
1

Compromise Approach for Predictive Control

of Timed Event Graphs with Specifications

Defined by P-time Event Graphs

Philippe Declerck

I. ABSTRACT

In this paper, the aim is to make the predictive control of a plant described by a Timed

Event Graph which follows the specifications defined by a P-time Event Graph. We propose a

compromise approach between the ideal optimality of the solution and the on-line application of

the computed solution when the relevant optimal control cannot be applied for a given computer.

The technique is based on a reduction of the number of iterations of the fixed point algorithm

such that the computed control remains causal. The analysis of the partial satisfaction of the

specifications at each iteration of the algorithm defined in the (max, +) algebra shows that a

subset of constraints is guaranteed by the control computed at each iteration while another one

is possibly satisfied.

P. Declerck is with LISA/LARIS EA7315, University of Angers, 62 avenue Notre-Dame du Lac, 49000 Angers, France. Tel.

+33 244 687568 - Fax. +33 244 687561. e-mail. philippe.declerck@univ-angers.fr

February 29, 2016 DRAFT

2

keywords: Timed Event Graphs, P-time Petri nets, predictive control, causality, fixed point,

consistency.

II. INTRODUCTION

A classical problem is the predictive control of a Timed Event Graph where some events are

stated as controllable, meaning that the corresponding transitions (input) may be delayed from

firing until some arbitrary time provided by a supervisor. In this paper, the specifications are

defined by a P-time Event Graph which describes the desired behavior of the interconnections

of all internal transitions. Using the (max, +) algebra, we wish to determine an input in order

to obtain the desired behavior defined by the specifications.

Since last two decades, this subject or its variant has already been considered in many papers

giving advanced results. However, the consideration of the causality phenomenon in the control

procedure still poses a problem. Indeed, Predictive Control approaches calculate a future control

which must be applied on-line: The application of the control must be made after the past dates

of the initial state which is the known initial starting point of the problem. The application of the

first calculated control must be made after an availability time, which is the sum of the last past

date of the known state and the computer time (The execution time of the on-line procedure)

[10]. In this paper, this constraint is named ‘causality constraint’ and the control is said to be

‘causal’ when the causality constraint is satisfied. Leading to unsolved control problems, this

difficulty arises if we consider too imperative desired output and/or the practical control of large

scale systems such as transportation systems, real-time systems,...

Therefore, the aim of this paper is to propose an approach for predictive control by improving

the satisfaction of the causality constraint. A possible solution is to reduce the availability time

by having a lower computer time. A technique given in [9] is based on a restriction of the state

February 29, 2016 DRAFT

3

space leading to a convergence of the pseudo-polynomial algorithm at the first iteration which

provides a strongly polynomial algorithm. However, the considered problem must satisfy a space

condition. In this paper, we propose a compromise approach defined as follows. We can reduce

the CPU time of the fixed point algorithm by limiting the number of iterations such that the

computed control remains causal. In other words, the algorithm is stopped at a given iteration

without waiting for the convergence and the occurrence of a causality problem. The causal control

generated by this unusual approach is greater than the optimal control as the convergence based

on a minimization is not waited. Only a subset of the constraints is satisfied but the solution

meets the deadlines: These two aspects (which respectively correspond to points b) and a) defined

in Section IV) define the compromise considered in this paper aiming at satisfying the causality

constraint. Note that another possible compromise is to take another point of view: All the

constraints are satisfied but the desired output is not satisfied as the objective of this possible

technique (beyond the scope of this paper) is to postpone the desired output (and increase the

control) such that the causality constraint is satisfied. As in the previous approach, the causal

solution is not optimal with respect to the ideal control problem as a constraint (point a) defined

below) is not satisfied.

This approach can be sufficient if the important constraints are guaranteed by a preliminary

analysis. Clearly, the satisfaction of safety regulations for a grade crossing is obligatory contrary

to the satisfaction of the following non-crucial constraint taken in the food industry: In good

bakery practice, the dough stays in the fermentation room from three to five hours, the time

depending on room temperature and flour or gluten quality; if these times are too short or too

long, the quality of the product will slightly be damaged (bad inner structure and grain in the

finished loaf). Therefore, the resolution of this problem implies that we focus on the partial

February 29, 2016 DRAFT

4

validity of the different constraints at each iteration which allows the application of a control

to the process without waiting the complete convergence of the algorithm. This objective needs

the generalization of [9] by introducing new theoretical results based on residuation theory and

the fundamental Theorem 3.1.1 in [5] analyzed by different authors (K. Zimmermann (1976),

P. Butkovic, H. Goto and S. Masuda [11]). At the best of our knowledge, the analysis of the

partial consistency of the constraints is an original topic in the max-plus algebra.

Let us briefly put our contribution into the general context of control and give some related

works. A first class of approaches works on the behavior of the state model by handling its

characteristics with frequently the building of closed-loop blocs connected to the inputs of the

system [15] [14] [1] [13]. A current support is the transfer function on a dioid of series with

the assumption of canonical initial condition. An objective is the development of controllers in

order to keep trajectories inside a space deduced from a given specification. Note that approaches

based on a feedback defined by a Petri net present a causality condition as the duration and the

initial marking of each added place must be non-negative. Traditionally applied to linear discrete-

time models, the framework of Predictive Control can also be adapted to discrete event systems.

Considering the state equations, an usual step of the approach developed in [18] [17] is to

transform the (max, +) problem in a linear programming problem in the conventional algebra

which allows the application of classical algorithms. The principal advantage of this technique

is the consideration of general models. However, as shown above, model predictive control is

an on-line approach which needs efficient algorithms: The application of generic algorithms

of linear programming (see the algorithms cited in [18]) leads to the limitation of the size of

the considered systems. When stochastic max-plus systems are considered, an approach based

on a technique called variability expansion can reduce the computational complexity of this

February 29, 2016 DRAFT

5

optimization problem [3].

The crucial point is that the structures of the matrices describing the models in standard

algebra present specific characteristics [12]. So, an objective is to make the most of these

specific structures of the systems and to deduce an approach having a reduced CPU time. An

answer is to use the (max, +) algebra which allows the application of efficient algorithms of

path theory which are often strongly polynomial [8] [9] [10]. As discussed in [7], the algorithms

specific to path algebra, surpass the best generic algorithms of linear programming when they are

applied to the relevant specific problems. A second advantage is the possibility to write formal

expressions contrary to linear programming which focus on the numerical results. So, we can

define an off-line preparation which can avoid the repetition of the same calculations at each

step of the procedure and reduce the CPU time. In fact, the calculation of some matrices can

be made once as it does not depend on the on-line aspect, but only depends on the models and

the size of the given horizon (Chapter 5 in [8]).

In this paper, we assume that the control problem has an admissible solution satisfying the

different criteria of the problem (defined below in Assumption 1) but can present a non-causal

control. The consistency of the models and the problem (Chapters 2 and 4 in [8]) is beyond

the scope of this paper. The value of the maximum number of iterations such that the control

remains causal is assumed to be known and is non-null (Assumption 2): It has been approximated

in a preparatory phase of tests based on off-line simulations close to the real conditions of

the predictive control. We consider that each transition is observable: The event date of each

transition firing is assumed to be available. No hypothesis is made on the structure of the Event

Graphs which does not need to be strongly connected. The initial marking should only satisfy

the classical liveness condition and the usual hypothesis of First In First Out (FIFO) places is

February 29, 2016 DRAFT

6

used. The presentation of the model of the P-time Event Graph is omitted and can be found in

Chapter 2 in [8]. The principle of the model predictive control can be found in [18].

The broad outline of the paper is as follows. Mathematical tools are remembered in Section

III. We then describe the control problem and the relevant fixed point algorithm which calculates

the control and the state trajectories in Section IV [9]. The main contribution of this paper is

the analysis of the partial consistency of the constraints in Section V where a variation of the

classical procedure of predictive control is proposed. This paper is an improved version of [10]

containing new material, such as: A new section on causality constraint; an original Corollary

analyzing the partial consistency of Ax = b; a generalized Theorem 5 considering the case where

some equalities are never satisfied and a new Theorem 6 based on on-line data; the proofs of

the different propositions; the pedagogical Examples 1, 2 and 4; Illustrating the main points, the

pedagogical example 3 is a more complex version of the example given in [9].

