason on the lack of place, we cannot give a complete presentation of the pre-
liminary remarks but the reader can easily find more information in [1] and [8]. The
presentation of the model of the P-time Event Graph is also omitted: the reader can
find the preliminaries and the presentation of the models in [5].

Maximization and addition operations are denoted respectively ⊕ and ⊗. The
set of n.n matrices with entries in dioid D = Rmax = (R∪ {−∞} ∪ {+∞},⊕,⊗)
including the two operations ⊕ and ⊗ is a dioid, which is denoted Dn.n. Mapping
f is said to be residuated if for all y ∈ D, the least upper bound of subset {x ∈ D |
f (x)≤ y} exists and lies in this subset. Mapping x ∈ (Rmax)n 7→ A⊗x, defined over
Rmax is residuated (see [1]) and the left ⊗−residuation of B by A is denoted by:
A\B = max{x ∈ (Rmax)n such that A⊗ x 6 B}. The following Theorem uses the
Kleene star defined by: A∗ =

⊕+∞
i=0 Ai.

Theorem 1. (Theorem 4.75 part 1 in [1]) Consider equation x = A⊗ x⊕ B and
inequality x ≥ A⊗ x⊕B with A and B in complete dioid D. Then, A∗B is the least
solution to these two relations. ut
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Variable xi(k) is below the date of the kth firing of transition xi.

2 Control on a fixed horizon (problem 1)

Let us consider the objective of problem 1.

2.1 Objective

The problem of this paper is the determination of the greatest control of a plant
described by a Timed Event Graph when the state and control trajectories are con-
strained by additional specifications defined by a P-time Event graph. Applications
of P-time Event Graphs can be found in production systems, microcircuit design,
transportation systems, real-time systems and food industry. The objective is to cal-
culate the greatest control u on horizon [ks + 1,k f ] such that its application to the
Timed Event Graph defined by

{
x(k +1)=A⊗ x(k)⊕B⊗u(k +1)

y(k) = C⊗ x(k) (1)

satisfies the following conditions:
a) y ≤ z knowing the trajectory of the desired output z on a fixed horizon [ks +

1,k f ] with h = k f − ks ∈ N;
b) The state trajectory follows the model of the autonomous P-time Event Graph

defined by (
x(k)
x(k +1)

)
≥

(
ε A+

A− A=

)
⊗

(
x(k)
x(k +1)

)
(2)

for k ≥ ks;
c) The first state vector of the state trajectory x(k) for k ≥ ks is finite and is

known vector x(ks) . This “ non-canonical ” initial condition can be the result of a
past evolution of a process.

Underlined symbols like x(ks), z(k) correspond to known data of the problem and
x(k) and y(k) are estimated in the following resolutions based on the information
available at number of events ks .

A simple example of this problem is a production system composed of two tasks
which are the cooking of a product and its packaging with an additional constraint:
the cooking time must not be too excessive , otherwise, the product would be dam-
aged.

In the following part 2.2, we present the relations which describe a trajectory of
a Timed Event Graph satisfying the specifications defined by a P-time Event Graph
(constraint b)). The introduction of the ”Just-in-time” objective (constraint a)) in
part 2.3 allows the resolution of the control problem on a fixed horizon.
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2.2 Trajectory description

From (1) and (2), we deduce a system which describes the trajectories on horizon
[ks,k f ] . Let us introduce the following notations. Let X =(

x(ks)t x(ks +1)t x(ks +2)t · · · x(k f −1)t x(k f )t )t (t: transposed) and Dh =


ε A+ ε · · · ε ε ε
A⊕A− A= A+ · · · ε ε ε
ε A⊕A− A= · · · ε ε ε
· · · · · · · · · · · · · · · · · · · · ·
ε ε ε · · · A= A+ ε
ε ε ε · · · A⊕A− A= A+

ε ε ε · · · ε A⊕A− A=




. Matrix Dh presents an original

block tridiagonal structure: this is a square matrix, composed of a lower diagonal
(square submatrices A⊕A−), a main diagonal (square submatrices A= except the
first element) and an upper diagonal (square submatrices A+), with all other blocks
being zero matrices (ε). As n is the dimension of x, Dh is a n.(h + 1)) x n.(h + 1))
matrix.

