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Two-staged Approach for Estimation of

sequences in Partially Observable P-time Petri

Nets on a sliding horizon with schedulability

analysis

P. Declerck and P. Bonhomme

Abstract

In this paper, we consider the on-line estimation of current subsequences for Partially

Observable P-time Petri Nets and their starting markings on a sliding horizon composed

of steps defined by two successive occurrences of observable transition firings. We propose

a general strategy composed of two phases: Phase 1 exploits a simplification of the P-time

Petri net under the form of a Timed Petri net; considering a candidate count vector and the

relevant starting marking proposed at Phase 1, Phase 2 makes a schedulability analysis by

building a system of relations which can be represented by an acyclic conflict-free computation

graph. The complete approach avoids the generation of sets which is generally time and space

consuming, and provides an optimal solution for each subproblem by using efficient standard

tools.

Keywords: P-timed Petri nets, P-time Petri nets, Partially Observable, Estimation,

Sliding Horizon.

I. Introduction

A. Aim and motivation

The problem of estimating the state of a dynamic system is a fundamental issue in

system theory. Indeed, it is not always possible to associate a sensor with each state
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due to the cost and the physical location in many processes. This characteristic can be

found in many discrete event systems such as manufacturing systems, microcircuit design,

transportation systems, and the food industry. The unknown data can be crucial for the

control system which supervises the process. Another motivation is the fault diagnosis as

the occurrence of faults can perturb or stop the production of the process.

As any process clearly follows a time evolution, the consideration of timing information

is important for any problem as control and fault detection, and is indispensable to

define the concept of production rate. In particular, the knowledge of the past events and

their timestamps guarantees the order of these events and allows future actions to be

determined by the control system. In Petri nets (PNs) which is a well-suited model for

discrete event systems, temporal intervals can be associated with places or transitions

for Time PNs, but the corresponding subclasses ( P-Time PNs and T-Time PNs ) are

fundamentally different and must not be confused. In Time PNs [16], a temporal interval of

firing is associated with each transition enabled by the marking while a temporal interval

of availability is associated with each token which enters a place in P-Time PNs [2] [3] [8]

[9]. In this paper, we focus on P-time PNs whose evolution can undergo token deaths which

express the loss of resources or parts and failures to meet time specifications. Applications

can be found in many fields as production systems, food industry and transportation

systems [7] [1] [10]. Up to now, the consideration of the time factor as intervals in P-time

PNs containing conflicts and synchronizations, remains an open problem in estimation as,

at the best of our knowledge, only few papers have considered this type of general model:

[2] [3] provide an estimation of marking sets consistent with an observed label sequence.

Contrary to these studies, we focus on estimation of an optimal subsequence with respect

to a general linear criterion in this paper. Particularly, the aim is the on-line estimation of

current subsequences for Partially Observable P-time Petri Nets and its starting marking

on a sliding horizon composed of steps defined by two successive occurrences of observable

transition firings.

B. Contribution of the paper

Let us highlight the main advances of the paper before the technical treatment of the

problem.

1) The complete approach avoids the generation of marking sets which is generally time

and space consuming.
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2) The proposed approach uses standard computer programs of Linear Programming

and Integer Linear Programming.

3) The general linear criterion is not restrictive and can be adapted to many fields.

This criterion can be a global price which is expressed with a function depending of the

costs and the gains of the process [12] or expresses the presence and absence of faults in

fault detection [5] [6].

4) The solution of approach can be represented by a simple form which is an acyclic

conflict-free computation graph which clearly describes the connections between the events

of the obtained sequence.

5) The approach gives a schedulability analysis of the obtained sequence particularly

with respect to the P-time aspect.

6) The considered model is general (P-time PNs) while the assumptions taken in this

paper are relatively not restrictive. The assumption of earliest functioning firing rule,

boundedness of the marking and the hypothesis of acyclicity are not considered in this

article contrary to many papers in this topic. The Petri net can contain self-loops without

null time durations and any transition can have several firings at each time (particularly,

the occurrences of observable events can be simultaneous). No firing rule (as a race policy

[14]) is taken a priori.

C. Strategy and context

Many papers and books in ”max-plus algebra” show that an algebraic model of Petri

nets exploiting the ”counter” form or the ”dater” form facilitates the study and leads to

powerful approaches. A large number of applications can be found in [15]. Allowing to

describe the time sequences of complex Petri nets with weights on the arcs, the ”counter”

form represents the number of events at each moment while the ”dater” form describes

each event by a numbered date and can express complex synchronizations which can be

found in P-time event graphs and time stream event graphs. However, the building of the

algebraic model faces some specific difficulties [9]:

- The counter approach cannot be used to model P-time PNs and particularly the

constraints connected to the upper bounds.