III. PRELIMINARY REMARKS

A monoid is a pair ($,⊕) where $ is a nonempty set, the operation ⊕ is associative and

presents a neutral element ε. A semiring $ is a triple ($,⊕,⊗) where ($,⊕) and ($,⊗) are

monoids, ⊕ is commutative, ⊗ is distributive in relation to ⊕ and the zero element ε of ⊕ is

the absorbing element of ⊗ (ε ⊗ a = a ⊗ ε = ε). A dioid D is an idempotent semi-ring (the

operation ⊕ is idempotent, that is a⊕ a = a). The set R∪ {−∞}, provided with the maximum

operation denoted by ⊕ and the addition denoted by ⊗ is an example of dioid denoted by

Rmax = (R ∪ {−∞},⊕,⊗): So, x⊕ y = max(x, y) and x⊗ y = x + y. The neutral elements

of ⊕ and ⊗ are represented by ε = −∞ and e = 0, respectively. The absorbing element of ⊗

is ε. The minimum operation is denoted by ∧. The partial order denoted by 6 is defined in Rn

as follows: x 6 y ⇐⇒ x⊕ y = y ⇐⇒ x ∧ y = x ⇐⇒ xi 6 yi, for i from 1 to n. The notation

February 29, 2016 DRAFT

7

x < y means that x 6 y and x 6= y. A dioid D is complete if it is closed for infinite sums,

and the distributivity of the multiplication with respect to the addition applies to infinite sums.

(∀c ∈ D) (∀ A ⊆ D) c⊗(
⊕
x∈A

x) =
⊕
x∈A

c⊗x. For example, Rmax = (R∪{−∞}∪{+∞},⊕,⊗)

is complete. The operations ⊕ and ⊗ are extended to matrices as follows:

If α ∈ D and if P , Q ∈ Dmxn then

(α⊗ P)i,j = α⊗ Pi,j and (P ⊕Q)i,j = Pi,j ⊕Qi,j for all i, j;

If P ∈ Dmxp and Q ∈ Dpxn then

(P ⊗Q)i,j =

p⊕

k=1

Pi,k ⊗Qk,j for all i, j.

The identity matrix is denoted by I: Ii,j = e if i = j and Ii,j = ε if i 6= j. The zero matrix is

only composed of the entries ε and is denoted by ε. The dimensions of the matrices I and ε

can easily be deduced from the context. The set of nxn matrices with entries in the complete

dioid D including the two operations ⊕ and ⊗ is a complete dioid, which is denoted by Dnxn.

We can deal with non-square matrices if we complete them with rows or columns provided the

entries equal ε.

A mapping f is monotone or isotone if x ≤ y implies f(x) ≤ f(y). Let f : E→ F be an isotone

mapping, where (E, ≤) and (F,≤) are ordered sets. The mapping f is said to be residuated if

for all y ∈ D, the least upper bound of subset {x ∈ D | f(x) ≤ y} exists and lies in this subset.

The isotone mapping x ∈ (Rmax)
n 7→ A⊗ x, defined over Rmax is residuated (see [2]) and the

left ⊗−residuation of B by A is denoted by

A\B = max{x ∈ (Rmax)
n such that A⊗ x 6 B}.

This greatest element (also called maximum) of the last set is also denoted by x+. Moreover,

(x+)i =
m∧

j=1

Aji\bj

February 29, 2016 DRAFT

8

where A is an m× n matrix and residuation \ has priority over minimization ∧.

Example 1. Let A =




a1,1 a1,2

a2,1 a2,2


 and b =




b1

b2


 where all the entries ai,j ,bi are defined

over R. System A ⊗ x 6 B is equivalent to max(ai,1 + x1, ai,2 + x2) 6 bi (∀i ∈ {1, 2}) in the

standard algebra, or equivalently, the set of inequalities ai,j + xj 6 bi (∀i, j ∈ {1, 2}). So, we

obtain xj 6 bi − ai,j (∀i, j ∈ {1, 2}) or the developed form





x1 6 min(b1 − a1,1, b2 − a2,1)

x2 6 min(b1 − a1,2, b2 − a2,2)

.

Therefore, we directly obtain the greatest solution

(x+)i = min(b1 − a1,i, b2 − a2,i)(∀i ∈ {1, 2})

which considers finite entries. This expression is generalized by formula (x+)i =
m∧

j=1

Aji\bj

containing the residuated form Aji\bj which avoids the ambiguities when infinite entries are

considered. ¥

The notation card(X) stands for the cardinality of the set X . The Kleene star is defined by:

A∗ =
+∞⊕
i=0

A⊗i

where A⊗i represents the (max, +) product of i matrices A: A⊗i = A ⊗ A ⊗ ... ⊗ A. Denoted

by ImA, the image of A is {A ⊗ x | x ∈ Rn
max} which is the set of all linear combinations of

columns of A in the max-plus meaning. A matrix A is called row (column) R−astic when it

has no null row (column): Ai,. 6= ε for any row i (A.,j. 6= ε for any column j). A matrix A is

called doubly R−astic if it is both row and column R−astic.

Let us consider the initial control problem of this paper defined over Rmax. Below, the variable

xi(k) is the date of the kth firing of the transition xi and n is the dimension of x(k).

February 29, 2016 DRAFT

9

IV. CONTROL PROBLEM

In this paper, we consider a classical predictive control based on the infinite repetition of a

control step on a finite sliding horizon. Generalizing the Backward Approach (The basic problem

is explained in Chapter 5.6 ’Backward Equations’ in [2]), this control step is the resolution of

the following control problem where the objective is the determination of the greatest control

u (with respect to the componentwise order) on an arbitrary horizon [ks + 1, kf] such that its

application to the Timed Event Graph defined by




x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)

y(k) = C ⊗ x(k)

(1)

for k ≥ ks, satisfies the following conditions:

a) y ≤ z knowing the trajectory of the desired output z ;

b) The state trajectory follows the model of the P-time Event Graph algebraically defined by

(and described below)



x(k)

x(k + 1)


 ≥




A= A+

A− A=


⊗




x(k)

x(k + 1)


 ; (2)

c) The initial value of the state trajectory x(k) for k ≥ ks is finite and is a known vector

denoted by x(ks). This “ non-canonical ” initial condition is the result of a past evolution of the

process.

Underlined symbols like x(ks) correspond to known data of the problem and, state x(k) and

output y(k) are estimated in the following resolutions.

The system (2) can always be obtained and corresponds to a P-time Event Graph where the

initial marking of each place is equal to at most one. When we consider the places having a

unitary (respectively, null) initial marking, the lower bound T−
1 of the temporization of place

February 29, 2016 DRAFT

10

p1 linking its input transition xj to its output transition xi generates the entry A−
i,j = T−

1 ≥ 0

(respectively, A=
i,j = T−

1 ≥ 0) as we have xi(k + 1) ≥ xj(k) + T−
1 (respectively, xi(k) ≥

xj(k) + T−
1). Similarly, the upper bound T+

1 of the temporization of this place generates the

entry A+
j,i = −T+

1 ≤ 0 (respectively, A=
i,j = −T+

1 ≤ 0) as we have xj(k) ≥ xi(k + 1) − T+
1

(respectively, xj(k) ≥ xi(k)− T+
1).

Example 2.

Let us consider an elementary P-time Event Graph having a unique place p1 associated with

a time interval [T−
1 , T+

1] and connecting an input transition denoted x1 to an output transition

denoted x2. If the initial marking is null, we have A− = 0, A+ = 0 and A= =




ε −T+
1

T−
1 ε


.

If now the initial marking of p1 is unitary, we obtain A= = 0, A− =




ε ε

T−
1 ε


 and A+ =




ε −T+
1

ε ε


. Other examples can be found in [9] and, Chapters 2 and 3 of [8]. ¥

A. Relations on horizon [ks, kf]

The relations of the Timed Event Graph can be rewritten under the following classical form

on horizon [ks, kf].

X = Ωh ⊗ x(ks)⊕Ψh ⊗ U (3)

where h = kf − ks , X =

(
x(ks + 1)t x(ks + 2)t · · · x(kf − 1)t x(kf)

t

)t

(t: trans-

posed), U =

(
u(ks + 1)t u(ks + 2)t · · · u(kf − 1)t u(kf)

t

)t

, Ωh is a column of h blocks

(Ωh)i = A⊗i for i = 1 to h and Ψh is a h x h matrix of blocks (Ψh)i,j for i, j ∈ {1, 2, . . . , h}

where (Ψh)i,j = A⊗(i−j) ⊗B for i ≥ j and ε otherwise.

