
1

Predictive Control of Timed Event Graphs with
Specifications Defined by P-time Event Graphs

Philippe Declerck and Abdelhak Guezzi

I. ABSTRACT

The aim of this paper is the predictive control of Timed Event Graphs with specifications
defined by P-time Event Graphs. We propose a fixed-point approach which leads to a pseudo-
polynomial algorithm. As the performance of the algorithm is crucial in on-line control, we
highlight an important case where the resolution of this first algorithm is efficient. The second
technique is a space controller on a horizon leading to a strongly polynomial algorithm.

keywords: Timed Event Graphs, P-time Petri nets, (min, max, +) functions, fixed point,
predictive control.

II. INTRODUCTION

In this paper, we focus on model predictive control of Timed Event Graphs with specifications
defined by P-time Event Graphs. A classical problem is the control of a Timed Event Graph where
some events are stated as controllable, meaning that the corresponding transitions (input) may
be delayed from firing until some arbitrary time provided by a supervisor. The specifications
are defined by a P-time Event Graph [11] [6] which describes the desired behavior of the
interconnections of all the internal transitions. We wish to determine an input in order to obtain
the desired behavior defined by the specifications.

Model predictive control is an on-line approach which needs efficient algorithms: a crucial
point is that a calculation of the control that is too slow can postpone the application of the
control at the calculated dates. With the aim of a strongly polynomial algorithm, one objective
is the analysis of the state space.

Naturally, variations of the classical problem have been considered in the literature. A first class
of approaches [7] considers extremal points of the state space and develops optimal control in
order to keep trajectories close to a reference trajectory following additional constraints. Contrary
to these approaches where the resolution uses conventional algebra, our approach describes every
trajectory in the formalism of the (max, +) algebra. Moreover, we only use classical operations
such as the Kleene star which can be determined by known efficient algorithms: They are
polynomial in the strong sense, that is, the complexity depends only on the dimensions but not
on the values of the parameters. We can recall that the classical algorithms of linear programming
are not polynomial in the strong sense (the complexities of the ellipsoid algorithm of Khashiyan
and the interior point algorithm of Karmarkar are respectively O(n4.L) and O(n3.5.L) where n
is the number of variables and L is the number of bits necessary in the storage of the data [14]).

P. Declerck is with LISA EA4014, University of Angers, 62 avenue Notre-Dame du Lac, 49000 Angers, France
Tel. +33 (0)2.41.22.65.60 - Fax. +33 (0)2.41.22.65.61
e-mail. philippe.declerck@univ-angers.fr

April 12, 2012 DRAFT

2

Another class of approaches analyzes state space and develops controllers in order to keep
trajectories inside a space deduced from a given specification. Without considering a desired
output, the computation of the maximal set of the initial states is analyzed in [10]. Contrary
to these approaches where the initial condition must be applied to the process, our approach
considers that the current state is the result of an unknown evolution.

In this paper, we consider that each transition is observable: The event date of each transition
firing is assumed to be available. No hypothesis is made on the structure of the Event Graphs
which does not need to be strongly connected. The initial marking should only satisfy the
classical liveness condition and the usual hypothesis of First In First Out (FIFO) places is used.
Due to the lack of space, the presentation of the model of the P-time Event Graph is omitted;
the reader can find the preliminaries and the presentation of the models in [6]. The principle of
the model predictive control can be found in [7]. The consistency of the models is beyond the
scope of this paper and we assume their consistency, that is, the existence of finite solutions [4]
[6].

The plan is as follows: The problem is first rewritten under a fixed-point form. Deduced
from the algorithm of Mc Millan and Dill[13], Algorithm 1 provides a way of determining the
largest solution. The analysis of Algorithm 1 highlights an important case where the resolution
of Algorithm 1 is efficient. Moreover, a restriction to a specific subspace leads to Algorithm
2. Finally, the results are illustrated by an example where the specifications are described by a
P-time Event Graph: This Petri net naturally contains lower bounds (that is, with the expression
x(k−1)+T ≤ x(k) with the notation given in Section IV) contrary to the additional constraints
of the examples given in [1] and [10].