- The unique efficient way to model P-time PNs is the dater approach, but this technique

is only adapted to the structure of event graph which cannot take account of conflict

structures.
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To summarize, neither the counter approach, nor dater approach can be used directly

to completely describe the time trajectories of the algebraic model [9] for the class of

P-time PNs. We can hope that ideally the scheduling problem should be solved by a

unique optimization problem with respect to some criteria but an important conclusion

is that no algebraic approach can solve directly the general estimation problem for any

time model by giving an optimal solution. By reason of the inherent complexity of the

problem, suboptimal approaches must be developed. To solve this difficulty, we propose

a strategy which is a two-phased approach: the Phase 1 proposes sequences based on a

simplification of the time model while the Phase 2 makes a schedulability of the candidate

vector by building the relevant time schedule. The aims of the Phases 1 and 2 are now

presented.

- The Phase 1 is to partially simplify the time aspect of the problem which is relaxed.

The upper bounds of the time durations are neglected in the P-time PN which becomes

a P-timed PN which can be described by an algebraic model using the counter technique

and can be optimized by known tools [10]: the result for each step is a pair composed of

a time trajectory which is a candidate solution to the global problem and also a starting

marking. However, the simplification implies that these sequences do not correspond to

the desired schedule in general: remember that a known result is that for P-time Event

Graphs, the minimum trajectory also depends on the upper bounds of the time durations

[8] (respectively, the maximum trajectory also depends on the lower bounds).

- The last Phase 2 is to adapt this first result to the P-time PN as the computed

trajectory can be inconsistent with the constraints of the model. Therefore, the strategy

is to consider the untimed sequence relevant to the time trajectory and to determine a

trajectory coherent with the desired model, here a P-time PN. In other words, we make

a consistency analysis also named a schedulability analysis. Generalizing [3], this analysis

is possible if a variant of the dater technique is used.

In this paper, the aim is to treat P-time PNs by a simplification under the form of a

P-timed PN while the paper [11] considers P-timed PNs by building an untimed PN and

analyzing the candidate count vectors. The objective of [12] is also different as this study

focuses on the estimation of sequences in untimed PNs. The proposed technique differs

from [2] which develops a state observer of the form of an automaton whose nodes can

be viewed as macro-markings and from [3] where the state observer for P-time labeled

PNs with some indistinguishable events is built online in a decentralized context.
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In this paper, we assume the following assumptions for the different PNs under inves-

tigation:

- Assumption AS−1 : the incidence matrices and the initial marking (denoted M init

below) are known.

- Assumption AS−2 : the Petri net is live.

- Assumption AS−3 : the observations are distinguishable, that is, the same label

cannot be associated with more than one observable transition.

- Assumption AS−4 : the origin of firing count is absolute. In that case, the firing

numbers (also named counters) of the successive observations can be defined with respect

to this origin and are known.

- Assumption AS−5 : the time is discrete and is defined over Z. Note that the time

depends on the origin of time and can be negative.

- Assumption AS−6 : the time durations of the places of the Timed and P-time PNs

are over N and are known.

To simplify the presentation and the notation, the step horizon is limited to two

successive steps only.

The models considered in this paper are: the P-timed PN in section IV-D; the P-time

PN in section V for the Phase 2.

The paper is organized as follows. In Section II, we first present a reminder of the

basics of untimed PNs, notations for estimation and description of time trajectories.

After presenting the aim of the two-phased strategy, the following section IV describes

the Phase 1 where we present the procedure of the sequence estimation. Contrary to

[12], we consider time models and focus on the adaptation of the estimation to a horizon

composed of two successive steps. The generation of the relevant untimed sequences and

the starting marking is discussed. Then, the Phase 2 in Section V is a schedulability

analysis of the proposed sequence which must be consistent with a P-time PN: adapting

the technique [3] to the current step with a two-staged systematic approach, the first stage

is the generation of a token evolution based on the FIFO assumption while the second

stage is the establishment of the time relations and the checking of their consistency. The

approach is illustrated by different pedagogical examples where Example 2 is a running

example.
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II. Preliminary

A. Notations for Petri nets and models

The notation |Z| is the cardinality of set Z and the notation AT corresponds to the

transpose of matrix A. The i − th row (respectively j − th column) of A is denoted

Ai,.(respectively A.,j) . A Place/Transition (P/TR) net is the structure N = (P, TR,W+,W−),

where P is a set of |P | places and TR is a set of |TR| transitions. The matrices W+ and

W− are respectively the |P | × |TR| post and pre-incidence matrices over N, where each

row l ∈ {1, ..., |P |} specifies the weight of the incoming and outgoing arcs of the place

pl ∈ P . The incidence matrix is W = W+ −W−. The preset and postset of the node

v ∈ P
⋃
TR are denoted by •v and v•, respectively. The notation Ω∗ represents the set

of firing sequences, denoted σ, consisting of transitions of the set Ω ⊂ TR. The vector σ

of dimension |TR| expresses the firing vector or count vector of the sequence σ ∈ TR∗,

where the i -th component σi is the firing number of the transition tri ∈ TR which is fired

σi times in the sequence σ.