February 29, 2016 DRAFT

11

Below we consider the additional constraints (2) for k ≥ ks and an autonomous Timed Event

Graph defined by the inequality x(k) ≥ A ⊗ x(k − 1) which is the relaxation of the earliest

firing rule, starting from x(ks) = x(ks).








x(ks)

X


 ≥ Dh ⊗




x(ks)

X


 and (4)

x(ks) = x(ks) (5)

where Dh is a tridiagonal matrix of blocks (Dh)i,j for i, j ∈ {1, 2, . . . , h + 1}: This square

matrix is composed of a main diagonal ((Dh)i,i = A= for i ∈ {1, . . . , h+1}), an upper diagonal

((Dh)i,i+1 = A+ for i ∈ {1, . . . , h}), a lower diagonal ((Dh)j+1,j = A⊕A− for j ∈ {1, . . . , h});

all other blocks are zero matrices (square submatrix ε). The matrix Dh is a n.(h+1) x n.(h+1)

matrix.

B. Fixed point algorithm

We introduce the following extended state vector x =

(
(x(ks))

t (X)t

)t

which expresses

the complete state trajectory. Let (x)+ be the greatest estimate of the state trajectory and

F =

(
x(ks)

t (C\z(ks + 1))t · · · (C\z(kf))
t

)t

. The following theorem shows that the

problem can be rewritten in a form of a fixed point inequality which is solved by Algorithm 1

below.

Theorem 1: [9] The greatest state and control trajectory of the control problem is the greatest

solution of the following fixed point inequality system




x ≤ Dh\x ∧ F

U ≤ Ψh\X

X ≤ Ωh ⊗ x(ks)⊕Ψh ⊗ U

(6)

February 29, 2016 DRAFT

12

with condition x(ks) ≤ x+(ks). ¥

Therefore, the problem is rewritten under a general, fixed-point formulation x ≤ f(x) which

allows the control problem to be resolved (Chapter 4 in [8], [9]). Function f is a (min, max, +)

function which can be defined by the following grammar: f = b, x1, x2, . . . , xn | f ⊗ a | f ∧ f |

f ⊕ f where a, b are arbitrary real numbers (a, b ∈ R). The existence of the greatest solution

on complete lattices can be proven by using the famous fixed point theorem of Knaster-Tarski

which can be deduced from the fixed point theorem of Amann (1977) whose proof uses the

fixed point theorem of Bourbaki (1940) and Kneser (1950) [21]. The conditions of the Knaster-

Tarski theorem are satisfied: The general form of the problem is such that x ≤ f(x) where f is

an isotone function defined on a complete lattice Rmax=(R ∪ {−∞} ∪ {+∞},≤) and where x

corresponds to (x(ks)
t, X t, U t)t .

Algorithm 1 below is a fixed point algorithm calculating the greatest state and control. Since

it follows the algorithm of McMillan and Dill [16] [20], Algorithm 1 is also pseudo-polynomial.

Remember that in this classical algorithm, the greatest solution to x ≤ f(x) is given by the

iterations of x〈i〉 ← x〈i−1〉 ∧ f(x〈i−1〉) if the finite starting point x〈0〉 is greater than the final

solution. Here, number 〈i〉 represents the number of iterations and not the number of components

of vector x. Also note that Algorithm 1 is close to the Alternating Method given in [6] which

solves the equality A ⊗ x = B ⊗ y . Starting from x〈0〉 = F , the trajectory x is minimized in

each iteration of the following algorithm where each iteration 〈i〉 with i > 0 is composed of

the three steps 1, 2 and 3. Algorithm 1 proposes an initial state x(ks) satisfying x(ks) ≤ x(ks)

and generates a trajectory starting from x(ks) given by the expression Ωh ⊗ x(ks) ⊕ Ψh ⊗ U .

The control problem is solved under the condition x(ks) ≤ x(ks) which implies x(ks) = x(ks)

(Point c)).

February 29, 2016 DRAFT

13

Algorithm 1 [9]

Step 0 (initialization): 〈i〉 ← 〈0〉; (x)2 ← F

Repeat

- 〈i〉 ← 〈i + 1〉 (numbering of the iteration)

- Step 1: (x)1 ← D∗
h\(x)2

- Step 2: U ← Ψh\X1

- Step 3: (x)2 ← (x)1 ∧




+∞

Ωh ⊗ x1(ks)⊕Ψh ⊗ U




until X1 = X2. ¥

Vectors (x)1 =

(
(x1(ks))

t (X1)t

)t

and (x)2 =

(
(x2(ks))

t (X2)t

)t

present the same

dimensions as x =

(
(x(ks))

t (X)t

)t

and correspond to useful intermediate values leading

to the obtention of the optimal vector x. Vectors (x)1 and (x)2 are respectively computed in

Steps 1 and 3 which are respectively backward and forward calculations. Step 1 is deduced

from the resolution of x ≤ Dh\x ∧ (x)2 and the application of Theorem 4.73 in ([2]). The

obtained solution (x)1naturally satisfies (x)1 ≤ Dh\(x)1 which corresponds to (4). The rest of

the algorithm checks that this calculated solution, also satisfies X1 = Ωh ⊗ x1(ks) ⊕ Ψh ⊗ U

with U = Ψh\X1.

C. Example 3

This example is a more complex version of the example given in [9]. In this paper, we will

show that the new matrix B leads to a different convergence: It needs two iterations while

the example in [9] converges in three iterations (Or one iteration when a specific subspace is

considered).

February 29, 2016 DRAFT

14

X1 X2

X3

u y

0

5

7 2

5
4

3

5

4

6

Fig. 1. Plant in Example 3: Timed Event Graph (example [9] modified)

Timed Event Graph (Fig. 1): A =




0 7 5

5 2 ε

ε 4 6




, B =




4

3

ε




and C =

(
ε 5 ε

)
.

P-time Event Graph (Fig. 2): A= =




ε ε −11

ε ε −11

1 1 ε




, A− =




ε 0 1

3 ε 4

1 2 ε




and A+ =

X1 X2

X3

[3,5]

[0,8]

[2,9]

[4,11]

[1,11]

[1,6]

[1,9]

[1,11]

Fig. 2. Specifications in Example 3: P-Time Event Graph [9]

February 29, 2016 DRAFT

15




ε −5 −9

−8 ε −9

−6 −11 ε




.

Let h = 3. The desired output z(k) and the initial condition x(ks) are as follows:

z(k) = 25, 25, 28 for ks + 1 ≤ k ≤ ks + 3 and x(ks) =

(
2 0 3

)t

. Needing two

iterations, Algorithm 1 gives the following results: u(k) = 4, 10, 16 for ks + 1 ≤ k ≤ ks + 3,

x(ks) =

(
2 0 3

)t

, x(ks + 1) =

(
8 7 9

)t

, x(ks + 2) =

(
14 13 15

)t

, x(ks + 3) =
(

20 19 21

)t

and y(k) = 12, 18, 24 for ks + 1 ≤ k ≤ ks + 3. Matrices (Dh)
∗ and Ψh are

given below.

(Ψh)
t =




4 3 ε 10 9 7 16 15 13

ε ε ε 4 3 ε 10 9 7

ε ε ε ε ε ε 4 3 ε




Note that matrix Ψh is different from matrix

Ψh given in [9]. The possibility that the third row of Ψh is null will be examined in the following

sections.

(Dh)
∗ =

February 29, 2016 DRAFT

16




0 0 −1 −7 −5 −8 −13 −12 −14 −20 −18 −21

−2 0 −3 −8 −7 −9 −15 −13 −16 −21 −20 −22

1 1 0 −6 −4 −7 −12 −11 −13 −19 −17 −20

6 7 5 0 1 −1 −7 −5 −8 −13 −12 −14

5 5 4 −2 0 −3 −8 −7 −9 −15 −13 −16

7 8 6 1 2 +0 −6 −4 −7 −12 −11 −13

12 13 11 6 7 5 0 1 −1 −7 −5 −8

11 12 10 5 6 4 −2 0 −3 −8 −7 −9

13 14 12 7 8 6 1 2 0 −6 −4 −7

18 19 17 12 13 11 6 7 5 0 1 −2

17 18 16 11 12 10 5 6 4 −2 0 −3

19 20 18 13 14 12 7 8 6 1 2 0




. ¥

As we focus on the satisfaction of the constraints (conditions b)) during the convergence,

we assume that Algorithm 1 gives a solution to the initial problem. The following assumption

clarifies the context of this paper.