III. PRELIMINARY REMARKS

A monoid is a pair (S,⊕) where the operation ⊕ is associative and presents a neutral element ε.
A semi-ring S is a triple (S,⊕,⊗) where (S,⊕) and (S,⊗) are monoids, ⊕ is commutative,
⊗ is distributive in relation to ⊕ and the zero element ε of ⊕ is the absorbing element of ⊗
(ε⊗a = a⊗ε = ε). A dioid D is an idempotent semi-ring (the operation ⊕ is idempotent, that is
a⊕a = a). The set R∪{−∞}, provided with the maximum operation denoted ⊕ and the addition
denoted ⊗ is an example of dioid denoted Rmax = (R ∪ {−∞},⊕,⊗): so, x ⊕ y = max(x, y)
and x ⊗ y = x + y. The neutral elements of ⊕ and ⊗ are represented by ε = −∞ and e = 0,
respectively. The absorbing element of ⊗ is ε. The minimum operation is denoted ∧. The partial
order denoted 6 is defined in Rn as follows: x 6 y ⇐⇒ x⊕ y = y ⇐⇒ x∧ y = x ⇐⇒ xi 6 yi,
for i from 1 to n. The notation x < y means that x 6 y and x 6= y. A dioid D is complete if it is
closed for infinite sums, and the distributivity of the multiplication with respect to the addition
applies to infinite sums. (∀ c ∈ D) (∀ A ⊆ D) c ⊗ (

⊕
x∈A

x) =
⊕
x∈A

c ⊗ x. For example, Rmax =

(R ∪ {−∞} ∪ {+∞},⊕,⊗) is complete. The operations ⊕ and ⊗ are extended to matrices as
follows: If α ∈ D and if P , Q ∈ Dmxn then (α⊗P)i,j=α⊗Pi,j and (P ⊕Q)i,j=Pi,j⊕Qi,j for all

i, j; If P ∈ Dmxp and Q ∈ Dpxn then (P ⊗Q)i,j=
p⊕

k=1

Pi,k ⊗Qk,j for all i, j. The identity matrix

is denoted Id: (Id)i,j = e if i = j and (Id)i,j = ε if i 6= j. The zero matrix is only composed of
the entries ε and is denoted ε. The dimensions of the matrices Id and ε can easily be deduced
from the context. The set of nxn matrices with entries in the complete dioid D including the two
operations ⊕ and ⊗ is a complete dioid, which is denoted Dnxn. We can deal with non-square
matrices if we complete them with rows or columns provided the entries equal ε. The mapping

April 12, 2012 DRAFT

3

f is said to be residuated if for all y ∈ D, the least upper bound of subset {x ∈ D | f(x) ≤ y}
exists and lies in this subset. The mapping x ∈ (Rmax)

n 7→ A⊗x, defined over Rmax is residuated
(see [2]) and the left ⊗−residuation of B by A is denoted by A\B = max{x ∈ (Rmax)

n such
that A ⊗ x 6 B}. The maximum of this last set is denoted x+. The notation card(X) stands
for the cardinality of the set X .

The following Theorem uses the Kleene star defined by: A∗ =
⊕+∞

i=0 Ai.
Theorem 1: (Theorem 4.75 Part 1 in [2]) Consider the equation x = A ⊗ x ⊕ B and the

inequality x ≥ A ⊗ x ⊕ B with A and B in a complete dioid D. Then, A∗ ⊗ B is the least
solution to these two relations. ¥

IV. CONTROL PROBLEM

Let us consider the objective of this paper. Below, the variable xi(k) is the date of the kth

firing of the transition xi and n is the dimension of x(k).