Theorem 2. The state trajectories of a Timed Event Graph (1) starting from x(ks)
and following the specifications defined by a P-time Event Graph (2) on horizon
[ks,k f ] satisfy the following system





X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(k)≤ A⊗ x(k−1)⊕B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(3)

Proof. System (3) is directly deduced from the models of the Timed Event Graph
(1) and the P-time Event Graph (2). For instance, equality (1) is equivalent to{

A⊗ x(k−1)⊕B⊗u(k)≤ x(k)
x(k)≤ A⊗ x(k−1)⊕B⊗u(k) for k ≥ ks. ut

2.3 Greatest trajectory

We now introduce the ”Just-in-time” objective defined by constraint a). Using the
previous description of the state and control trajectories (3), the problem is rewritten
under a general fixed point formulation x ≤ f (x) which allows the resolution of
control problem 1. The greatest estimated state trajectory X and its relevant state
x(k) are denoted X+ and x+(k) , respectively.

Theorem 3. The greatest state and control trajectory of a Timed Event Graph (1)
starting from x(ks) and following specifications defined by a P-time EG (2) on hori-
zon [ks,k f ] is the greatest solution of the following fixed point inequality system
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



X ≤ Dh\X
u(k)≤ B\x(k) for k ∈ [ks +1,k f ]
x(k)≤ [A⊗ x(k−1)⊕B⊗u(k)]∧C\z(k) for k ∈ [ks +1,k f ]
x(ks)≤ x(ks)

(4)

with condition x(ks)≤ x+(ks).

Proof. From Dh ⊗X ≤ X and B.u(k) ≤ x(k) , we deduce X ≤ Dh\X and u(k) ≤
B\x(k) on horizon [ks +1,k f ].

The constraints of the desired output y≤ z and y(k) = Cx(k) can be introduced in
the fixed-point formulation with x(k) ≤C\z(k) . So, x(k) ≤ [Ax(k− 1)⊕B.u(k)]∧
C\z(k) on horizon [ks +1,k f ] .

The constraint x(ks) = x(ks) can be written x(ks) ≤ x(ks) and x(ks) ≤ x(ks).
Therefore, a condition is x(ks)≤ x(ks) ut

If condition x(ks)≤ x+(ks) is satisfied, then x(ks) = x+(ks) and condition c) are
satisfied. Therefore, the calculated state trajectory for k ≥ ks is consistent with the
past evolution k ≤ ks: In other words, the Timed Event Graph can follow calculated
trajectory X+ after ks which obeys the specifications defined by the P-time Event
Graph.

System (4) leads to a fixed-point formulation whose general form is such that
x ≤ f (x). Containing (min, max, +) term [A⊗ x(k− 1)⊕B⊗ u(k)]∧C\z(k) , f is
also a (min, max, +) function. It can be defined by the following grammar: f =
b,x1,x2, . . . ,xn | f ⊗a | f ∧ f | f ⊕ f where a,b are arbitrary real numbers (a,b ∈R).
The effective calculation of the greatest control can be made by a classical iterative
algorithm of Mc Millan and Dill [12] which particularizes the algorithm of Kleene
to (min, max, +) expressions. The general resolution of x ≤ f (x) is given by the
iterations of xi ← xi−1 ∧ f (xi−1) if the finite starting point is greater than the final
solution. Here, number i represents the number of iterations and not the number of
components of vector x. The general algorithm of Mc Millan and Dill [12] is known
to be pseudo-polynomial in practice.

The aim of the following part is the extension of problem 1 to predictive control.

3 Predictive control (problem 2)

We present below the principle of the sliding horizon in predictive control and the
general technique of the proposed approach. Another description can be found in
[6] where the control of a Timed Event Graph without specification is described in
standard algebra.

We assume that each event date of transition firing is available for current number
of event k: at step k = ks, uks and xks are known. A future control sequence u(k) for
k ∈ [ks +1,ks +h] is determined such that this control is the optimal solution of the
problem. The first element of the optimal sequence (here u(ks +1)) is applied to the
process. At the next number of event ks +1, the horizon is shifted: at step ks +1, the
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problem is updated with new information uks+1 and xks+1
and a new optimization is

performed.

3.1 Principle of the proposed approach

After the calculation of state trajectory x+ and control u at step ks, condition c) xks =
x+(ks) must be checked in order to guarantee the coherence of the state trajectory
between each iteration: this verification shows that future trajectory k ≥ ks + 1 is
the extension of the past trajectory (k ≤ ks). The on-line comparison of the two
vectors xks

and x+(ks), is similar to the comparator of the closed-loop of classical
continuous control which compares a desired trajectory and its measure: when the
two data are equal, the objective is obtained. In our context, an optimal control is
similarly found. Let us consider the different cases.

• If condition xks = x+(ks) is satisfied, we can conclude that control problem 1 has
a solution for data z and xks : there is an optimal control such that, starting from
the current state xks

, the Timed Event Graph can follow a trajectory obeying the
specifications defined by a P-time Event Graph with a Just-in-time criteria.

