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Abstract— This paper presents a modelling and an analysis of
P-time Event Graphs in the field of topical algebra. A particular
serie of matrices is introduced whose evolution determines the
system behavior and the existence of a trajectory without token
deaths. The extremal trajectories obeying to an interval of
desired output are deduced. If every event is controllable, the
Just-In-Time control of Timed Event Graph is solved when
additional specifications are given by a P-time Event Graph.
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I. INTRODUCTION

In an algebraic point of view, P-time Event Graphs can be
modeled by a new class of systems called interval descriptor
system [9] [10] for which the time evolution is not strictly
deterministic but belongs to intervals. For interval descriptor
system, lower and upper bounds of the intervals depends
on the maximization, minimization and addition operations,
simultaneously in the general case. The algebraic model of
P-time Event Graphs corresponds to the semantic ”And* of
Time Stream Event Graph [8] and includes P-Timed Event
Graphs.

An important characteristic of P-time Event Graphs is the
possible deaths of tokens if a synchronization is not fulfilled.
In this case, the initial algebraic model in the topical algebra,
cannot be used. Some authors apply performance evaluation
to determine the set of constraints guaranteeing the liveness
of tokens in the strongly connected case [1]. Analysis of
token liveness can be realized through the spectral vector
[9] [10] in the general case.

Let us assume that a desired behavior of some transitions
of the interval descriptor system is given by a sequence
of intervals of execution times. We wish to slow down or
accelerate the system without causing any event to occur
later than the upper limits of this sequence and earlier than
the lower limits. In other words, any trajectory which does
not satisfy these specifications is forbidden. So, the problem
is:

- to determine whether there exists trajectories which
restrict the system to that behavior

- to obtain the extremal state trajectories, if they exist,
which satisfy the desired output

- to calculate the corresponding input trajectories.
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In this paper, no hypothesis is taken on the structure of the
Event Graph which can be a non-strongly connected graph.
The initial marking must only satisfy the classical liveness
condition and the usual hypothesis that places must be First
In First Out (FIFO) is taken.

The paper is structured as follows. Notations and some
previous results are first given. We then introduce the mod-
elling of P-time Event Graphs in the (max,+) algebra in
the “dater” form. We study its behavior with the help of
a special serie of matrices and the extremal trajectories are
deduced from this part. Lastly, a simple example illustrates
the approach.

Il. PRELIMINARIES

A monoid is a couple (S,®) where the operation @ is
associative and presents a neutral element. A semi-ring S
is a triplet (S, @, ®) where (S, ®) and (S, ®) are monoids,
@ is commutative, ® is distributive relatively to & and the
zero element ¢ of @ is the absorbing element of ® (e ®a =
a®e = ¢).Adoid D is an idempotent semi-ring (the
operation @ is idempotent, that is a ®a = a ). Let us notice
that contrary to the structures of group and ring, monoid
and semi-ring do not have a property of symmetry on S.
The unit R U {—oo} provided with the maximum operation
denoted & and the addition denoted ® is an example of
dioid. We have : R4 = (RU {—0c0},®,®) . The neutral
elements of @& and ® are represented by ¢ = —oco and
e = 0 respectively. The partial order denoted < is defined as
follows: z < y<=zrQy=y<=zcANy=w<=z; < y;
, for ¢« from 1 to n in R™. Notation x < y means that
x < yand z # y. A dioid D is complete if it is closed
for infinite sums and the distributivity of the multiplication
with respect to addition applies to infinite sums : (V c € D
YV ACD) c@(Pzx) = P cxx . For example,

T€EA z€A
Riar = RU {—00} U {400}, ®,®) is complete. The set
of n.n matrices with entries in a complete dioid D provided
with the two operations & and ® is also a complete dioid
which is denoted D™™. The elements of the matrices in
the (max,+) expressions (respectively (min,+) expressions)
are either finite or e (respectively 7). We can deal with
nonsquare matrices if we complete by rows or columns with
entries equal to e ( respectively T'). The mapping f is said
residuated if for all y € D, the least upper bound of the
subset {x € D | f(z) < y} exists and lies in this subset.
The mapping = € (Rynae)” — A ® z defined over R,,,,,is
residuated (see [2]) and the left @—residuation of B by

A is denoted by: A\B = max{z € (Ryqz)" such that



A®x < B}

Kleene’s star is defined by: A* = ;5 A’. Denoted as
G(A), an induced graph of a square matrix A is deduced
from this matrix by associating: a node ¢ with the column i
and the line 4 ; an arc from the node j towards the node i
with A;; # . The weight of a path p, | p | is the sum of
the labels on the edges in the path. The length of a path p,
| p|; is the number of edges in the path. A circuit is a path
which starts and ends at the same node.