A. Objective (Problem 1)
The objective of this paper is the determination of the greatest control u on an arbitrary

horizon [ks + 1, kf] with h = kf − ks ∈ N such that its application to the Timed Event Graph
defined by [2] {

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)
y(k) = C ⊗ x(k)

(1)

for k ≥ ks, satisfies the following conditions:
a) y ≤ z knowing the trajectory of the desired output z ;
b) The state trajectory follows the model of the P-time Event Graph defined by

(
x(k)
x(k + 1)

)
≥

(
A= A+

A− A=

)
⊗

(
x(k)
x(k + 1)

)
; (2)

c) The initial value of the state trajectory x(k) for k ≥ ks is finite and is a known vector
denoted x(ks). This “ non-canonical ” initial condition can be the result of a past evolution of
a process. Since x(ks) is finite, the trajectories considered in this paper are finite.

Underlined symbols like x(ks) correspond to known data of the problem and x(k) and y(k)
are estimated in the following resolutions.

Remark 1: Applications of P-time Event Graphs can be found in production systems, micro-
circuit design [15], transportation systems [10], and the food industry [1]. A simple example is
cooking a product [1]: The cooking time must not be too long, otherwise the product will be
damaged; at the same time, the cooking time needs to be long enough.

The system (2) can always be obtained and corresponds to a P-time Event Graph where the
initial marking of each place is equal at the most to one. When we consider the places having a
unitary (respectively, null) initial marking, the lower bound a of the temporization of the place
linking its ingoing transition xj to its outgoing transition xi generates the entry A−

i,j = a ≥ 0
(respectively, A=

i,j = a ≥ 0) and the upper bound b of the temporization of the place linking its
ingoing transition xi to its outgoing transition xj generates the entry A+

i,j = −b ≤ 0 (respectively,
A=

i,j = −b ≤ 0). More details can be found in [6].

April 12, 2012 DRAFT

4

B. Relations on horizon [ks, kf]

The relations of the Timed Event Graph can be rewritten under the following classical form
on horizon [ks, kf].

X = Ωh ⊗ x(ks)⊕Ψh ⊗ U (3)

where h = kf − ks , X =
(

x(ks + 1)t x(ks + 2)t · · · x(kf − 1)t x(kf)
t

)t (t: trans-
posed), U =

(
u(ks + 1)t u(ks + 2)t · · · u(kf − 1)t u(kf)

t
)t , Ωh =



A
A2

A3

· · ·
Ah


and Ψh =




B ε ε · · · ε ε ε
A⊗B B ε · · · ε ε ε
A2 ⊗B A⊗B B · · · ε ε ε
· ·
Ah−1 ⊗B Ah−2 ⊗B Ah−3 ⊗B · · · A2 ⊗B A⊗B B


 .

Below we consider the additional constraints (2) for k ≥ ks and an autonomous Timed Event
Graph defined by the inequality x(k) ≥ A ⊗ x(k − 1) which is the relaxation of the earliest
firing rule, starting from x(ks) = x(ks).




(
x(ks)
X

)
≥ Dh ⊗

(
x(ks)
X

)

x(ks) = x(ks)
(4)

where Dh =




A= A+ ε · · ·
A⊕ A− A= A+ · · ·
ε A⊕ A− A= · · ·
· · · · · · · · · · · · · · · · · ·

· · · A= A+

· · · A⊕ A− A=




.

The matrix Dh presents a tridiagonal structure: This is a square matrix, composed of a main
diagonal (square submatrix A= for rows i ∈ [1, h+1]), an upper diagonal (square submatrix A+

for rows i ∈ [1, h]), a lower diagonal (square submatrix A⊕A− for rows i ∈ [2, h + 1]) and all
other blocks being zero matrices (square submatrix ε). The matrix Dh is a n.(h+1) x n.(h+1)
matrix where n is the dimension of x.

C. Fixed point form

We introduce the following extended state vector x =
(

(x(ks))
t (X)t

)t which expresses
the complete state trajectory. Let (x)+ be the greatest estimate of state trajectory and F =(

x(ks)
t (C\z(ks + 1))t (C\z(ks + 2))t · · · (C\z(kf))

t
)t .