• If xks 6= x+(ks), we can conclude that control problem 1 has no solution for data z
and xks : the process presents some delays produced by a disruption of the process
activity for instance. The Timed Event Graph cannot (provisionally) follow a
trajectory obeying the constraints of the problem, i.e. the three conditions a), b)
and c).

Consequently, at least a specification and/or the Just-in-time criteria, is not satisfied
if we directly apply the calculated control of part 2.3 to the Timed Event Graph
starting from the initial condition xks

.
Therefore, the problem must be modified such that condition c) xks = x+(ks) is

satisfied. In this paper, we consider that the model of the Timed Event Graph cannot
be modified. If we assume that the initial condition is the result of a past evolution,
xks

is a datum of the problem and only condition a) and/or condition b) can be
changed.

3.2 Predictive control objective

Suppose that the fulfillment of the specifications (condition b)) is essential. In con-
sequence, the only possibility is to modify the just in time criteria of condition a)
and to put the desired output back such that problem 1 presents a solution.

Therefore, an aim is the determination of a desired output such that control prob-
lem 1 presents a solution. Particularly, the state trajectory must start from current
state xks

. As a minimal desired output allows the limitation of the delays, the prob-
lem is to find the earliest desired output denoted z− such that
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• there is control such that its application to the Timed Event Graph generates a
state trajectory which starts from the current state xks (condition c))

• this state trajectory follows the additional specifications defined by the P-time
Event Graph on horizon [ks +1,ks +h] (condition b)).

This earliest desired output is a limit such that the Timed Event Graph cannot follow
a lower trajectory satisfying the different constraints of the problem. Knowing ear-
liest desired output z−, the optimal approach of part 2.3 can be applied to modified
desired output trajectory zm(k) = z(k)⊕ z−(k) for k ∈ [ks + 1,ks + h] such that this
procedure yields a control which can be applied to the process. Therefore, condition
a) is satisfied for the modified desired output zm and the relevant calculated control
is optimal for zm.

Below, we characterize an arbitrary state trajectory obeying the specifications
(condition b)). System (3) will be rewritten under a fixed point formulation f (x)≤ x
allowing the prediction problem of the earliest desired output z−.

3.3 Prediction of the earliest desired output z−

An arbitrary state trajectory obeying the specifications is now described with a fixed
point form. From system (3), we deduce the following system





X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(5)

which allows the determination of an interesting desired output.
Indeed, this system is a fixed-point form f (X)≤ X where f is a (max,+) function

(if we assume that control u is known). Therefore, we can apply the concept of
componentwise order to the desired output as follows:

The resolution makes the prediction of the earliest state trajectory x−(k) for
k ∈ [ks + 1,ks + h] and so, of the earliest output trajectory z−(k) = C⊗ x−(k). The
modified desired output zm is consequently obtained: zm(k) = z(k)⊕ z−(k) for k ∈
[ks +1,ks +h].

We now characterize the set of trajectories of systems (3) and (5).

Property 1. Each trajectory of system (3) satisfies (5).

Proof. Immediate: As system (3) contains an additional constraint, any trajectory
of this system satisfies relaxed system (5).

3.3.1 Earliest firing rule

As x(k) ≥ A⊗ x(k− 1)⊕B⊗u(k) is already satisfied in (5), constraint x(k) ≤ A⊗
x(k−1)⊕B⊗u(k) guarantees the earliest firing rule. In this part, we determine the
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conditions such that this last relation can be disregarded in the determination of the
trajectory.

If we now consider only inequality x(k) ≥ B⊗ u(k) of system (5), the greatest
control is obviously u(k) = B\x(k). This control law is considered below. We as-
sume that no row of B is null.

Theorem 4. A trajectory of (5) x satisfies (3) if this state trajectory x also satisfies
condition B⊗ (B\x(k)) = x(k) for k ∈ [ks +1,k f ].