Theorem 2.2 (Theorem 4.75 part 1 in [2]). Given A and
B in a complete dioid D, A*B is the least solution of the
equation x = A® x® B, and the inequality x > AR x® B.

Theorem 2.3 (Theorem 4.73 part 1 in [2]). Given A and
B in a complete dioid D, A*\B is the greatest solution of
the equation = A\x A B, and the inequality z < A\z A B.

Denoted as G (A, B), a dynamic induced graph of the
square matrices A and B on an horizon A is deduced from
these matrices by associating: a node j; with the column j
and a node 7;, with the row 7 for k¥ = 0 to &; an arc from the
node j,—, towards the node i, with A;; # € ; an arc from
the node ji41 towards the node i, with B;; # ¢ .

I11. P-TIME EVENT GRAPHS
A. Definition and modelling

The P-time Petri nets makes it possible to model the
discrete event dynamic systems with time constraints of stay
of the tokens inside the places. Consistent with the dioid
R,naz, We associate for each place a temporal interval defined
in R x (RT U {+o0}) .

Definition 3.1 (p-time Petri nets) A P-time Petri net is a
pair < R, 1S > where R is a marked Petri nets

IS: P — RT x (RT U {+o00})

pi — ISZ = [ai,bi] with 0 <a; <b;

IS; is the static interval of residence time or duration

of a token in place p; belonging to the set of places P.
The token must stay in the place p; during the minimum
residence duration a; . Before this duration, the token is in
state of unavailability to firing the transition ¢;. The value
b; is a maximum residence duration after which the token
must thus leave the place p;. If not, the system is found in
a token-dead state. So, the token is available to firing the
transition ¢; in the interval time [a;, b;].
For Event Graphs, we will express the interval of shooting
of each transition from the system which will guarantee an
functioning without token-dead state. The set ®p is the set
of input transitions of P, p*® is the set of output transitions
of P. The set *¢; (respectively ¢?) is the set of the input
(respectively output) places of the transition ¢;. Let us
consider the variable z;(k) as the date of the kth firing of
transition ¢; . For each place p;, we associate an interval
[aij,bi;] with a;; the lower bound and b;; the upper bound
with ¢; €* p and ¢; € p*. As |*p| = |p*| = 1, the set of
upstream (respectively downstream) transitions of ¢, is noted
“t; =* (°t; ) (respectively t;~ = (t?)* ).

We consider the “dater” type in (max,+) algebra : each
variable z;(k) represents the date of the kth firing of tran-
sition xz;. The usual assumption of functioning FIFO of the

places is taken: it guarantees the condition of nonovertaking
of the tokens between them and the correct numbering of
the events. So, the evolution is described by the following
inequalities which expresses relations between the dates of
firing of transitions:

(Vt; € ti ) wi(k) > z;(k —mi;) + ai;

with a;; the lower bound of an upstream place of ¢; and
m;; the corresponding number of tokens present initially.

Respectively, (V t; €~ t;) xi(k) < xj(k — myj) + bij

with b;; the upper bound of an upstream place of x;,which
is equivalent to (V j € t;7) x;(k 4+ mj;) — by < x;(k)

Consequently, the model can be described by the following
expression in the (max,+) dioid.

zi(k) > @D x;(k —mi;) @ ai;

JETL
zi(k) = @ w;(k+m;i) ® (=bji) or

Jety
JE—ts jet

with ai_j = Qjj and ajj :_bjin a‘i—j S ]RJF, az_j e R~
Let us notice the above set is also, equivalent to the

following “interval descriptor system” : @ a;; @ x;(k —
JE L

mj) < CCZ(k) < /\ bij ® CCJ(IC — mj) with m; the

4,
number of the prese?]% tokens in each place p; at the instant
t = 0 (initial marking). The lower bound (respectively upper
bound) is a (max, +) function (respectively (min, +) function)
and this model is an example of ((max, +), (min, +)) type
of interval descriptor system. This form can be used but need
the use of two dioids which complicates its treatment.