Theorem 2: The greatest state and control trajectory of the control problem is the greatest
solution of the following fixed point inequality system





x ≤ Dh\x ∧ F
U ≤ Ψh\X
X ≤ Ωh ⊗ x(ks)⊕Ψh ⊗ U

(5)

with condition x(ks) ≤ x+(ks).
Proof: Using the previous description of the state and control trajectories (3) (4), we can

easily rewrite the problem under a general, fixed-point formulation x ≤ f(x) which allows the
control problem to be resolved. For instance, equality X = Ωh ⊗ x(ks)⊕Ψh ⊗ U is equivalent

April 12, 2012 DRAFT

5

to X ≤ Ωh⊗x(ks)⊕Ψh⊗U and X ≥ Ωh⊗x(ks)⊕Ψh⊗U (see the proof of Theorem 1 in [4]
for more details). Function f is a (min, max, +) function which can be defined by the following
grammar: f = b, x1, x2, . . . , xn | f ⊗ a | f ∧ f | f ⊕ f where a, b are arbitrary real numbers
(a, b ∈ R). The existence of the greatest solution on complete lattices can be proven by using
the famous fixed point theorem of Knaster-Tarski [16]. The conditions of the Knaster-Tarski
theorem are satisfied: The general form of the problem is such that x ≤ f(x) where f is an
isotone function defined on a complete lattice Rmax=(R ∪ {−∞} ∪ {+∞},≤) and where x
corresponds to (x(ks)

t, X t, U t)t .

D. Algorithm 1
The effective calculation of the greatest control can be made by the classical iterative algorithm

of Mc Dillan and Dill [13]. The general resolution of x ≤ f(x) is given by the iterations of
x〈i〉 ← x〈i−1〉 ∧ f(x〈i−1〉) if the finite starting point x〈0〉 is greater than the final solution. Here,
number 〈i〉 represents the number of iterations and not the number of components of vector x.

Even if a solution exists, the sequence {x〈i〉} in the algorithm of Mc Dillan and Dill [13] is
required to be finite as a finite sequence guarantees the finite termination of the recursion. As
algorithm [13] is known to be pseudo-polynomial (the complexity is here considered in the worst
case), the algorithm has a finite termination. Another reasoning based on the following definition
and limited to Z is as follows. A poset in which, for any chain x〈0〉 ≥ x〈1〉 ≥ . . . ≥ x〈i〉 ≥ . . .
of elements there exists an integer η ≥ 0 such that x〈i〉 = x〈η〉 for all i ≥ η is said to satisfy the
Descending Chain Condition (DCC).

Property 1: The recursion of Mc Dillan and Dill’s algorithm [13] has a finite termination
over Z assuming the consistency of x ≤ f(x).

Proof: In Lemma 1 of [9] satisfaction of the DCC guarantees the finite termination of the
recursion. Clearly, a finite lattice satisfies the DCC as the length of the longest chain is finite in
a finite lattice [3]. Therefore, we can prove the finite convergence by defining a finite sublattice
with the following three points. Firstly, we reduce the number of elements of the sublattice by
considering Z. Secondly, a finite upper bound is the finite starting point x〈0〉. Thirdly, a finite
lower bound is the greatest solution to the problem: If we assume the consistency, that is, the
existence of finite solutions [4], the greatest solution over Z, has no component equal to ε = −∞;
It has no component equal to +∞ as the elements of the set are lower than or equal to the finite
starting point. Finally, the application of Lemma 1 in [9] to this finite sublattice guarantees the
finite termination of the algorithm [13] and every derived algorithm [15].

We now provide an algorithm specific to the determination of the greatest state and control.
Since it follows the algorithm of Mc Dillan and Dill, this algorithm is also pseudo-polynomial.
Starting from x〈0〉 = F , the trajectory x is minimized in each iteration of the following algorithm
where (x)1 =

(
(x1(ks))

t (X1)t
)t and (x)2 =

(
(x2(ks))

t (X2)t
)t correspond to useful

intermediate values. Each iteration 〈i〉 with i > 0 considers the three steps 1, 2 and 3.
Algorithm 1
Step 0 (initialization): 〈i〉 ← 〈0〉; (x)2 ← F
Repeat

- 〈i〉 ← 〈i + 1〉 (numbering of the iteration)
- Step 1: (x)1 ← D∗

h\(x)2

- Step 2: U ← Ψh\X1

- Step 3: (x)2 ← (x)1 ∧
(

+∞
Ωh ⊗ x1(ks)⊕Ψh ⊗ U

)