Assumption 1: Algorithm 1 converges to a finite solution satisfying conditions a), b) and c)

at the end of its complete execution. ¥

This assumption implies that the models are consistent and that the desired output z is taken

sufficiently large with respect to the initial condition x(ks). Unfortunately, this obtained solution

can be non-causal. The causality constraint is now described and defined algebraically.

February 29, 2016 DRAFT

17

D. Causality constraint

Following the classical procedure of the Predictive Control, computed control u(ks + 1) must

on-line be applied after the dates of x(ks) which are the data of the problem. Each component

(u(ks + 1))i must be greater than the date of its possible application which is the sum (in the

standard algebra) of the maximum of the components of x(ks) and the computer time Tcomp

which is the time taken from the start of the algorithm until the end as measured by an ordinary

clock (Let us remember that the CPU time is the amount of time for which a central processing

unit was used for processing instructions of a computer program contrary to the computer time

Tcomp which includes the CPU time and also the variable time spent by the computer in executing

Kernel routines.). The relevant control satisfying this causal constraint is called ”causal” for the

given control problem. More formally, we have

⊕

i∈{1,...,n}
xi(ks)⊗ Tcomp ≤

∧

i∈{1,...,card(u)}
ui(ks + 1) (7)

where
⊕

i∈{1,...,n}
xi(ks)⊗Tcomp is the availability date of the calculated control. We can also rewrite

this causality condition under the form of a (max, +) inequality

Gu ⊗ x(ks) ≤ u(ks + 1) (8)

where Gu is the ⊗−product of Tcomp and a full matrix of zeros E (Ei,j = e = 0) with appropriate

dimensions. The previous expression is equivalent to

Tcomp ≤ Tmaj
comp (9)

February 29, 2016 DRAFT

18

with Tmaj
comp = (E ⊗ x(ks))\u(ks + 1). The value of Tmaj

comp is computed by the relevant step

Tmaj
comp ← (E⊗x(ks))\u(ks+1) which can be executed at the end of Algorithm 1 (denoted Tmaj

comp)

or at the end of each iteration 〈i〉 (denoted Tmaj
comp,〈i〉). Variable Tmaj

comp expresses a majorant of the

necessary resource which must be allocated for the program execution time. Contrary to Tcomp,

the values Tmaj
comp and Tmaj

comp,〈i〉 do not depend on the computer performance and the instructions

of Algorithm 1, but depend on the used data, that is, the parameters of the control problem and

the last calculated control. As its value depends on the successive minimizations of the control,

we have the relevant minimization: Tmaj
comp,〈i′〉 ≤ Tmaj

comp,〈i〉 for i′ ≥ i and Tmaj
comp ≤ Tmaj

comp,〈i〉 for any

iteration 〈i〉.

Therefore, Tmaj
comp,〈i〉 is a majorant of the computer time at iteration 〈i〉 denoted Tcomp,〈i〉. As

condition Tcomp,〈i〉 ≤ Tmaj
comp,〈i〉 is necessary, we can conclude that the control is not always causal

if there is an iteration 〈i〉 such that Tcomp,〈i〉 � Tmaj
comp,〈i〉 and that the control problem for the

current data and computer presents a causality problem. The same remark holds for the last

iteration and, Tcomp and Tmaj
comp. Note that the result Tmaj

comp,〈i〉 < 0 (respectively, Tmaj
comp < 0) shows

a serious causality problem as naturally we also have the condition 0 < Tcomp,〈i〉 (respectively,

0 < Tcomp).

Example 3 (continued).

Table I shows the control for the two iterations. As the control trajectories are close, we obtain

equality Tmaj
comp,〈1〉 = Tmaj

comp,〈2〉. So, Tmaj
comp,〈1〉 = Tmaj

comp,〈2〉 = Tmaj
comp = 1. ¥

Let us analyze the control problem for a given computer. Knowing an estimation of the com-

puter time of each iteration ∆Tcomp, we can approximate Tcomp,〈i〉 with i.∆Tcomp. So, Tcomp,〈i〉 w

i.∆Tcomp ≤ Tmaj
comp,〈i〉 which also gives i ≤ imaj = b T maj

comp

∆Tcomp
c in the standard algebra where bxc

is the largest integer not greater than x. So, imaj is an estimate of the maximum number of

February 29, 2016 DRAFT

19

TABLE I

COMPUTED CONTROL U

Control u(ks + 1) u(ks + 2) u(ks + 3)

Iteration 〈1〉 4 10 17

Iteration 〈2〉 4 10 16

iterations where the problem is causal which can be used in the on-line procedure. Different

cases appears for Tmaj
comp,〈i〉 = 1.

• Inequality Tcomp,〈i〉 ≤ Tmaj
comp,〈i〉 is satisfied for ∆Tcomp = 0.4 and iterations 〈1〉 and 〈2〉 :

the control does not present a causality problem and the optimal approach can be applied

directly. Also, imaj = 2.

• The inequality is never satisfied for ∆Tcomp = 1.2 and the optimal approach and the proposed

strategy cannot be applied. Also, imaj = 0.

• The inequality is satisfied for ∆Tcomp = 0.6 and iteration 〈1〉 but not 〈2〉. This case where

the optimal control cannot be applied is the framework of this paper. As imaj = 1, the

computed control is causal if the algorithm is stopped at the first iteration. ¥

V. CONSTRAINT CONSISTENCY

The expression of the causal constraint shows that its satisfaction can be made with two

possible approaches as x(ks) is a datum of the problem:

• An increase of the control u(ks + 1) which can be generated by an increase of the desired

output z. As said in the Section Introduction, this technique is beyond the scope of this

paper.

• A decrease of Gu produced by a diminution of Tcomp. A possible technique which is analyzed

February 29, 2016 DRAFT

20

in this paper is to consider a limited number of iterations of Algorithm 1 leading to a

reduction of the CPU time and consequently, of the computer time Tcomp. Clearly, stopping

Algorithm 1 after the first iteration gives naturally the largest chance for causality to hold and

is the most secure choice. Other choices leading to a better minimization of the control are

possible and an estimate of the maximum number of iterations such that the control remains

causal can be approximated in a preparatory phase of tests based on off-line simulations

close to the real conditions of the predictive control. So, we take the following assumption.

Assumption 2: The value of the maximum number of iterations such that the control remains

causal is assumed to be known and is non-null. ¥

As the objective of Algorithm 1 is naturally to fulfill the requirements of the control problem,

below we focus on the satisfaction of the different constraints at each iteration which can be

complete or partial:

• In Section V-A, the convergence of Algorithm 1 needs only one iteration where each

constraint is satisfied. The main result of [9] is given below.

• In Sections V-B and V-C, we consider an unfinished convergence of Algorithm 1 where

only a subset of the constraints is satisfied.

A. Complete validity of the constraints

Theorem 2 below highlights an important case where the convergence of Algorithm 1 is

efficient as it presents only one iteration: The satisfaction of the control problem is guaranteed

by the computed control if it satisfies the following condition. Remember that (3) is relevant to

the state equation (1) of the Timed Event Graph while relation (4) corresponds to the additional

constraints of the P-time Event Graph (2) mainly. A simplified form of Theorem 3 in [9] is as

follows.

February 29, 2016 DRAFT

21

Theorem 2: The trajectory (x)2 satisfies the system composed of (3) and (4) when Ψh⊗U =

X1. Moreover, (x)2 = (x)1.¥

Algorithm 1 is strongly polynomial since the resolution needs a unique iteration composed of

the simple application of elementary operations ⊕, ⊗, ∧ and \. Below, the addition of equality

x(ks) = x(ks) facilitates the rewriting of the condition of Theorem 2 with a simpler notation:

The problem is now to check the existence of a solution of u ∈ Rq in the equality

B ⊗ u = x for any x ∈ Rn satisfying x ≥ A⊗ x (10)

with the following notation: B =



I ε

ε Ψh


 , u =




x(ks)

U


, x =




x(ks)

X


 , A = D.

h ,

n=card(x) and q=card(u). In this subsection, we assume in (10) that matrix B has no null rows as

x is finite, otherwise, equality B⊗u = x has no solution. Without a loss of generality, we assume

that matrix B has no null columns so that u=B\x is finite. This assumption only expresses that

each control transition is connected to the system. So, matrix B is called doubly R−astic. We

naturally assume that the associated graph of A does not contain circuits with strictly positive

weight so that A
∗ ∈ Rnxn

max. Theorem 3 below analyzes the existence of a solution u in (10) and

provides conditions which lead to a convergence in one iteration.