The marking of the set of places P is a vector M ∈ N|P | that assigns to each place

pi ∈ P a non-negative integer number of tokens Mi, represented by black dots. The i -th

component Mi is also written M(pi). The marking M reached from the initial marking

M init (which replaces the usual notation M0) by firing the sequence σ can be calculated

by the fundamental relation: M = M init + W.σ. The transition tr is enabled at M if

M ≥ W−(., tr) and may be fired yielding the marking M ′ = M + W (., tr). We write

M [σ � to denote that the sequence of transitions σ is enabled at M , and we write

M [σ �M ′ to denote that the firing of σ yields M ′.

P-timed PNs allow the modeling of discrete event systems with time constraints of the

tokens inside the places where each time duration denoted Tl over N describes a minimum

sojourn time of a token in place pl ∈ P.

Definition 1: A P-timed PN is a triple (GR,M init, f) where GR is a Petri net, M init

is the initial marking and the mapping f is defined by pl 7→ Tl with 0 ≤ Tl from P to

R+.

Like the P-timed PNs, the P-time PNs allow the modeling of discrete event systems

with time constraints for tokens to remain in place. A temporal interval [T−l , T
+
l ] defined

in R+×(R+∪{+∞}) where T−l is the lower bound and T+
l is the upper bound is associated

with each place pl ∈ P.
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Definition 2: A P-time PN is a triple (GR,M init, f) where GR is a Petri net, M init

is the initial marking and the mapping f is defined by pl 7→ [T−l , T
+
l ] with 0 ≤ T−l ≤ T+

l

from P to R+ × (R+ ∪ {+∞}) .

The token must stay in this place during the minimum residence duration T−l . Before

this duration, the token is in a state of unavailability for firing an output transition. The

value T+
l is a maximum residence duration after which the token must leave place pl. If

not, the system finds itself in a token-dead state. The token is therefore available to fire

an output transition in the time interval [T−l , T
+
l ].

B. General notations for estimation

A labeling function L : TR → AL ∪ {ε} assigns to each transition tr ∈ TR either a

symbol from a given alphabet AL or the empty string ε. In a partially observed PN, we

assume that the set of transitions TR can be partitioned as TR = TRobs

⋃
TRun, where

the set TRobs (respectively, TRun) is the set of observable transitions associated with a

label of AL (respectively, the empty string ε). In this paper, we assume that the same

label of AL cannot be associated with more than one transition of TRobs (Assumption

AS−3).

The TRun−induced subnet of the Petri net N is defined as the new net Nun = (P,

TRun, W
+
un, W

−
un), where W+

un and W−
un (respectively, W+

obs and W−
obs) are the restrictions

of W+ and W− to P × TRun (respectively, P × TRobs). Therefore, Wun = W+
un −W−

un

(respectively, Wobs = W+
obs−W

−
obs). A reorganization of the columns with regards to TRun

and TRobs yields W =
(
Wun Wobs

)
. Notation xi expresses an unobservable transition,

belonging to TRun while an observable transition belonging to TRobs is denoted yi.

The notation of the count vectors is taken for x of dimension |TRun| and y of dimension

|TRobs| . The reorganization of the components of σ yields σ =
(
xT yT

)T
.

Starting from the marking M<1> which is the initial marking M init, the estimation of

the current unobservable sequence is based on the treatment of the data produced by the

transitions observed successively in an on-line procedure at the dates t<1>, t<2>, t<3>, . . .

where: t<k> is the k − th firing date of a set of observable transitions; moreover, < k >

is the k − th step relevant to a time interval [t<k−1>, t<k>] for k ≥ 1. By construction,

t<k−1> 6= t<k> for k ≥ 1 and t<1> is relevant to the first observations. The notation y<k>

represents the count vector of observable transitions firing at time t<k> exactly for step <

k > . Notation x<k> represents the count vector for the unobservable transitions TRun for
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step < k > . From the marking M<k> at step < k >, the transition firings relevant to x<k>

and y<k> allow the establishment of marking M<k+1> : formally, M<k>[σ<k> �M<k+1>

such that σ<k> =
(

(x<k>)T (y<k>)T
)T

. As M<1> is the initial marking relevant to

time t<0> = 0, we assume that x<k> = 0 and y<k> = 0 for k ≤ 0. So, the estimation must

consider M<1>[x<1>y<1> � M<2> for step < 1 > where the time horizon is [t<0>, t<1>]

and t<1> is relevant to the first observation y<1>, then M<2>[x<2>y<2> �M<3> for step

< 2 > where the time horizon is [t<1>, t<2>] and t<2> is relevant to the second observation

y<2>, and so on. So, the estimation of x<k> must treat M<k>[x<k>y<k> � M<k+1> for

step < k > where the time horizon is [t<k−1>, t<k>]. Note that these notations are not

cumulative as we can have x<3> = 0 but x<1> 6= 0 and x<2> 6= 0 : the condition

x<1> ≤ x<2> ≤ x<3> does not hold.