April 12, 2012 DRAFT

6

until X1 = X2. ¥
Step 1 is deduced from the resolution of x ≤ Dh\x ∧ (x)2 and the application of Theorem

4.73 in ([2]). The obtained solution (x)1naturally satisfies (x)1 ≤ Dh\(x)1 which is equivalent
to the first relation in (4). The rest of the algorithm checks that this calculated solution, also
satisfies X1 = Ωh ⊗ x1(ks) ⊕ Ψh ⊗ U with U = Ψh\X1. Let X ′ be a co-state such that
X ′ = Ωh ⊗ x1(ks) ⊕ Ψh ⊗ U. The co-state, also considered in the well-known ”backward
approach” (see part 5.6.2 in [2]), is now analyzed.

Property 2: X ′ ≤ X1 and X2 = X ′ where X ′ = Ωh ⊗ x1(ks)⊕Ψh ⊗ U .
Proof: First, X1 ≥ (Ωh)⊗ x1(ks) : the components of X1 satisfy the constraint x(k + 1) ≥

A⊗x(k) for k ≥ ks which is expressed in (x)1 ≤ Dh\(x)1. Secondly, Ψh⊗U = Ψh⊗(Ψh\X1) ≤
X1 by definition of the residuation. Finally, X2 = X1 ∧X ′ = X ′ as X ′ ≤ X1.

The previous property 2 shows that X1 = X ′ when X1 = X2. As a consequence, relations
(3) and the first relation of (4) are satisfied when X1 = X2.

Remark 2: Let x0(ks) be the state vector x(ks) generated by the calculation of D∗
h\(x)2.

Note that we have x0(ks) = x1(ks) = x2(ks) by construction and that the convergence test
x1(ks) = x2(ks) is always satisfied.

When convergence is obtained, a state x1(ks) ≤ x(ks) is generated and the expression Ωh ⊗
x1(ks)⊕Ψh⊗U describes a trajectory starting from x1(ks): The consideration of the initial state
generalizes Algorithm 1 in [4]. The solution of the control problem 1 is given when condition
x1(ks) = x(ks) is satisfied. The algorithm also proposes an initial state x1(ks) if the condition
x1(ks) = x(ks) is not satisfied.

E. Space Analysis
Let us recall that Algorithm 1 is polynomial but not in the strong sense (pseudo-polynomial

complexity). In order to improve the complexity, we highlight two important cases where its
resolution is more efficient. The strategy is that the control U calculated in Step 2 must produce
the exact state trajectory (x)1 which is expected in Step 1 of the first iteration of Algorithm 1.

Theorem 3: The trajectory (x)2 satisfies the system composed of (3) and the first relation of

(4) when
(

I ε
ε Ψh

)
⊗

(
x0(ks)
U

)
= (x)1. Moreover, (x)2 = (x)1.

Proof: Step 1 calculates a solution (x)1 which clearly satisfies
(x)1 ≤ Dh\(x)1 which is equivalent to (x)1 ≥ Dh⊗ (x)1 (we can also take any non-optimal (x)
satisfying this last inequality in the algorithm). Moreover, Property 2 shows that X2 = X ′. Let
us now prove that X1 = X ′. Indeed, Property 2 shows that X1 ≥ X ′ = Ωh ⊗ x1(ks)⊕Ψh ⊗U
and we have X1 = Ψh ⊗ U by assumption. Finally, X2 = X ′ = X1 and the algorithm stops at
the first iteration 〈1〉. Remark 2 completes the previous equalities and gives the final equality
(x)2 = (x)1.

Theorem 3 highlights an important case where Algorithm 1 gives the final state trajectory at
the first iteration 〈1〉: Algorithm 1 is strongly polynomial since the resolution is reduced to a
unique iteration composed of the simple application of elementary operations ⊕, ⊗, ∧ and \.
Rewritten with a simpler notation, the condition of Theorem 3 is now analyzed: The problem is
to check the solution existence of u ∈ Rq in the equality

B ⊗ u = x for any x ∈ Rn satisfying x ≥ A⊗ x (6)

April 12, 2012 DRAFT

7

with the following notation: B =

(
I ε
ε Ψh

)
, u =

(
x(ks)
U

)
, x =

(
x(ks)
X

)
and A = D.

h.