Some transitions can be considered as inputs. They are
usually associated to transitions ¢ such that <¢; =  and
describe for instance the input of a part. Similarly, some
transitions can be considered as outputs. They are usually
associated to transitions 4 such that ¢;> = () and describe for
instance the departure of a finished product. In relation to
these transitions, the following additions to the initial Event
Graph do not modify its behavior and make it possible to
alleviate the notations and expressions without reduction of
generality.

To each input transition, an input place and its input
transition denoted « are added such that the place is without
token and has an interval [0, 0].

Forjet;”, .%'7(/{) > u;(k — mij) + a;; with a;; =0

and Ij(k) < ’U,Z(k — m”)—l-b” with bij =0

or u; (k) Zl‘J(k + mij) —bji

Similarly, to each output transition, an output place and
its corresponding output transition denoted y are added such
that the place is without token and has an interval [0, 0].

For 7 ET t;, yz(k) > xj(k — mji) + aj; with Qj; = 0

or zj (k) >yi(k + myi) — bji

Naturally, for each input transition ¢, |~ ¢; |= 0 and
| t;> |= 1 and for each output transition 4, |~ ¢; |=1 and
| t;7 |= 0. In the (max,+) algebra, an equivalent inequality
set is:



(j €t;) wi(k) = b @ uy(k), wi(k) 2bf; © x;(k)

(7 €™ ti) yi(k) > c;; @xj(k) , zi(k) > cfy@y;(k)
. W|th b;] — a/ij = O, b; = _bji:O' C;] = aij = O y
Cij :—bji =0.
B. Models in (max,+) algebra

One can represent the date sequence x(k) € R,,q4, With
k € Z by the following formal power series in one variable
~ and coefficients in R,qz: 2(7) = @ x(k)y*. Variable

~ may be regarded as the backward st];leftZ operator in event
domain (formally, vz(k) = z(k — 1)) and ~-transform of
functions is analogous to the Z-transform used in discrete-
time classical control theory. Denoted R, [[7]], the set of
formal series in « constitutes a dioid which brings a synthetic
representation of trajectory z(k) € R,q. With k € Z.

The state inequalities are deduced from 1 with the
following notations. As the trajectory = is non-decreasing,
condition = > ~!x is introduced into A}

M = @ m; ; for k = m('(tl)) , if tj IS
icP
’(AIZ)U = e@ai_j ifk=1 1= j and (AIZ)U = al-_j

otherwise; for k = m((:)*) , (A})i; = a; if t; € t;7.

r> @ A @vre @ A wyix
0<i<M 0<i<M
=Aix® D (4; @vyzd Al @y i2)

This inequation has a solution in R,,q, if Af converges
in R,,.. and we can note:

> A0 @D (A7 @z e Af @y ')

1<i<M

The right hand term represents the least solution of this
ARMA equation.

If the Event Graph is live, there is no circuit without token
and consequently the matrices (A, )* and (Ag)* converges.
The convergence of these previous matrices is a necessary
condition but not a sufficient condition of convergence of
Af. The temporal liveness of the p-time event graph needs
the convergence of Aj.

This expression can classically be simplified by increasing
the vector state. In this state inequality, the new state vector
is denoted X

x>0 A oyt AHAY

The input and output inequalities are respectively:

X>B Quandu>BtT® X ;

y>C-@Xand X >Ct ey

The matrix B~ (respectively, B*) is composed of card(u)
non null rows (respectively, columns )which contains once
non null component b;; = a;; = 0 (respectively, b:rj =
—bj;; = 0). The matrix C't (respectively, C'~) is composed of
card(w) non null rows (respectively, columns) which contains
once non null component c:; =—b;; = 0 (respectively,

Cij = Qi5 = 0)

Remark 3.2 This form generalizes the classical state
equation of the Timed Event Graphs: if AT = &,

BT = £ and Ct = ¢ , the system becomes
X>7' A XDPB Qu
{ y>C~ X '

These expressions describe the ”lower” constraints on X
produced by the model which can maximize it. Symmetri-
cally, as (y!. A~ @y~ 1. A1) is residuated, the following form
expresses every “upper” constraint on X which can minimize
it.