III. Aim and principle of the two-phased approach

Let us consider a P-time PN where the incidence matrix W and the initial marking

M<1> are known. We focus on the subsequences of the unobservable firing events of the

transitions of TRun for each step < k > . Given a sequence of the observed firing events

of the transitions of TRobs generated by the activity of the Petri net, we want to find the

subsequences of the unobservable firing events of the transitions of TRun for each step

< k > which are ideally optimal with respect to a general criterion.

Therefore, the framework of this paper is as follows.

- In Phase 1, the objective is to propose candidate untimed sequences denoted σ<k>

starting from a starting marking M<k> for each step < k >. The model is a P-timed

PN which is a simplified form of the P-time Petri Net with respect to the time aspect.

Extracted from the computed trajectory by neglecting time, the untimed sequence σ is a

data analyzed in the following phase. Precisely, the objective of Phase 1 is to find a pair

(M<k>, σ<k>) composed of a starting marking M<k> leading to a sequence σ<k>.

- In Phase 2, the model is a P-time PN. The objective is to analyze the time consistency

of the pair (M<k>, σ<k>) by giving a time trajectory. Note that the determination of this

trajectory which contains t<k−1> and t<k> implies the deduction of the corresponding

horizon.
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IV. Phase 1: simplified optimization problem

A. Problem of Phase 1

Considering a P-timed PN which is a simplified form of the P-time Petri Net, the

objective is the estimation of a pair (M<k>, σ<k>) composed of a sequence σ<k> and a

relevant starting marking M<k>. These two components need the estimation of a time

trajectory described in Section IV-D which is based on an Integer Linear Programming

Problem (ILP problem), that is an optimization of a linear criterion where the constraint

system is defined by (4).

We now present the necessary notations, the algebraic model of the P-timed PNs and

the polyhedron developed on a time horizon which will be analyzed in the following

section.

B. Counter notations for time trajectories

As the modelling of time must be made, the previous notations must be completed

with the following notations which are cumulative from the starting of the Petri net. If

we consider that the origin of time is at the starting of the Petri net, each transition xi is

associated with the number of events that happen before or at time θ and this number is

denoted xi(θ). Assuming that the events can only occur at θ ≥ 1 with θ ∈ Z (Assumption

AS−5), we have x(θ) = 0 for θ ≤ 0.

The above notions are usual in max-plus algebra but must be adapted to the problem.

Let y(θ) (respectively, x(θ)) be the count subvector at time θ such that the relevant

transitions belong to the set of observable transitions TRobs (respectively, unobservable

transitions TRun).

The on-line diagnosis procedure is based on a sliding horizon which is relevant to a

current step < k > for k ≥ 1 separating two successive dates of observations t<k−1>, t<k>

of the last successive observations y<k−1>, y<k>. Step < 0 > corresponds to the

initialization with x<0> = 0 and y<0> = 0 while the state computation starts at step

< 1 >. A time horizon relevant to step < k > can be defined

h<k> = t<k> − t<k−1>

and can be calculated as the two dates at step < k > are known. The notation h<k>

clearly shows that the horizon depends on the step. For simplicity of the writing, h<k>

and t<k> are denoted h and t respectively in this section. Considering that the time is
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discrete (Assumption AS−5), the observations and the unknown time trajectory on the

horizon h are defined as follows:

γ<k> =
(

(y(t− h))T (y(t− h+ 1))T . . . (y(t− 1))T (y(t))T
)T

and

κ<k>=
(

(x(t− h))T (x(t− h+ 1))T . . . (x(t− 1))T (x(t))T
)T

.

Contrary to y<k> introduced at the previous section, y(θ) is cumulative on all past

iterations, and so, y(t) =
∑

k′=0,...,k

y<k′>. The introduction of the notation y<0>→<k> =
∑

k′=0,...,k

y<k′> allows to give short expressions of the known data for the iteration < k > which

are:

y(t− h) = y<0>→<k−1>

y(t) = y<0>→<k>
(1)

and y<k> = y(t) − y(t− h) with t = t<k> and t − h = t<k−1>. By construction, there is

no firing of an observable transition in step < k > for θ ∈ {t− h+ 1, t− h+ 2, . . . , t− 1}

and formally, y(θ) = y(t− h) = y<0>→<k−1> for t− h+ 1 ≤ θ ≤ t− 1 .