Let Sx be the maximal set of vectors x such that B ⊗u = x and x ≥ A ⊗ x has a solution
x. Let n=card(x) and q=card(u). The characterization of Sx is as follows. Note that matrix B
has no null rows as x is finite. Without loss of generality, we assume that matrix B has no null
columns so that B \ x is finite. We assume that the associated graph of A does not contain
circuits with strictly positive weight so that A

∗ ∈ Rnxn
max.

Property 3: Sx =ImB ∩ImA
∗

.
Proof: Indeed, { x ∈ Rn such that B ⊗u = x with u ∈ Rq}=ImB by definition of the

image (ImB ={B ⊗u such that u ∈ Rq}). Moreover, { x ∈ Rn such that x ≥ A ⊗x}=ImA
∗

(Lemma 4.77 page 191 in [2], [12], [10]).
Below we study the existence of a solution u in (6). Let K = {1, .., n} be the set of indices

of columns of A
∗
. Property 4 follows from known results.

Property 4: The greatest vector u=B\x satisfies the system (6) if and only if B ⊗(B \A∗
) =

A
∗
.

Proof: Considering the space Sx, Corollary 3 in [8] gives B ⊗u = x ⇔ B ⊗ (B \ x) = x
where we take x = A

∗ ⊗ λ for any λ ∈ Rn. So, we can deduce that the equality B ⊗(B\x) =
x is true for each vector (A

∗
).,k for k ∈ K: the equality B ⊗(B \A∗

) = A
∗

is satisfied.
Conversely, if the equality B ⊗(B \x) = x is satisfied for each vector (A

∗
).,k for k ∈ K, we

prove below that the greatest vector u=B \x satisfies (6), that is, B ⊗u = x with x ∈ImA
∗

for
u=B \x : So, we have B ⊗(B \x) = B ⊗[B \(A∗ ⊗ λ)] = B ⊗[B \(⊕

k∈K

λk ⊗ (A
∗
).,k)] ≥

B ⊗[
⊕
k∈K

⊗B \(λk ⊗ (A
∗
).,k)] (Property f2 page 180 in [2]) = B ⊗[

⊕
k∈K

λk ⊗B \(A∗
).,k] =

⊕
k∈K

λk ⊗B ⊗[B \(A∗
).,k] =

⊕
k∈K

λk ⊗ (A
∗
).,k = A

∗ ⊗ λ = x

Finally, as B ⊗(B \x) ≥ x for any vector x ∈ImA
∗

and B ⊗[B \x] ≤ x by definition of the
residuation, the result is obtained.

In short, Property 4 provides new conditions such that Algorithm 1 is strongly polynomial in
the case described by Theorem 3: this result gives a practical test which uses only the entries
of B and A

∗
without calculating the state and the control.

We now analyze the case where B ⊗(B \A∗
) = A

∗
is not satisfied for all columns (A

∗
).,k but

for some columns denoted (A
∗
)=
.,k. Let L ⊂ K be the set of indices of column vectors (A

∗
).,k

satisfying the equality B ⊗(B \(A∗
).,k) = (A

∗
).,k.

Property 5: The greatest vector u=B \x satisfies the system (6) if x ∈Im(A
∗
)=.

Proof: The proof is almost identical to the converse of the previous Property 4 but ImA
∗

and K are replaced by Im(A
∗
)= and L, respectively.

Therefore, Algorithm 1 can stop for any iteration when x ∈Im(A
∗
)=. Since this condition is

not guaranteed, the following control approach reduces the state space to the subspace Im(A
∗
)=.