X< (LA @y LAY\

u< B7\X and X < BT\u

X <C \yand y < CH\X

The two models show a dualism if we remark that
(A ey LANX =yt A Xpy L AT X and (LA @
FTLATNX =(y LAY A (L AT)\X (property f3 in
[2] part 4.4.4)

Symbols >, @ and ®,correspond respectively to <,
A and \ . Symbol ~! is replaced by v~* and reciprocally.
Each lower (upper) matrix correspond respectively to upper
(lower) matrix with the same notation.

C. Existence of a state trajectory without deaths of token

An acceptable functioning of a system can be defined by
any functioning which guarantees the liveness of tokens and
which does not lead to any deadlock situation, consequently.
As this behavior can be represented by a state trajectory
which verifies the algebraic model, the aim of this part is to
study the existence of a state trajectory.

Proposition 3.3

Given w, = A~ ® (w—1)* @ AT with w; = A~ @ AT,
a necessary condition of existence in R of a state trajectory
on an infinite horizon is that the matrices wy have only
negative or null circuits.

The following property gives a graphical interpretation of
the serie of matrices wy, .

Property 3.4

The matrix (wy,)* represents the maximum of all the paths
from vertices iy, to vertices iy in the dynamic induced graph
Gr(A™, AT) developed on the horizon k. Each element of
the diagonal (wyg):; represents the maximum between the

K22

greatest circuit and zero.

Property 3.5 The serie wo = ¢ and w, =
A~ @ (wg_1)* @ AT for k > 1 is nondecreasing.

Example
e 1 ¢ e -8 -7
A= 2 ¢ ¢ JandAT=| -6 & ¢
3 ¢ 4 € € =5
-5 € 5 -5 € -9
wp = 3 —6 -5 , Wy = £ -6 -5
e =5 -1 -7 =5 -1



-5 -19 -9
-18 -6 =5
-7 =5 -1

As the serie wy is nondecreasing, positive circuits can
be found in G, (A, A") which entails the nonexistence of
trajectory without token deaths on an infinite horizon. The
opposite conclusion can be made if it exists k; such that
w = wi—1 for k > ki with (wg)i; € Riae because the
circuits of G, (A~, A") have only negative weight for any
horizon h.

In the following part, as a behavior without token deaths
is chosen, the process presents no loss of resources.

; W = ; Wyg = W3,

D. Extremal trajectories

Let us assume that the desired behavior of the output
transitions y of the interval descriptor system is given by
a sequence of intervals of execution times [z, zT]. The
aim of this part is the determination of the greatest and
lowest trajectories (X, u,y) satisfying this desired output:
y € [27,2T]. Based on the special forms of the matrices
B~, BT, C* and C~, the following property will permit to
facilitate the determination of the trajectories.

Property 3.6

B @Btf<landCt®C-<I

The problem can be reformulated as follows. The greatest
(respectively, lowest) trajectories of (X, w,y) are denoted
(X+,ut,yT) (respectively, (X, u=,y7)) .

Property 3.7

The greatest trajectories (X, u™,y™) are given by the
determination of the greatest solution (X, w,y) of the fol-
lowing inequality set

X< (LA oy LATNXACT\2t
u < BT\X 2
y<Ch\x

under the condition (X, u,y) > (X~ ,u",y").
Symmetrically, the lowest trajectories (X~ ,u ",y ) are
given by the determination of the lowest solution (X, u,y)
of the following inequality set
X>(HLA oy AN CT @2~
u>BTeX
y>C~ X
under the condition (X, u,y) < (X, u™,y™)

Consequently, the resolution of the greatest solution
(X,u,y) is sequential: the state trajectory is first calculated
and the control and the output are simply deduced. The
resolution of the state trajectories X' is independent of the
determination of the control « and the output y by reason
of the special form of the matrices of the matrices B,
BT, C*T and C~. The following part will consequently
consider only the resolution of the following inequalities
X< (VA ey LATNXYAC 2T and X > (LA™ @
yrANXY e CT @ 2.

Remark 3.8 The above formulation generalizes the
classical backward equation of the Timed Event Graphs: if

AT = ¢, BT = ¢ and Ct = ¢, the system 2 becomes
X< (VA NXYACT\2t
u< B\X

satisfies the corresponding equalities.

Greatest state trajectory

The control of the system is on the horizon h and the
process starts at k = 0 and can stop after h. So, only the
constraints of the process on the horizon h are considered.

First, the process starts at k' = 0 and the constraints
before zero cannot be considered. So, the only constraint
on X(k) for k =0is X(k) < A\X(k+1)AC™ \z(k) . Let
us notice that the assumption X(—1) = X(0) entails that
X(0) < AT\X(-1) is satisfied because the components of
AT belong to R™ .