Similarly, the notation x(θ) is cumulative on all past iterations contrary to x<k> and

particularly x(t) =
∑

k′=0,...,k

x<k′>. The notation x<0>→<k> =
∑

k′=0,...,k

x<k′> allows to write

x(t− h) = x<0>→<k−1>

x(t) = x<0>→<k>
(2)

and x<k> = x(t)− x(t− h).

In this paper, we consider that the firing numbers of observations are known (Assump-

tion AS−4) and can be defined with respect to a unique origin of count corresponding

to the initial marking where no event has still occurred. Practically, the event counter

starts when the Petri net starts.

C. Generation of the untimed sequence and starting marking

The analysis of the time trajectory κ<k> for step < k > (and particularly its variations

of the count components) allows to simply provide the untimed sequence σ<k>.

Property 1: For θ ∈ {t− h+ 1, t− h+ 2, . . . , t}, xi(θ)− xi(θ − 1) gives the number of

firings of unobservable transition i ∈ {1, . . . , |TRun|} at θ. �

Proof. This result is the direct application of the counter notation. �

Example 1.
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Let h = 2, |TRun| = 2 and κ<k>=
((

1 2
)(

2 2
)(

2 2
))T

(in order to ease

the understanding of the vector, the subvectors are presented). The change
(

1 2
)
→(

2 2
)

corresponds to the firing of x1 at t − 1 while the non-evolution
(

2 2
)
→(

2 2
)

expresses no firing. �

Following the increasing time, the relevant events can be numbered. If two events or

more occur at the same time, an arbitrary order can be fixed.

Starting marking

To complete the useful data, we need to obtain M<k> which is made with the following

property.

Property 2: Knowing κ<k>, the estimate M<k> is deduced with M<k> = M<1> +

W.σ(t<k−1>)

Proof.

As the notations x(θ) and y(θ)) are cumulative on all past iterations, the marking at θ

can directly be deduced with M = M<1> + W.σ(θ) with σ(θ) =
(

(x(θ))T (y(θ))T
)T

.

�

Therefore, if we desire to make the estimation of a pair (M<k>, σ<k>), we must estimate

the marking at step < k− 1 > at least: to simplify the presentation, we assume that the

general estimation of the pair (M<k>, σ<k>) considers the step horizon {< k−1 >,< k >}

which corresponds to the time horizon {t<k−2>, t<k−2>+1, . . . , t<k−1>−1, t<k−1>, t<k−1>+

1, . . . , t<k> − 1, t<k>} with

h<k> = t<k> − t<k−1> and h<k−1> = t<k−1> − t<k−2>.

So, t<k−1> = t<k> − h<k> , t<k−2> = t<k> − h<k> − h<k−1> and the horizon for the

step horizon {< k − 1 >,< k >} is

h<k−1>→<k> = h<k> + h<k−1>.

This point implies a modification of κ<k> and γ<k> to a larger step horizon. The new

notations relevant to two successive steps are as follows. We take γ<k−1>→<k> =
(

y(t<k−2>)
T

y(t<k−2> + 1)
T

. . . y(t<k−1> − 1)
T

y(t<k−1>)
T

y(t<k−1> + 1)
T

. . . y(t<k> − 1)
T

y(t<k>)
T

)T

and κ<k−1>→<k> =
(

x(t<k−2>)
T

x(t<k−2> + 1)
T

. . . x(t<k−1> − 1)
T

x(t<k−1>)
T

x(t<k−1> + 1)
T

. . .

x(t<k> − 1)
T

x(t<k>)
T

)T

D. P-Timed Petri net and trajectories

Let us remember the following algebraic model based on the firing event numbers of

transitions which allows to describe the evolution of a place of the P-timed PN. For each
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place pl ∈ P which is associated with a time duration Tl, we can write that the output

flow of tokens at time θ ∈ {t−h+1, t−h+2, . . . , t} is lower than or equal to the addition

of the initial marking of pl, that is, M<1>
l , and the input flow with a delay Tl ≥ 0.

W−
l,.x(θ) ≤ W+

l,.x(θ − Tl) +M<1>
l . (3)

As explained in [9] [10], the set of the previous inequalities can be rewritten without

reduction of generality such that each equality is associated with a time duration of a

place which is equal to zero or one. Now, we can deduce the polyhedron (4) which must

be satisfied by the trajectories of the Petri net for a sliding horizon h<k−1>→<k>of length

h<k−1> + h<k> relevant to the step horizon {< k− 1 >,< k >}. If h<k−1>→<k> is simply

denoted h′, the dimension of vector κ<k−1>→<k> is denoted by n = (h′+ 1).|TRun| while

the dimension of vector γ<k−1>→<k> is (h′ + 1).|TRobs|. Below the form generalizes the

polyhedron exploited in [12]. Moreover, the time durations can be unitary but also null.