Applying Property 5, Algorithm 2 below calculates the greatest control U by generating a vector
x in the subspace defined by Im(A

∗
)=, that is, x = (A

∗
)= ⊗ λ , with the problem constraint

x≤F .
Algorithm 2

- Step 1: x ← (A
∗
)= ⊗ ((A

∗
)=\F)

- Step 2: U ← Ψh\X ¥

April 12, 2012 DRAFT

8

X1 X2

X3

u y

0

5

7 2

5
4

3

5

4

5

6

Fig. 1. Plant: Timed Event Graph

Under the condition Im(A
∗
)= 6= ∅ (card(L) 6= 0), Algorithm 2 compensates for the non-

satisfaction of the condition B ⊗(B \A∗
) = A

∗
by reducing the state space to Im(A

∗
)=.

Algorithm 2 is strongly polynomial, contrary to Algorithm 1 that is considered in the general
case.

F. Example

Timed Event Graph (Fig. 1): A =




0 7 5
5 2 ε
ε 4 6


, B =




4
3
5


 and C =

(
ε 5 ε

)

P-time Event Graph (Fig. 2): A= =




ε ε −11
ε ε −11
1 1 ε


, A− =




ε 0 1
3 ε 4
1 2 ε


 and A+ =




ε −5 −9
−8 ε −9
−6 −11 ε




Taking h = 3, the desired output z(k) and the initial condition x(ks) are as follows:

X1 X2

X3

[3,5]

[0,8]

[2,9]

[4,11]

[1,11]

[1,6]

[1,9]

[1,11]

Fig. 2. Specifications: P-Time Event Graph

April 12, 2012 DRAFT

9

k ks + 1 ks + 2 ks + 3
z 25 25 28 and x(ks) =

(
2 0 3

)t. Needing three iterations, Algorithm 1

gives the following results:
k ks + 1 ks + 2 ks + 3
u 4 10 16 ,

k ks ks + 1 ks + 2 ks + 3
x1 2 8 14 20
x2 0 7 13 19
x3 3 9 15 21

and
k ks + 1 ks + 2 ks + 3
y 12 18 24 .

Analysis. We have n = (h + 1).n = 12 and q = n + h.card(u)= 6 as n = 3 and h = 3.

(B)t =




0 ε ε ε ε ε ε ε ε ε ε ε
ε 0 ε ε ε ε ε ε ε ε ε ε
ε ε 0 ε ε ε ε ε ε ε ε ε
ε ε ε 4 3 5 10 9 11 16 15 17
ε ε ε ε ε ε 4 3 5 10 9 11
ε ε ε ε ε ε ε ε ε 4 3 5




A
∗

=




0 0 −1 −7 −5 −8 −13 −12 −14 −20 −18 −21
−2 0 −3 −8 −7 −9 −15 −13 −16 −21 −20 −22
1 1 0 −6 −4 −7 −12 −11 −13 −19 −17 −20
6 7 5 0 1 −1 −7 −5 −8 −13 −12 −14
5 5 4 −2 0 −3 −8 −7 −9 −15 −13 −16
7 8 6 1 2 +0 −6 −4 −7 −12 −11 −13
12 13 11 6 7 5 0 1 −1 −7 −5 −8
11 12 10 5 6 4 −2 0 −3 −8 −7 −9
13 14 12 7 8 6 1 2 0 −6 −4 −7
18 19 17 12 13 11 6 7 5 0 1 −2
17 18 16 11 12 10 5 6 4 −2 0 −3
19 20 18 13 14 12 7 8 6 1 2 0




As the equality B ⊗u = (A
∗
).,k does not hold for any k ∈ K but for the subset of the

columns L = {1, 3, 5} ⊂ K = {1, ..., 12} which define the subspace Im(A
∗
)=, Property 4

cannot be applied and the convergence in one iteration of Algorithm 1 is not guaranteed: Several
iterations are necessary here. Fortunately, Im(A

∗
)= 6= ∅ and Property 5 can be applied in the two

following situations: Firstly, the numerical results in the above tables obtained at the convergence
of Algorithm 1, show that x ∈Im(A

∗
)= (x = 3⊗(A

∗
).,3) although this condition is not satisfied in

the first iteration; secondly, Algorithm 2 based on the space Im(A
∗
)= converges in one iteration.