Proof. Let us prove that inequality x(k) ≤ A⊗ x(k− 1)⊕B⊗ u(k) of system (3)
is also satisfied in (5). The relaxation of x(k) = A⊗ x(k− 1)⊕ B⊗ u(k) for k ∈
[ks +1,k f ] gives x(k)≥ A⊗ x(k−1)⊕B⊗u(k) or, x(k)≥ B⊗u(k) and x(k)≥ A⊗
x(k−1). This last inequality is expressed in (5) with X ≥Dh⊗X . Let us suppose that
an arbitrary trajectory denoted X ′ satisfies system (5). Particularly, X ′ satisfies X ′ ≥
Dh⊗X ′ and so inequality x′(k)≥A⊗x′(k−1) is satisfied. We want the Timed Event
Graph defined by its state equation to follow given trajectory X ′ (neither earlier, nor
later) by applying a specific control. For given x′(k), a possible control is u(k) =
B\x′(k) which is the greatest control satisfying inequality x′(k)≥ B⊗u(k). As B⊗
u(k) = B⊗(B\x′(k)) = x′(k) and x′(k)≥A⊗x′(k−1), we can deduce that A⊗x′(k−
1)⊕B⊗u(k) is equal to x′(k). Particularly, equality x′(k) = A⊗x′(k−1)⊕B⊗u(k)
implies inequality x′(k) ≤ A⊗ x′(k− 1)⊕ B⊗ u(k) . This control guarantees the
values of trajectory X ′ and consequently, the consistency of X ′ ≥ Dh⊗X ′. ut

Therefore, condition on state trajectory B⊗ (B\x(k)) = x(k) leads to a control
satisfying x(k) = B⊗u(k) (and not only x(k)≥ B⊗u(k) ). The relation expressing
the earliest firing rule x(k) ≤ A⊗ x(k− 1)⊕ B⊗ u(k) can be disregarded in the
determination of the trajectory.

3.3.2 Structures 1 and 2

As above, we assume that no row of B is null. Moreover, we assume that each
column of B contains a non-null element at the most (but a row can contain more
than one element). With this structure of matrix B (denoted structure 1), there is a
control such that (B⊗u(k))i = xi(k) for some i and condition B⊗ (B\x(k)) = x(k)

is satisfied. Indeed, as a general result of residuation is (A\b)i =
m∧

j=1
A ji\b j where A

is an m×n matrix, we obtain ui = (B\x(k))i = B j′i\x j′(k) for a specific row j′ and
equality B j′i⊗ui = x j′(k) is satisfied.

A more restrictive condition (structure 2) is as follows. We can also assume that
each column and each row of B contain a non-null element at the most . This last
assumption also corresponds to the hypothesis of ”fully controlled” transitions i.e
B = I. Therefore, the firing of each transition can be delayed in a control way and
all the transitions are said to be controllable. Modeling of transportation network
with timetable often leads to this assumption [2] [14] [3] [9]. Consequently, B⊗
(B\x(k)) = x(k) is always satisfied for any state trajectory and the control law is
obviously u(k) = x(k) .
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Using the Kleene star, a simple resolution of relaxed fixed-point form ( 5) in
(max, +) algebra can now give the earliest state trajectory denoted X− and so, the
earliest output trajectory z−(k) = C⊗ x−(k) where x−(k) is the earliest state vector
for k ∈ [ks +1,k f ].

Let us now determine the earliest state trajectory X− of the prediction problem.

Let E =




x(ks)
ε
ε
· · ·
ε
ε




As constraint x(ks) = x(ks) can be written x(ks) ≤ x(ks) and

x(ks)≤ x(ks), the earliest state trajectory X− is given by the resolution of X ≥Dh⊗
X ⊕E with condition x(ks)≥ x−(ks). The application of Kleene star by Theorem 1
gives the lowest solution X− = (Dh)∗⊗E with condition x(ks)≥ x−(ks). The control
is given by u−(k) = B\x−(k).

3.3.3 Generalization

Condition on state trajectory B⊗ (B\x(k)) = x(k) leads to control u(k) = B\x(k)
which produces the exact calculated state trajectory. The same result can be obtained
with assumptions on the structure of matrix B (structure 2). In fact, this technique
can be generalized as we can only consider only transitions whose dates obey the
additional constraints and neglect the other ones. Using the previously calculated
state trajectory, the application of control u(k) = B\x(k) must lead to the exact firing
dates of the first class but can minimize the firing dates of the second class.

The structure of B is defined as follows: Divide the set of transitions T R into
Tc defined below, and its complement Tnc with T R = Tc ∪ Tnc; Set Tc is the set of
transitions xi such that there is a non-null coefficient A−i j or A=

i j or A+
i j . Recall that

xi(k+1)≥ A−i j ⊗x j(k) , xi(k+1)≥ A=
i j ⊗x j(k+1) and xi(k)≥ A+

i j ⊗x j(k+1) , for
k ≥ ks.