A1 · κ<k−1>→<k> ≤ b1 (4)

where b1 = C1 − B1.γ
<k−1>→<k> with C1 =

(
(M<1>)T (M<1>)T . . . (M<1>)T

)T
.

The components of matrices A1 and B1 depend on the components of W+
un,W

−
un and

W+
obs,W

−
obs, respectively [10] [12]. Note that no marking must be estimated as vector C1

only depends on the initial marking. Depending of the current step horizon {< k−1 >,<

k >}, all the matrices and vectors can easily be established under the condition that the

horizons h<k−1>, h<k> are known. The dimensions of matrices A1, B1, C1 and column

vector b1 are respectively (h′.|P | x n), (h′.|P | x (h′+ 1).|TRobs|), (h′.|P | x 1) and (h′.|P |

x 1).

In the optimization with system (4), different criteria can be exploited. Some criteria

can be used in diagnosis [5]. Generalizing a criterion presented in [12], we can focus on the

minimum or maximum number of events of a sequence inside the step < k >, that is, more

formally, the sum of the event numbers with c1x|TRun|.x
<k> where c1x|TRun| is unitary. As

x<k> = x(t)−x(t− h), we can also compute the difference between (x(t)) and (x(t− h))

by taking c<k>.κ with c<k> =
(
−c1x|TRun| 0 . . . 0 c1x|TRun|

)
where c1x|TRun| is

unitary. The relevant criterion is cdiff .κ<k−1>→<k> with cdiff=
(
c<k−1> c<k>

)
and

c<k−1> = 0 (diff: difference).
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E. Example 2

Let us consider the Labelled Petri Net of Fig. 1.

y1 x1

p1

p4
p2

p3

y2

x2

y3

Fig. 1. Example 3: a simple Petri net

Let TRun = {x1, x2} and TRobs = {y1, y2, y3} . The alphabet AL is {a, b, c} and

L(y1) = a, L(y2) = b and L(y2) = c. Hence, |TRun| = 2 , |TRobs| = 3, |AL| = 3 , |P | = 4.

The incidence matrices Wun, Wobs, W
−
obs and the initial marking are as follows: Wun =

−1 0

0 0

0 −1

1 1

, Wobs =


1 0 0

1 −1 0

0 1 0

0 0 −1

, W−
obs =


0 0 0

0 1 0

0 0 0

0 0 1

 and M<1> =
(

0 0 0 0
)T

.

All the places present unitary time durations.

Consider the sequence of observable transitions y1y2y3 where the observations are not

simultaneous. The sequence which starts from the initial marking M<1> corresponds to

three steps.

a) In the first instance, we consider a simplified form of the above problem by consider-

ing only a unique step < 3 > and an optimization with c unitary. Let t<2> = 3, t<3> = 6.

So, h<k> = t<k> − t<k−1> = 3, γ<3> =(
(y(t− 3))T (y(t− 2))T (y(t− 1))T (y(t))T

)T
and κ<3>=(

(x(t− 3))T (x(t− 2))T (x(t− 1))T (x(t))T
)T

. From the sequence of observable tran-

sitions y1y2y3 , we obtain γ<3> =
((

1 1 0
)(

1 1 0
)(

1 1 0
)(

1 1 1
))T

which

expresses the firings of y1 and y2 at the latest time t − 3 ((y(t− 3))T =
(

1 1 0
)T

),

and the firing of y3 at time t. Taking t = 5 arbitrarily, we must solve the system


p1 : x1(θ) ≤ y1(θ − 1)

p2 : y2(θ) ≤ y1(θ − 1)

p3 : x2(θ) ≤ y2(θ − 1)

p4 : y3(θ) ≤ x1(θ − 1) + x2(θ − 1)

(5)
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for θ = {3, 4, 5} with x1(θ) ≥ x1(θ − 1) ≥ 0 and x2(θ) ≥ x2(θ − 1) ≥ 0. If we search

min(c.κ<3>) with c unitary, two optimal solutions are κ<3>=
((

0 0
)(

0 0
)(

1 0
)(

1 0
))T

and κ<3>=
((

0 0
)(

0 0
)(

0 1
)(

0 1
))T

which correspond to the firing of

x1 and x2 at θ = 4, respectively. Completed with γ<3> observation y3, the possible

subsequences are x1y3 and x2y3 which can be deduced from the analysis of the Petri

net. Note that a solution is also κ<3>=
((

1 0
)(

1 0
)(

1 0
)(

1 0
))T

but this

solution is not optimal.

b) As in the proposed approach, we now consider the step horizon composed of succes-

sive steps < 2 >,< 3 > . Let t<1> = 1, t<2> = 3 and t<3> = 6. So, h<2> = t<2>−t<1> = 2,

h<3> = t<3> − t<2> = 3, γ<2>→<3> =
(

y(1)
T

y(2)
T

y(3)
T

y(4)
T

y(5)
T

y(6)
T
)T

=

( (
1 0 0

) (
1 0 0

) (
1 1 0

) (
1 1 0

) (
1 1 0

) (
1 1 1

) )T and κ<2>→<3> =(
x(1)

T
x(2)

T
x(3)

T
x(4)

T
x(5)

T
x(6)

T
)T

.