Theorem 3: [9] The greatest vector u=B\x satisfies the system (10) if and only if

B ⊗ (B\A∗
) = A

∗
. ¥

So, Theorem 3 gives practical tests which use only the entries of B and A
∗

without calculating

the state and the control.

February 29, 2016 DRAFT

22

When the equality B ⊗(B \A∗
) = A

∗
is not satisfied for all columns of A

∗
but for some

columns denoted (A
∗
)=
.,k (So, B ⊗(B \(A∗

)=
.,k) = (A

∗
)=
.,k), a predictive control using a space

controller compensates for the non-satisfaction of the condition B ⊗(B \A∗
) = A

∗
by reducing

the state space to the subspace Im(A
∗
)= under the condition Im(A

∗
)= 6= ∅ [9].

Let us show that Example 3 does not satisfy the conditions of Theorem 3 and the previous

approach.

Example 3 (continued).

The direct calculation in Scilab shows that B ⊗(B \A∗
) 6= A

∗
. Let us give more details. Matrix

B is not row R−astic as the third row of Ψh is null. The relevant equality B i, . ⊗u = xi is

never satisfied for i = 6 since B 6,. = ε and x6 is finite. Similarly, B i, . ⊗(B \(A∗
).,k) = (A

∗
)i,k

is never satisfied for i = 6 and any k ∈ {1, . . . , n} since row (A
∗
)6,. is finite (Remember that

A
∗

= (Dh)
∗). Therefore, it implies B ⊗(B \A∗

) 6= A
∗

. Another possible approach is the

predictive control based on a space controller but we cannot apply it as there is no column

k ∈ {1, . . . , n} such that B ⊗(B \(A∗
).,k) = (A

∗
).,k: So, Im(A

∗
)= = ∅. ¥

B. Partial validity of the constraints

Therefore, the aim of this part is to generalize Theorems 2 and 3 by analyzing the consistency

of each row of system (10). The validity of the constraints at each iteration of Algorithm 1 can

now be partial.

This approach uses the following fundamental theorem which considers the finite solutions to

equality

A⊗ x = b

where A ∈ Rmxn
max , b ∈ Rm. The relevant set of solutions over R is denoted by S. System A⊗x = b

February 29, 2016 DRAFT

23

is said to be inconsistent if S = ∅, that is, it has no finite solution.

We denote the set of indexes for the rows I = {1, .., m} and for the columns J = {1, .., n} as

A is a (mxn) matrix. Remember that x+ is the greatest solution to A⊗ x ≤ b. In the following

definition, we consider the finite entries of A which can imply the equality Ai,j⊗x+
j = bi where

Ai,j , x+
j and bi ∈ R:

For j ∈ J, Vj = {i ∈ I such that Ai,j is finite and x+
j = Ai,j\bi}.

Theorem 4: (Theorem 3.1.1(c) in [5] page 54, K. Zimmermann (1976)) Let A ∈ Rmxn
max be

doubly R−astic and b ∈ Rm. Then, x ∈ S if and only if

x ≤ x+and
⋃

j∈J | xj=x+
j

Vj = I. ¥

Corollary 1: (Corollary 3.1.2 in [5],) Let A ∈ Rmxn
max be doubly R−astic and b ∈ Rm. Then,

the following three statements are equivalent:

1) card(S) 6= 0

2) x+ ∈ S

3)
⋃
j∈J

Vj = I .

¥

If a row Ai,. is null (A is not row R−astic), we have
⋃
j∈J

Vj 6= I and we can conclude that

there is no finite solution (moreover, the unique row Ai,. ⊗ x = bi with Ai,. = ε has no infinite

solution (−∞ or +∞) as ε is absorbing and bj ∈ R): So, the system is inconsistent. Now, if a

column A.,j is null (A is not column R−astic), Vj is empty and there is no effect on the equality.

Note that this theorem and its corollary are a slight generalization of Theorem 2.1 and Corollary

2.1 in [4] where A is defined over R.

Example 4. Consider A ⊗ x = b with A =




ε ε 3

5 7 6

0 6 0




and the right-hand side vector

February 29, 2016 DRAFT

24

b =

(
5 8 7

)t

. Let matrix M be defined by Mi,j = Ai,j\bj . Below, the minimal elements

Mi,j of each column j are written in bold.

so, M =




+∞ +∞ 2

3 1 2

7 1 7




and x+ =

(
3 1 2

)t

. For columns 1, 2 and 3, we obtain

V1 = {2}, V2 = {2, 3}, V3 = {1, 2} respectively. As
⋃
j∈J

Vj = {1, 2, 3} = I , there is at least a

solution: card(S) 6= 0 and x+ =

(
3 1 2

)t

∈ S. Moreover, x =

(
θ 1 2

)t

with θ < 3

is also a solution as
⋃

j∈J | xj=x+
j

Vj = V2 ∪ V3 = {1, 2, 3} = I. ¥

We now introduce the following variation of the previous results which is used in the rest of

this paper: It gives the rows i where the equality Ai,. ⊗ x+ = bi holds. Contrary to the previous

results, the following corollary does not take the assumption that matrix A is row R−astic. At

the best of our knowledge, this result is original in the max-plus algebra as it considers the case

⋃
j∈J

Vj 6= I showing a partial consistency.

Corollary 2: Let A ∈ Rmxn
max be column R−astic and b ∈ Rm. Then,

Ai,. ⊗ x+ = bi is satisfied, if and only if, i ∈
⋃
j∈J

Vj.

Proof. The proof is given in the appendix. ¥

Example 4 modified. The right-hand side vector is now b =

(
5 8 9

)t

. We obtain: M =



+∞ +∞ 2

3 1 2

9 3 9




and x+ =

(
3 1 2

)t

. For columns 1, 2 and 3, we obtain V1 = {2},

V2 = {2} and V3 = {1, 2} respectively. As
⋃
j∈J

Vj 6= I = {1, 2, 3}, there is no solution: S = ∅.

Set
⋃
j∈J

Vj = {1, 2} gives the rows where the equality is satisfied: A1,. ⊗ x+ = b1 = 5 and

A2,. ⊗ x+ = b2 = 8 but A3,. ⊗ x+ < b3 = 9. ¥

Corresponding to the condition of Theorem 3, the following equality

February 29, 2016 DRAFT

25

B ⊗ v = A
∗

, (11)

where v is a (qxn) matrix will be useful. In the rest of the paper, the assumption that matrix B

is row R−astic is not taken.

The following property is an application of Corollary 2 which allows an analysis of each

row of system (11) by inspection of the sets Vj,k defined as follows. The greatest solution is

denoted by v+. We denote the set of indexes for the rows I = {1, .., n} and for the columns

J = {1, .., q} as B is a (nxq) matrix. Let K = {1, .., n} be the set of indexes of columns of A
∗
.

Corresponding to column j ∈ J of B and column k ∈ K of A ∗ , Vj,k is defined by

Vj,k = {i ∈ I such that Bi,j is finite and v+
j,k = Bi,j\(A∗

)i,k}.

As the set Vj exploited in Corollary 2, the set Vj,k expresses a consistency of each row

(B)i,. ⊗ v+
.,k = (A

∗
)i,k for i ∈ Vj,k where this equality considers a column k ∈ K of A ∗. Now

we introduce the following notations which will be useful in the rest of the paper. Let us denote

Ig,k =
⋃
j∈J

Vj,k

the set of guaranteed rows for a given k ∈ K (Matrix ∆ defined in Example 3 below is deduced

from Ig,k),

Ig =
⋂

k∈K

Ig,k

the set of guaranteed rows for any k ∈ K,

Ip =
⋃

k∈K

Ig,k ⊃ Ig

the set of possibly satisfied rows, and

Ins = {i ∈ I | i /∈ Ip}

February 29, 2016 DRAFT

26

the set of non satisfied rows. So, I = Ip ∪ Ins.

Property 1: Matrix v is a solution to system (11) if and only if

v ≤ v+ and
⋂

k∈K

⋃

j∈J | vj,k=v+
j,k

Vj,k = I.

The set Ig gives the rows of (11) where the equality holds for v=v+.

Proof. The proof is given in the appendix. ¥

We now make the connection between the partial consistency of B ⊗ v = A
∗

and the

consistency of each row of system (10) composed of B i,. ⊗u = xi and (x)i ≥ (A)i,. ⊗ x.

Giving a more complete version of Property 4 in [10], the following result generalizes Theorem

3 (Section V-A) by considering the consistency of each row.