V. CONCLUSION

In this paper, we propose a fixed point approach solving the control problem of Timed Event
Graphs with specifications defined by P-time Event Graphs. Algorithm 1 makes it possible to
determine the greatest state and control when the Timed Event Graph starts from an arbitrary
initial condition. Since Algorithm 1 is pseudo-polynomial, we analyze the state space and
highlight an important case where the resolution of Algorithm 1 is more efficient. The second
technique leads to a reduction of the state space which leads to predictive control based on a
space controller. Algorithm 1 under the condition B ⊗(B \A∗

) = A
∗

and Algorithm 2 under
the weak condition Im(A

∗
)= 6= ∅, are strongly polynomial contrary to many approaches for this

subject which are only polynomial in the weak sense. More details about the CPU time of the
Algorithms can be found in [5].

April 12, 2012 DRAFT

10

REFERENCES

[1] Amari S., Demongodin I. and Loiseau J.J. (2004) Sizing and cycle time of an industrial plant using dioid algebra. Chapter
6 in Supply Chain Optimization, A. Dolgui, J. Soldek and O. Zaikin (Eds.), Series Applied Optimization, Springer-Verlag,
pp. 71-85

[2] Baccelli F., Cohen G., Olsder G.J. and Quadrat J.P. (1992) Synchronization and Linearity. An Algebra for Discrete Event
Systems. Available from http://maxplus.org, New York, Wiley

[3] Birkhoff G. (1967) Lattice Theory. American Mathematical Society, Providence, RI
[4] Declerck P. and Didi Alaoui M.K. (2010) Optimal control synthesis of timed event graphs with interval model specifications.

Available from http://www.istia.univ-angers.fr/∼declerck, IEEE Transactions on Automatic Control, Vol.55, No.2, IETAA9,
pp. 518-523, February

[5] Declerck P. (2010) Trajectory Tracking Control of a Timed Event Graph with Specifications Defined by a P-time Event
Graph: On-line control and Off-line preparation. Wodes 2010, Berlin, Germany, August 30-September 1

[6] Declerck P. (2011) From extremal trajectories to consistency in P-time Event Graphs. Available from http://www.istia.univ-
angers.fr/∼declerck, IEEE Transactions on Automatic Control, Vol. 56 No.2, IETAA9, pp. 463-467, February

[7] De Schutter B. and van den Boom T. (2001) Model predictive control for max-plus-linear discrete event systems.
Automatica, Vol. 37(7), pp. 1049-1056

[8] Gaubert S. (1998) Two lectures on max-plus algebra. In Proceedings of the 26th Spring School on Theoretical Computer
Science and Automatic Control, Noirmoutier

[9] Hashtrudi Zad S., Kwong R.H. and Wonham W.M. (1999) Supremum operators and computation of supremal elements in
system theory. SIAM Journal on Control and Optimization, Vol. 37, No. 3, pp. 695-709

[10] Katz R. D. (2007) Max-Plus (A,B)-Invariant Spaces and Control of Timed Discrete-Event Systems. IEEE Transactions on
Automatic Control, Vol.52, No. 2, pp. 229-241

[11] Khansa W. (1997) Réseaux de Petri P-temporels. Contribution à l’étude des Systèmes à Evénements Discrets. Ph.D. thesis,
University of Savoie

[12] Libeaut L. and Loiseau J.J. (1995) Admissible initial conditions and control of timed event graphs. 34th Conference on
Decision and Control, CDC’95, New Orleans, Louisianna

[13] Mc Millan K. and Dill D. (1992) Algorithms for interface timing verification. Proceedings of the IEEE, International
Conference on Computer Design: VLSI in Computers and Processors

[14] Schrijver A. (1986) Theory of linear and integer programming. Wiley-Interscience Series in Discrete Mathematics and
Optimization, John Wiley & Sons

[15] Walkup E. (1995) Optimization of linear max-plus systems with application to timing analysis. University of Washington,
PhD thesis

[16] Tarski A. (1955) A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics, Vol. 5, pp.
285-309

April 12, 2012 DRAFT