System (4) is defined by System (5) for θ = {2, 3, 4, 5, 6}. If we search min(c.κ<3>)

with c unitary, two optimal solutions are κ<2>→<3> =( (
0 0

) (
0 0

) (
0 0

) (
0 0

) (
1 0

) (
1 0

)
)T . and κ<2>→<3> =( (

0 0
) (

0 0
) (

0 0
) (

0 0
) (

0 1
) (

0 1
) )T

which are relevant

to the firings of x1 and x2 at θ = 5 in step < 3 >, respectively.

Finally, M<3> = M<1> +W.σ(t<2>) =
(

1 0 1 0
)T

as σ(t<2>) =(
(x(t<2>))T (y(t<2>))T

)T
=
( (

0 0
) (

1 1 0
) )T

�

F. Intermediate conclusion

Up to now, time sequences for a given step horizon {< k − 1 >,< k >} and P-

timed PNs have been considered. If the current horizons h<k−1>, h<k> are known (which

is the case when the dates of observations are known), the above vectors and matrices

can be exploited. A consequence is that the estimation of a time trajectory κ<k−1>→<k>

can be made with an optimization of c.κ<k−1>→<k> with c a row-vector over R where

the constraint system is (4). From the estimate κ<k−1>→<k> and γ<k−1>→<k>, a direct

extraction (Section IV-C) allows to provide the untimed sequences σ<k−1>, σ<k>. We also

obtain the count vectors σ<k−1>, σ<k>(remember: σ<k> =
(

(x<k>)T (y<k>)T
)T

) and

the starting marking M<k> with

M<k> = M<1> +W.σ<k−1>. To summarize, we have built a candidate pair (M<k>, σ<k>)

which is checked below.
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V. Phase 2: Schedulability analysis for P-time Petri nets

A. Initial Problem of Phase 2.

The aim in Phase 2 is now to determine if the considered P-time PN can follow a pair

(M<k>, σ<k>) proposed by Phase 1 for a relevant P-timed PN under a logical point of

view. Precisely, a way to solve this problem is to estimate possible firing dates of the

known (untimed) sequence σ<k> starting from the starting marking M<k> without token

deaths. The existence of these dates proves the consistency of the pair (M<k>, σ<k>), that

is, the possible schedulability of σ<k> for M<k> with respect to the data of the sliding

horizon of the problem. With that aim, we adapt the transition firings with the condition

that no token coming of the starting marking or providing by the creation of the firings

dies.

For the sake of simplicity, we now take Assumption AS−7 : only ordinary PNs are

now considered, that is, the arc weights are element of {0, 1} and we assume that there

is a unique place between two transitions at most.

B. Notations

Let EV <k> be a set of events relevant to step < k > and σ = e1e2e3, ...., es be a

sequence of s ordered events ei ∈ EV <k>. The index represents the event rank in the

sequence and the length of σ is s. For simplicity, the events are not indexed by < k > .

An event represents a transition firing in the context of the paper.

We assume that we can associate with event ei and its rank i a unique transition j. More

formally, an event function F : EV <k> → TR assigns to each event ei from set EV <k>

a unique transition trj ∈ TR. As a transition j can present more than one firing, each

transition can correspond to more than one rank i in the sequence. So, F(ei) represents

a unique transition of TR but a transition can have no antecedent, one antecedent or

more than one antecedent. Note that the events are possibly associated with the labels

of AL if L(F(ei)) ∈ AL, that is, the label of an observable transition or an unobservable

transition if L(F(ei)) = ε (silent event).

The date relevant to the emission of the event ei is denoted ei. In the initial sequence,

the order of the events i < j implies that the relevant dates must satisfy ei ≤ ej for each

pair of events (ei, ej). So, eT =
(
e1 e2 e3 . . . es

)
where es = t<k>.
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C. Principle

The estimation of the possible firing dates needs to have the exact relations in a dater

form and to make the connection between the transition firings.

Knowing the transition firing and the solicited places, we can build a table where each

column is relevant to an event with a specific date and contains the input places where

the consumption of the tokens is necessary to the firing and the output places where some

tokens are created. Therefore, the firing is only possible if previous firings have produced

the necessary tokens. Each input place of a fired transition must be the output place of

a transition (at least) whose event has occurred before (except if the starting marking

gives the necessary tokens). Therefore, following the increasing order of the sequence,

the analysis of the table facilitates the establishment of the connections between the

transition firings. However, the marking does not contain the data permitting to know

the token origin and the problem is to improve the accuracy of the information. Knowing

all the input and output places solicited by the unobservable transition, we now show that

we can describe the token evolution on the horizon and deduce the relations allowing a

schedulability analysis.