Theorem 5: For the greatest vector u=B \ x with x ∈ImA
∗
,

• equality B i,. ⊗u = xi for i ∈ Ig is always satisfied.

• equality B i,. ⊗u = xi for i ∈ Ig,k is always satisfied when x ∈Im(A
∗
).,k for a given k ∈ K.

• equality B i,. ⊗u = xi for i ∈ Ip is possibly satisfied.

Moreover, equality B i,. ⊗u = xi for i ∈ Ins is never satisfied for any u solution to B⊗u ≤ x

when x ∈ImA
∗
.

Proof. The proof is given in the appendix. ¥

The first three points of Theorem 5 consider the greatest vector u=B \ x. In the first point,

the set Ig guarantees the consistency of a subset of constraints in (11) for any state trajectory

x ∈ImA ∗. The same remark holds for the set Ig,k but the state trajectory x follows a unique

direction (A
∗
).,k with k ∈ K : x = λk⊗ (A

∗
).,k. We directly deduce that, depending on the state

evolution inside the space ImA ∗, the set Ip gives the rows of B ⊗u = x where the equality is

possibly satisfied. Finally, Ins completes Ip as it is the set of rows where the equality is never

February 29, 2016 DRAFT

27

satisfied even if we consider, not the greatest vector u=B \ x but, any solution u solution to

B ⊗ u ≤ x when x ∈ImA
∗
.

C. Partial consistency and iterations of Algorithm 1

The following result will be useful in this subsection. Vector X ′ is a co-state also considered

in the well-known ”backward approach” (see part 5.6.2 in [2]).

Property 2: [9] X ′ ≤ X1 and X2 = X ′ where X ′ = Ωh ⊗ x1(ks)⊕Ψh ⊗ U .

Analyzing an iteration of Algorithm 1, Property 2 shows the minimization of the state trajectory

produced by steps 2 and 3, and the fact that the state equation is satisfied at the end of each

iteration. Moreover, we can also say that the proposed method satisfies point a): Each iteration

of Algorithm 1 proposes a control which generates an output satisfying the point a) relevant

to the desired output (expressed by vector F). Indeed, step 1 also makes a minimization and

Algorithm 1 starts from F . The objective is now the analysis of the constraints and we will

show that a subset of constraints is always guaranteed at each iteration.

Considering system (4) at each iteration of Algorithm 1, the following theorem completes

Theorem 2 (Section V-A). Generalizing Theorem 3 in [10], it is based on Property 2 and Theorem

5 mainly.

Theorem 6: Each inequality

xi ≥ (Dh)i ⊗ x of (4)

is satisfied at the end of each iteration of Algorithm 1 when the control computed at step 2 of

Algorithm 1 satisfies equality

X1
i−n = (Ψh)i−n,. ⊗ U

February 29, 2016 DRAFT

28

for i ∈ Ip′ = Ip ∩ {n + 1, ..., n}. The same result holds for (x)1
i ≥ (Dh)i ⊗ (x)1where (x)1 is

calculated at step 1.

Proof. The proof is given in the appendix. ¥

Contrary to Theorem 6, the following corollary does not depend on the on-line computation

of X1
i−n and U .

Corollary 3: Each inequality

xi ≥ (Dh)i ⊗ x of (4)

for i ∈ Ig is satisfied at the end of each iteration of Algorithm 1 for the control calculated at

step 2 of Algorithm 1.

Proof. We can apply the first case of Theorem 5: The equality X1
i−n = (Ψh)i−n,. ⊗ U holds

when i ∈ Ig′ = Ig ∩ {n + 1, ..., n}. ¥

If the control problem presents a causality problem, Algorithm 1 can be stopped without

waiting for its convergence: Without computing the state and the control, the analysis guarantees

the satisfaction of a subset of the constraints at the end of each iteration. Knowing the maximum

number of iterations denoted imaj , we can choose the first iteration 〈1〉 which is the most secure

choice or, an iteration 〈i〉 with i ≤ imaj where the choice i = imaj gives the minimum solution

with respect to the other possible choices. In all cases, the desired output is met (Point a)).

Remark 1: As in the complete convergence of Algorithm 1, the last iteration proposes an

initial state x1(ks) (we have x2(ks) = x1(ks) by construction) satisfying x1(ks) ≤ x(ks) which

is the starting point of the state trajectory (under condition x1(ks) = x(ks)).

February 29, 2016 DRAFT

29

D. Example 3 (continued)

We now consider the partial consistency of B ⊗ v = A
∗

and deduce the consistency of each

row of system (10) composed of B i,. ⊗u = xi and (x)i ≥ (A)i,.⊗x . Generated by the execution

of Algorithm 1, Tables I in Section IV-D and II show the evolution of the control U and the state

trajectory X2 obtained at the end of the iterations 〈1〉 and 〈2〉 and, the validity of the relevant

different relations in x ≥ A⊗x (except obvious relations corresponding to x(ks)) which mainly

express the additional constraints given by the P-time Event Graph. Notation: p for possible; g

for guaranteed; s for satisfied; ns for non satisfied.

TABLE II

CONSISTENCY DEDUCED FROM THE ROWS OF B ⊗ v = A
∗

AND COMPUTED STATE X2 | ON-LINE SATISFACTION (S, NS) OF

THE CORRESPONDING CONSTRAINTS IN x ≥ A⊗ x

Row i of B ⊗ v = A
∗

4 5 6 7 8 9 10 11 12

Consistency p g ns p g ns p g ns

State X2 x1(ks + 1) x2(ks+1) x3(ks+1) x1(ks+2) x2(ks+2) x3(ks+2) x1 (ks+3) x2(ks+3) x3(ks +3)

Iteration 〈1〉 8 | s 7 | s 9 | s 14 | ns 13 | s 15 | s 21 | s 20 | s 21 | ns

Iteration 〈2〉 8 | s 7 | s 9 | s 14 | s 13 | s 15 | s 20 | s 19 | s 21 | s

We have n = (h+1).n = 12 and q = n+h.card(u)= 6 as n = 3 and h = 3. So, I = {1, ..., 12},

J = {1, ..., 6} and K = {1, ..., 12}. Remember that A
∗

= (Dh)
∗ and B =



I ε

ε Ψh


 . Each

entry ∆i,k of the following n x n symbol matrix gives the row index i ∈ Ig,k =
⋃
j∈J

Vj,k for

each column (A
∗
).,k where symbol = expresses that the relevant equality Bi,.⊗ v.,k = (A

∗
)i,k is

satisfied while symbol < shows that Bi,.⊗ v.,k < (A
∗
)i,k is obtained.

February 29, 2016 DRAFT

30

∆ =




= = = = = = = = = = = =

= = = = = = = = = = = =

= = = = = = = = = = = =

= < = < = < = < = < = <

= = = = = = = = = = = =

< < < < < < < < < < < <

= = = = = = < = < = < =

= = = = = = = = = = = =

< < < < < < < < < < < <

= = = = = = = = = < = =

= = = = = = = = = = = =

< < < < < < < < < < < <




(12)

Let us consider the columns k ∈ K of matrix ∆. As each column contains the symbol < , the

equality B ⊗u = (A
∗
).,k does not hold: we obtain Ig,k 6= I for any k ∈ K and Im(A

∗
)= = ∅.

As said at the end of Section V-A, the approach of [9] cannot be applied.

Let us now analyze the rows i ∈ I of matrix ∆. The set Ig is directly obtained by the

intersection of the sets Ig,k expressed by the columns ∆.,k (Each row contains the symbol = only)

while Ip is the union of these sets (Each row contains the symbol = at least once). The set Ins is

given by the remaining rows (The rows do not contain the symbol =). So, Ig = {1, 2, 3, 5, 8, 11},

Ip = {1, 2, 3, 4, 5, 7, 8, 10, 11} ⊃ Ig and Ins = {6, 9, 12} with I = Ip ∪ Ins.