After reorganization of the rows and columns, matrix B is as follows: vector
xc (respectively xnc) expresses the firing dates of transitions xi ∈ Tc (respectively
xi ∈ Tnc); With no conditions on B12 and B22,(

xc(k)
xnc(k)

)
=

(
B11 B12
B21 B22

)
⊗

(
u1(k)
u2(k)

)
where B11 follows structure 2 and B21 = ε

.
So, the control can satisfy xc(k) = B11 ⊗ u1(k) with xc(k) ≥ B12 ⊗ u2(k) and

xnc(k)≥ B22⊗u2(k) .
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3.4 Causality

Approaches based on a feedback defined by a Petri net are limited by the condition
that the temporisation and initial marking of each added place are non-negative. The
existence of a linear state feedback is discussed in [10] : this problem is reminiscent
of difficulties of the theory of linear dynamical systems over rings [7]. Similarly,
Model Predictive Control is limited by the following behavior. Let um (respectively,
u−) be the calculated control corresponding to the modified desired output zm (re-
spectively, earliest desired output z−). In general, not all components of x(k) are
known at the same time and some of the components of x(ks + j) for some j > 0
might be known when the control um is calculated. In this part, we only consider the
usual procedure used in model predictive control. Consequently, the application of
control um(ks +1) must be made after the dates of x(ks) which are data of the prob-
lem. So, each component (um)i(ks +1) must be greater than the date of the possible
application which is the addition (in standard algebra) of the maximum of com-
ponents of x(ks) and the CPU time TCPU . More formally, the causality condition is
um(ks +1)≥Fu⊗x(ks) where Fu is the⊗−product of TCPU and a full matrix of zeros
with appropriate dimensions. Moreover, each calculated date xi(ks +1) is the result
of the application of the control and we can similarly write x(ks + 1) ≥ Fx⊗ x(ks)
where Fx is defined as Fu with appropriate dimensions. As the complete analysis
of these conditions needs an extensive study (see part 7.2 ”Directions for future
research” in [13]), we only give the following results.

Remark. If matrix B has no null row, then the first causality relation implies
the second one. Indeed, x(ks + 1) ≥ B⊗um(ks + 1) ≥ B⊗Fu⊗ x(ks) ≥ Fx⊗ x(ks) .
Different authors give examples following this assumption on B (see [15], chapter 3
and 4 in [13] for instance).

The following result assumes that the predictive control approach gives x−(ks) =
x(ks) .

Property 2. Suppose that the control procedure gives a control u− such that B⊗
u−(k) = x−(k) and x−(ks) = x(ks) . The causality conditions x(ks +1)≥ Fx⊗ x(ks)
and um(ks +1)≥ Fu⊗x(ks) are satisfied for any x(ks) if I⊕A⊕A− ≥ Fx and B\[(I⊕
A⊕A−)]≥ Fu , respectively.

Proof. Let us consider the causality condition on state x. So, x(ks + 1) ≥ x−(ks +
1)≥ (A⊕A−)⊗ x−(ks)⊕B⊗u−(ks +1) = (A⊕A−)⊗ x−(ks)⊕ x−(ks +1)

= (I⊕A⊕A−)⊗ x−(ks) = (I⊕A⊕A−)⊗ x(ks)
As relation x(ks + 1) ≥ (I⊕A⊕A−)⊗ x(ks) is always satisfied and assumption

I⊕A⊕A− ≥ Fx is taken, we can deduce that x(ks +1)≥ Fx⊗ x(ks) .
Let us consider the causality condition on control um. So, um(ks + 1) ≥ u−(ks +

1) = B\x−(ks +1)≥ B\[(I⊕A⊕A−)⊗x(ks)]≥ B\[(I⊕A⊕A−)]⊗x(ks) (property
f12 in [1]). If assumption B\[(I⊕A⊕A−)]≥Fu is taken, we can deduce that um(ks +
1)≥ Fu⊗ x(ks) . ut
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4 Conclusion

In this paper, we present a trajectory tracking control of Timed Event Graphs with
specifications defined by a P-time Event Graph. The proposed approach presents the
following characteristics.

The approach is completely defined in (max, +) algebra and does not use standard
algebra. Except the algorithm of Kleene star, every used mathematical tool is present
in the document which gives a complete description of the approach.

The two parts of the trajectory tracking control are: a) the optimal control; b) the
updating of a desired output based on a prediction of the earliest possible desired
output trajectory. These two parts use a special block tridiagonal matrix. This type
of matrix is often encountered in numerical solutions of engineering problems (e.g.
computational fluid dynamics, finite element method).

In the general case, a pseudo-polynomial algorithms gives the control and pro-
poses an initial condition which must satisfy a condition of coherence of the state
trajectory. This technique is sufficient when the control system can apply the calcu-
lated initial condition to the process. For different structures of matrix B, the pro-
posed trajectory tracking control is composed of two polynomial algorithms. Trials
show that the approach can be applied on-line for relatively important sizes of Event
Graphs and horizon of calculation. It can offset unfavorable initial situations while
the specifications are met.
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