Symmetrically, as the process can stop after i , the only
constraint on X (k) for k = h is X(k) < AT\X(k —
1)AC™\z(k). Let us notice that the hypothesis z(h + 1) =
T = +oo is usually taken for the classical “backward”
equations of Timed Event Graphs (part 5.6.2 in [2]) and
consequently, X(h) < (A7)\X(h + 1) is satisfied.

Theorem 3.9 If the process operates on the horizon #,

the greatest state trajectory is given by the following for-
ward/backward algorithm of the determination of the greatest
trajectory.

Coefficients by forward iteration

a) Initialization: wo = ¢ and B = C~\z(0)

fork=1t0h, w;,=A" ®(wx_1)"®@A" and g =

(wi-1)" @ ADNBE ACT\2(k)

b) Trajectory X by backward iteration

and the greatest solution

XF(h) = (wp)*\By
for k¥ = h -1 to 0, X*(k) =
() \[A\X (k + 1)AG]
Lowest state trajectory
Theorem 3.10 If the process operates on the horizon
h, the lowest state trajectory is given by the following
forward/backward algorithm of the determination of the
lowest trajectory.
a) Coefficients by forward iteration
Initialization: wo = ¢ and B = C* ® 27(0)
fork=1toh, wp,=A4A" ® (wr_1)* @ AT and
B, =A @ (wk-1)* P, ®CT @27 (k) ,
b) Trajectory X+ by backward iteration
X7(h) = (wn)" @ By,
fork=h—-1100, X~ (k) = (wp)*@[AT®
X(k+1)® B3]
Remark 3.11 The two previous algorithms use the same
serie of matrices w; and show a dualism.

IV. CONTROL SYNTHESIS IN TIMED EVENT GRAPHS
WITH SPECIFICATIONS

Let us assume now, that a P-time Event Graph describes
the specifications of a Timed Event Graph. So, the objective
is to obtain the corresponding greatest optimal control.
This problem is the generalization of the classical Just-In-
Time control of Timed Event graphs where the “backward”



equations express the optimal control [2] [3]. Let us recall
that dater type equations give the least solution (the earliest
times) of the process evolution (see system 3 below) and the
greatest solution (the latest times) of the control problem
is explicitly given by the ”backward” recursive equations
where the co-vector plays the role of the state vector.
X(k) = A\X(k + 1)AC\zT (k)
{ u(k) = B\X(k)

Let us assume that any events are stated as controllable,
meaning that the corresponding transitions may be delayed
from firing until some arbitrary time provided by a supervi-
sor.

So, if X represents the earliest time of firing of transitions,
the model of Timed Event Graph is given by the following
equations. Equality arises from the assumption that there is
no extra delay for firing transitions whenever tokens are all
available.

— 1
{ X —Al.éfjl? B.au 3)
Yy = .

with B = I, and [ is the identity matrix. The modelling of
a transportation network with timetable leads to this type of
model.

From the P-time Event Graph, dynamic specifications are
deduced:

x> (LA oyt AHAY

with the hypothesis of convergence in R,,,, of matrices
W .

Theorem 4.1 If the serie wy = ¢ and wy = (A @
A7) ® (wg_1)* ® AT converges in R,,,. , the resolution
of the following system by the algorithm of determination
of greatest trajectories

X=(nW. (A A7) dy LATN\XAC\2 T
u=24X
optimal control.

gives the

The resolution can be deduced easily from the previous
parts if A @ A~ and C replace respectively A~ and C~ .
Naturally, the classical backward equations are included in
the inequality set for B = 1.

V. EXAMPLE

The following example allows us to illustrate the the-
oretical results on extremal trajectories. Computation tests
are made using maxplus toolboxes under Scilab. The mono-
input/mono-output p-time events graph contains one input
transition z;, two internal transitions x> and x3 and one
output transition x4. The Petri Net of the figure Fig.1 has
already been completed with additionnal transitions « and ,
places p; and pg and the relevant arcs.

The state is X (k) = ( z1(k) @2(k) w3(k) za(k) )’
(¢t transposed) and the corresponding matrices are given by:

e 1 ¢

A~ = AT —

[CEROIRSS
O e ™

e ¢
5 e
e 1

Fig. 1.