Guaranteed rows (Ig)

The system composed of B i,. ⊗u = xi and (x)i ≥ (A)i,.⊗x is guaranteed for i ∈ Ig. The rows

i = 5, 8 and 11 correspond to Xi−3 for i ∈ {5, 8, 11} or, x2(ks+1), x2(ks+2) and x2(ks+3), re-

spectively. We have





X2 = x2(ks + 1) = 7 = (Ψh)2,. ⊗ U =

(
3 ε ε

)
⊗ U = 7,

X5 = x2(ks + 2) = 13 = (Ψh)5,. ⊗ U =

(
9 3 ε

)
⊗ U = 13 and

X8 = x2(ks + 3) = 20 = (Ψh)8,. ⊗ U =

(
15 9 3

)
⊗ U = 20.

at

iteration 〈1〉. The results are similar for iteration 〈2〉. Moreover, the relevant constraints (x)i ≥

(A)i,.⊗x are always satisfied which is coherent with Corollary 3: x2(k) ≥ (A⊕A−)2,.⊗x(k−1)⊕

A=
2,.⊗x(k)⊕A+

2,.⊗x(k+1) for k = ks+1 and ks+2 and x2(k) ≥ (A⊕A−)2,.⊗x(k−1)⊕A=
2,.⊗x(k)

February 29, 2016 DRAFT

31

for k = ks + 3. Table II is coherent with these results.

Possibly satisfied rows but not guaranteed (i ∈ Ip with i /∈ Ig)

Each equality B i,. ⊗u = xi for i ∈ {i ∈ Ip | i /∈ Ig} = {4, 7, 10} is possibly satisfied when

the relevant row (x)i ≥ (A)i,. ⊗ x is satisfied. Let us show this possibility. After steps 2 and

3 of iteration 〈2〉, all the constraints and B i,. ⊗u = xi for i ∈ {4, 7, 10} are satisfied that is,

(Ψh)i−3,. ⊗ U = Xi−3 for i ∈ {4, 7, 10} : We have respectively



X1
1 = X2

1 = x1(ks + 1) = 8 = (Ψh)1,. ⊗ U =

(
4 ε ε

)
⊗ U,

X1
4 = X2

4 = x1(ks + 2) = 14 = (Ψh)4,. ⊗ U =

(
10 4 ε

)
⊗ U and,

X1
7 = X2

7 = x1(ks + 3) = 20 = (Ψh)7,. ⊗ U =

(
16 10 4i

)
⊗ U.

The relevant inequalities of x ≥ A ⊗ x are satisfied at the end of steps 1 and 3 of iteration

〈2〉.

Non satisfied rows (Ins)

The system composed of B i,. ⊗u = xi and (x)i ≥ (A)i,. ⊗ x is not satisfied for i ∈ Ins =

{6, 9, 12}. At the end of iteration 〈2〉, the following data illustrate this point:



X3 = x3(ks + 1) = 9 > (Ψh)3,. ⊗ U =

(
ε ε ε

)
⊗ U = ε,

X6 = x3(ks + 2) = 15 > (Ψh)6,. ⊗ U =

(
7 ε ε

)
⊗ U = 11 and

X9 = x3(ks + 3) = 21 > (Ψh)9,. ⊗ U =

(
13 7 ε

)
⊗ U = 17.

The non-consistency can also come from the additional constraints: X3 = x3(ks + 3) = 21 �

A=
3,1 ⊗ x1(ks + 3) = 1⊗ 21 at the end of iteration 〈1〉. ¥

VI. CONCLUSION

In this paper, we consider the situation where the causality phenomenon prevents the conver-

gence of Algorithm 1 and the determination of the optimal control for a given computer. We

focus on the reduction of the CPU time of the predictive control leading to the satisfaction of

February 29, 2016 DRAFT

32

the causality constraint. An approach is to use a space controller leading to a convergence in

one iteration with the satisfaction of all the additional constraints expressed by the P-time Event

Graph [9]. As this technique needs the satisfaction of a space condition and a modification

of Algorithm 1, we propose a generalization of this approach which can be applied to any

system when only a subset of crucial additional constraints must be satisfied. Considering less

restrictive conditions, this second approach needs a minor modification of Algorithm 1 that is to

stop Algorithm 1 at a given iteration. The analysis has shown that, at the end of each iteration:

For a subset of additional constraints, the satisfaction of the relevant constraints is guaranteed

by the computed control; for another subset, the control can generate the satisfaction of the

relevant constraints but for a state evolution into a specific space; Finally, the proposed approach

shows the possibility of reduction of the CPU time and enlarges the class of problems where

the predictive control can be applied. Among the different perspectives, an open problem is to

determine the best approximation of control, state and output in relation to a (max, +) distance

when the initial control problem has no solution.

REFERENCES

[1] Amari S., I. Demongodin, J.J. Loiseau, C. Martinez (2012) Max-Plus Control Design for Temporal Constraints Meeting

in Timed Event Graphs. IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2012,

57 (2), pp. 462 - 467.

[2] Baccelli F., Cohen G., Olsder G.J. and Quadrat J.P. (1992) Synchronization and Linearity. An Algebra for Discrete Event

Systems. Available from http://maxplus.org, New York, Wiley.

[3] van den Boom T., B. Heidergott, and B. De Schutter (2007) Complexity reduction in MPC for stochastic max-plus-linear

discrete event systems by variability expansion. Automatica, vol. 43, no. 6, pp. 1058-1063, June 2007.

[4] Butkovic P. (2003) Max-algebra: the linear algebra of combinatorics? Linear Algebra and its Applications 367, pp. 313-335.

[5] Butkovic P. (2010) Max-algebra: theory and algorithms. Springer-Verlag London, Monographs in mathematics.

February 29, 2016 DRAFT

33

[6] Cuninghame-Green R.A. and P. Butkovic (2003) The equation Ax=By over (max, +). Theoretical Computer Science 293,

pp. 3-12.

[7] Declerck P. (2010) Trajectory Tracking Control of a Timed Event Graph with Specifications Defined by a P-time Event

Graph: On-line control and Off-line preparation. Wodes 2010, Berlin, Germany, August 30-September 1

[8] Declerck P. (2013) Discrete Event Systems in Dioid Algebra and Conventional Algebra. Focus Series in Automation &

Control, ISTE Ltd and John Wiley.

[9] Declerck P. and Guezzi A. (2014) Predictive Control of Timed Event Graphs with Specifications Defined by P-time Event

Graphs. Available from http://perso-laris.univ-angers.fr/˜declerck/ , Journal of Discrete Event Dynamic Systems, September

2014, Volume 24, Issue 3, pp. 261-273.

[10] Declerck P. (2014) Causality Phenomenon and Compromise Technique for Predictive Control of Timed Event Graphs with

Specifications Defined by P-Time Event Graphs. Available from http://perso-laris.univ-angers.fr/˜declerck/ , WODES’14

(12th IFAC International Workshop on Discrete Event Systems), May 14-16, 2014, pp. 99-104.

[11] Goto H. and S. Masuda (2004) On the properties of the greatest subsolution for linear equations in the max-plus algebra.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E87-A, No.2, pp. 424-

432.

[12] Guezzi A., P. Declerck and J.-L. Boimond (2008) From monotone inequalities to Model Predictive Control. Available from

http://perso-laris.univ-angers.fr/˜declerck/, ETFA 2008, Hamburg, Germany 15-18 September 2008.

[13] David-Henriet X., Brunsch T., Raisch J., Hardouin L. (2012) Stock Reduction for Timed Event Graphs Based on Output

Feedback. In : WODES 2012. Guadalajara. Proceedings of the 11th edition of Workshop On Discrete Event System, 2012.

[14] Katz R. D. (2007) Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems. IEEE Transactions on

Automatic Control, Vol.52, No. 2, pp. 229-241.

[15] Maia C. A., Andrade C. R., Hardouin L. (2011) On the control of max-plus linear system subject to state restriction.

Automatica. 2011. Vol. 47 n◦5 p. 988 - 992.

[16] McMillan K. and Dill D. (1992) Algorithms for interface timing verification. Proceedings of the IEEE, International

Conference on Computer Design: VLSI in Computers and Processors, pp. 48-51.

[17] Necoara I., T.J.J. van den Boom, B. De Schutter, and H. Hellendoorn (2008) Stabilization of max-plus-linear systems using

model predictive control: The unconstrained case. Automatica, vol. 44, no. 4, pp. 971-981, April 2008.

[18] De Schutter B. and van den Boom T. (2001) Model predictive control for max-plus-linear discrete event systems.

Automatica, Vol. 37(7), pp. 1049-1056.

[19] De Schutter B. and T.J.J. van den Boom (2003) MPC for discrete-event systems with soft and hard synchronization

February 29, 2016 DRAFT

34

constraints. International Journal of Control, 76(1):82-94, January 2003.

[20] Walkup E. (1995) Optimization of linear max-plus systems with application to timing analysis. University of Washington,

Ph.D. thesis.

[21] Zeidler E. (1986) Nonlinear Functional Analysis and its Applications I. Fixed-Point Theorems. Springer-Verlag New York,

Inc.