P-time event graphs

—4 -3 ¢ €
—4 e =7 =€
€ € e -3
€ e -9 -5

C-=(ec e e e)Ct=(c ¢ ¢ e)t

B =(e ¢ ¢ s)tB+:(e e € ¢€)

with e = 0 and ¢ = —oo in the usual algebra.

a) Existence of a trajectory

The calculation of the matrices wy shows a transitory
mode from £ = 1 to 4 and a constant matrix w, = w4
for all £ > 6 . If we modify the value of temporization
associated with the place ps (A1 (4,4) = —3), the series wy,
diverges towards the infinite for all £ > 2 (wy — 400) .
Thus, it is impossible to calculate an acceptable trajectory
on the horizon: 2 < k < 6. However, if we change the
temporization related to the places p4 or p; (A1(2,1) = -3
or A=(3,4) = 7) with A*(4,4) = —5, the new serie
diverges for kK = 7 ( wy — +00). As the control horizon
is 1 < k < 6 below, therefore the calculation of a trajectory
is still possible in this horizon. In the following part, we
consider the initial values of the matrices A=, A*, B~, BT,
C~and CT .

b) Extremal trajectories

Given the following
k 112 |3 |4 |5 |6

desired output,

zZ= |02 |5 |8 10 | 13

2T |51 13]19[22]26 |30
we obtain the following table which summarizes the com-
putation results of the acceptable trajectories of the control
u and the output y:
k 1 2 3 4 5 6
u~ | 6 10|13 | 17 | 17| 21
ut | 1313|1720 | 24 | 27
Y| 2 7 12 | 15 | 19 | 22
yt |5 10 ) 15 | 20 | 24 | 29
As the numerical results found here check the relation
27 (k) <y (k) <yt(k) <z2T(k)forall 1 <k <6, the
obtained extremal trajectories satisfy the problem.




Now, if we consider the following desired output =z~
defined by the table

E (123 |4 |5 |6
27|41 711216 | 22|28

the lower and upper output are

y~ | 7112 |17 | 20 | 24 | 28
yT [ 510 | 15|20 |24 |29 |

Consequently, the objective y(k) € [z~ (k), 2+ (k)] cannot
be obtained because y~ (k) £ y* (k) .
c¢) Control synthesis with specifications

Now, the P-time Event graph of Fig 1. (without the added
subgraphs in dotted lines) describes the specifications of the
Timed Event Graph of Fig 2. Any fires of transition are
controllable. Transition x4 = y is the output.

€ € € €
a=| <<t porc=cand
5 3 € €
e e 1 ¢
e 1 ¢ ¢
ApA-—| ¢ ¢ ¢ 4
- 5 5 e 6
e € 1 e
Fig. 2. Timed event graphs
The new serie wy converges in R,,,, for & = 4.

The desired output zT is taken as above. The fol-

lowing table gives the greatest trajectories of the state.
k 112 |3 (4 |5 |6
o [9]13]16]20]23]27
zy [9]12]16 | 19 | 23 | 26 | The values of =] and
rs |9 14]18]21]26]30
zf [5]10]15]19 |22 27

xj = y* are lower than or equal to the values of u* and
y+of problem b).

VI. CONCLUSION

P-time Event Graphs presents a nondeterministic behavior
defined by lower and upper limits. In this paper, we have
shown that it can be modeled under the special form of two
models which use “noncausal” matrices (exponents can be
negative. See definition 5.35 in [2]). This fact entails that
lower and upper trajectories cannot easily be deduced by a
simple forward iteration like in the state equation in Timed

Event Graphs. The introduction of a nondecreasing serie of
matrices makes it possible to determine these trajectories. Its
convergence determines the existence of a trajectory without
deaths of tokens. As the size of the matrices corresponds
to the size of the forward/backward model which depends
on the number of transitions and the initial marking, this
serie gives an efficient way to calculate the circuit weights
of the dynamic induced graph and to solve the token liveness
problem. A perspective is naturally, the connection with the
spectral vector in the (max,+) case [11] [6].

The determination of extremal trajectories satisfying a
desired output trajectories introduces natural conditions of
existence. Their calculations use a forward/backward iter-
ation based on the serie of matrices. In the last part, the
approach is applied to optimal control synthesis of Timed
Event Graphs satisfying dynamic specifications modeled by
a P-Time Event Graph. A perspective is the generalization
to partially controllable events.
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