VII. APPENDIX

Proof of Corollary 2.

Firstly, the greatest solution x+ always satisfies A ⊗ x ≤ b and a subset of rows satisfies

Ai,. ⊗ x+ = bi . In other words, a subsystem satisfies equality A1 ⊗ x+ = b1 and another one

A2 ⊗ x+ ≤ b2 with (A2)i,. ⊗ x+ 6= (b2)i,. after permutation of the rows in two parts. Note that

the case (A2)i,. = ε is possible as it implies A2 ⊗ x+ ≤ b2 with b2 over R. Corollary 1 can

be applied to A1 ⊗ x = b1. Firstly, this system is row R−astic otherwise there is no solution.

Secondly, considering S1 = {x ∈ Rn | A1 ⊗ x = b1}, point 2) is satisfied: We have x+ ∈ S1 as

A1 ⊗ x+ = b1 . It implies point 3)
⋃
j∈J

Vj = I1 where I1 is the number of rows of A1.

Conversely, let us assume that i ∈ ⋃
j∈J

Vj . So, i ∈ Vj for some j ∈ J . By definition of Vj , each

index i satisfies: i ∈ I , Ai,j is finite and x+
j = Ai,j\bi. So, we have equality Ai,j ⊗ x+

j = Ai,j ⊗

(Ai,j\bi) = bi over R which implies equality Ai,. ⊗ x+ = bi as only one equality Ai,j ⊗ x+
j = bi

for a given j is sufficient. ¥

Proof of Property 1.

The first point is a direct application of Theorem 4 to system (11) for a given k ∈ K : The

system B ⊗v.,k = (A
∗
).,k has a solution v.,k if and only if v.,k ≤ v+

.,k and
⋃

j∈J | vj,k=v+
j,k

Vj,k = I .

In the second point, the consideration of the specific solution v+ simplifies the writing of the

sets: Indeed, applying Corollary 2, each index of the set Ig,k =
⋃

j∈J

Vj,k leads to an equality in

February 29, 2016 DRAFT

35

the relevant row Bi,.⊗ v.,k = (A
∗
)i,k for k ∈ K and finally, the intersection of the sets Ig =

⋂
k∈K⋃

j∈J

Vj,k gives the rows i ∈ I of B ⊗ v = (A
∗
) where the equality holds for v=v+, that is,

card(K) equalities Bi,.⊗ v.,k = (A
∗
)i,k are satisfied. ¥

Proof of Theorem 5.

Let us consider the first case. Taking i ∈ Ig (Ig =
⋂

k∈K

Ig,k with Ig,k =
⋃
j∈J

Vj,k), we must prove

that B i,. ⊗ (B \ x) = xi for any x ∈Im A
∗
, that is, x = A

∗ ⊗ λ where λ ∈ RK . Firstly, Bi,.

⊗(B \x) = Bi,. ⊗ [B \(A∗ ⊗ λ)] = Bi,. ⊗[B \(⊕
k∈K

λk ⊗ (A
∗
).,k)] ≥

Bi,. ⊗[
⊕
k∈K

B \(λk ⊗ (A
∗
).,k)] (Property f2 page 180 in [2]) =

Bi,. ⊗[
⊕
k∈K

λk ⊗B \(A∗
).,k] =

⊕
k∈K

λk ⊗Bi,. ⊗[B \(A∗
).,k].

Secondly, Property 1 says that the set Ig gives the rows of (11) where the equality holds, that

is B i,.⊗ v.,k = (A
∗
)i,k where v.,k = B \(A∗

).,k for any k ∈ K. It implies
⊕
k∈K

λk ⊗ B i,. ⊗ [B

\(A∗
).,k] =

⊕
k∈K

λk ⊗ (A
∗
)i,k = (A

∗
)i,. ⊗ λ = xi for i ∈ Ig and for any λ.

Finally, we obtain Bi,. ⊗(B \x) ≥ xi and the equality Bi,. ⊗(B \x) = xi holds as B ⊗[B

\x] ≤ x by definition of the residuation.

The second case considers less restrictive sets Ig,k and says that each equality i ∈ Ig,k is also

satisfied. Indeed, we have ImA
∗

= {A∗⊗λ such that λ ∈ Rn} by definition of the image but the

state trajectory x can also be a linear combination of a subset of the columns of A
∗
. So, in the

case where the state trajectory x follows a unique direction (A
∗
).,k with k ∈ K, the equalities B

i,. ⊗u = xi for i ∈ Ig,k are satisfied. Indeed, we can take the relations of the previous case with

the following modifications: Set Ig is replaced by Ig,k; we have equality Bi,. ⊗(B \x) = λk⊗Bi,.

⊗[B \(A∗
).,k] for an only k as the application of Property f2 page 180 in [2] which produces

an inequality is not necessary; Property 1 is replaced by Corollary 2 which considers set Ig,k

February 29, 2016 DRAFT

36

and (A
∗
).,k for a given k.

The third case is immediate: As the state evolution inside the space ImA ∗ can coincide with

the previous case, that is, a direction (A
∗
).,k with k ∈ K, the set Ip gives the rows of B ⊗u = x

where the equality is possibly satisfied.

In the fourth case, we consider i ∈ Ins and any solution u solution to B ⊗ u ≤ x when

x ∈ImA
∗
. Considering the resolution of B⊗ v.,k = (A

∗
).,k for a given k , we cannot find a

solution v.,k satisfying equality Bi,.⊗ v.,k = (A
∗
)i,k for i /∈ Ip as i /∈ Ig,k ⊂ Ip. It implies that

there is no solution u to B ⊗ u ≤ λk ⊗ (A
∗
).,k also satisfying equality Bi,.⊗ u = λk ⊗ (A

∗
)i,k

for any λk 6= ε since this equality leads to Bi,. ⊗ (−λk)⊗ u = (A
∗
)i,k. A fortiori, the same

conclusion can be said for a variable u common to B⊗u ≤ λk⊗ (A
∗
).,k for any k which satisfy

all the relevant equalities Bi,.⊗ u = λk⊗ (A
∗
)i,k with λk 6= ε . Finally, we can conclude that the

equality Bi,.⊗ u =
⊕
k∈K

λk ⊗ (A
∗
)i,k = x cannot be satisfied for any u solution to B ⊗ u ≤ x. ¥

Proof of Theorem 6.

Firstly, all the additional constraints are satisfied in Step 1. Indeed, Step 1 at each iteration of

Algorithm 1 calculates a solution (x)1 which satisfies

(x)1 ≤ Dh\(x)1 (Theorem 4.73 in [2]) which is equivalent to (x)1 ≥ Dh⊗ (x)1 (Lemma 4.77 in

[2]) After remembering that Dh = A, note that { x ∈ Rn such that x ≥ A ⊗x}=ImA
∗

(Lemma

4.77 page 191 in [2], [14]). Moreover, the equality x = B ⊗u leads to X1
i−n = (Ψh)i−n,. ⊗ U

where i ∈ {n + 1, ..., n} in the notation of Algorithm 1. These two connections show that we

can apply the third case of Theorem 5: By assumption, the equality X1
i−n = (Ψh)i−n,.⊗U holds

when i ∈ Ip′ = Ip ∩ {n + 1, ..., n}.

Secondly, let us now prove that X1
i−n = X ′

i−n for i ∈ Ig′ where X ′ = Ωh ⊗ x1(ks)⊕Ψh ⊗U .

Indeed, Property 2 shows that X1 ≥ X ′ = Ωh ⊗ x1(ks) ⊕ Ψh ⊗ U and we have X1
i−n =

February 29, 2016 DRAFT

37

(Ψh)i−n,.⊗U by assumption. These two points imply the desired result X1
i−n = X ′

i−n. Moreover,

Property 2 says that X2 = X ′ and we finally obtain X2
i−n = X1

i−n = X ′
i−n for i ∈ Ig′ . So, we have

(x)2
i = (x)1

i for i ∈ Ig as x2(ks) = x1(ks) by construction. Now consider (x)1 ≥ Dh ⊗ (x)1. As

Step 3 by construction implies (x)1 ≥ (x)2 , we obtain (x)2
i ≥ (Dh)i ⊗ (x)2 for i ∈ Ig. Indeed,

(x)2
i = (x)1

i ≥ (Dh)i ⊗ (x)1 ≥ (Dh)i ⊗ (x)2. We conclude that the corresponding additional

constraints are satisfied at the end of each iteration 〈i〉 of Algorithm 1. ¥

February 29, 2016 DRAFT