Let us note that the creation of tokens can be directly deduced from the sequence σ.

As the definition of the Petri net leads to a deterministic behavior, each event ei in the

sequence implies the creation of tokens when (F(ei))
• 6= ∅, which are directly deduced.

Indeed, all the tokens created by the ith firing of transition F(ei) appear in places (F(ei))
•.

But even if the sequence is known, the exact firing providing the tokens and leading

to the consumption of the relevant created tokens is not known at this step and the

relevant relations cannot be written. So, the problem is to make the connections between

the creation and consumption of tokens.

With this aim in mind, we now analyze the firing conditions of each transition F(ei) for

i ∈ {1, . . . , s} which must be satisfied. (Note that the firing condition is always satisfied

for the source transitions (•(F(ei)) = ∅)).

D. Starting marking

Let us integrate the starting marking in the approach with respect to step < k >. The

tokens of the starting marking has been created by the transition firings at the past steps

and the last creation corresponds to the firing of an observable transition whose firing

occurs at t<k−1>. Formally, M<k−1>[x<k−1>y<k−1> �M<k> for step < k−1 > . Without
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considering the origin of the tokens of M<k>, we introduce M<k>
l fictive input transitions

of •(pl) which create these M<k>
l initial tokens in each place pl presenting the initial

marking M<k>
l 6= 0. These fictive input transitions denoted xF,li for i = 1, . . . ,M<k>

l (F :

Fictive) do not present an incoming place ( •(xF,li ) = ∅) and are source transitions with

respect to step < k > . The relevant fictive events are included in the sequence starting

at e1 until em with m =
∑

l=1,...,|P |
M<k>

l before the events corresponding to the transition

firings. Therefore, we have built a null starting marking (M<k> = 0). Keeping the same

notations for simplicity, the augmented sequence σ with s = |σ| is defined as follows:

em = t<k−1>, es = t<k> and h<k> = h = es − em.

E. Internal relations

The objective is now to highlight the internal relations connecting the firing transitions

and to deduce possible event dates ei. As the sequence is relevant to a subset of transitions,

only these transitions must be considered in the resolution. The firing of each transition

needs to consider their input and output places, and to treat a relevant subnet of the

Petri net in general.

For each firing of transition F(ei) in the sequence with •(F(ei)) 6= ∅, and for each input

place pl of •(F(ei)), the firing of a unique transition F(ej) in the set •(pl) is necessary to

create a token. In that case, we must have |•(pl)| 6= 1 (as M<k> = 0) and F(ej) ∈ •(pl)

in the order of the sequence j < i (j before i), and we can write

ej + T−l ≤ ei ≤ ej + T+
l (6)

If •(F(ei)) = ∅ for a transition F(ei) in the sequence, this transition is a source

transition and its firing does not depend of the constraints of the Petri net except the

order of the sequence.

The pairs of indices (j, i) consistent with the sequence which must be used in the

relations are unknown and the problem is the determination of these index numbers. We

now propose a solution to this problem.

F. Structure.

Let us consider a transition which is not a source transition. Formally, •F(ei) 6= ∅. For

each input place pl ∈• F(ei), only one firing of a transition F(ej) ∈ •(pl) is necessary and

we desire to determine it, that is the exact event ej for the considered event ei and place
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pl ∈• F(ei). We must search all ej such that j < i and F(ej) ∈• pl and a choice must be

made when this set is not a singleton. Note that a transition can satisfy F(ej) = F(ej′)

with j 6= j′ and provides two possible events or more.

The final choice is expressed by the component TOK(j, i) which contains the place pl

which is the support of the chosen evolution, that is, the creation of a token by the jth

firing and the consumption by the ith firing in the sequence with j < i. As we consider an

ordered sequence σ, TOK(j, i) = ∅ for j > i where ej, ei are two events of the sequence.

Note that a more explicit notation is TOK(ej, ei).

Improving the concept of marking, a technique based on the token tracking can be

developed. With Assumption AS−7, a transition firing creates a unique token for each

output place in the Petri net. We can associate with each token a label which is the event

which has produced the token. Formally, we define the set J<k>
l with |J<k>

l | = M(pl)

which is the set of current events where each event ej ∈ Jl has produced a token which can

be consumed by the future firings of transitions. For simplicity, we take J<k>
l = Jl. When

a token is consumed by the firing of transition F(ei), the relevant event must be removed

from Jl. Each choice of a creation/consumption of a token allows the modification of the

sets Jl and the establishment of an element of TOK. The principle of the algorithm for

step < k > is to consider an event ei in the increasing order of the sequence, to treat

each incoming place pl in •F(ei) when •F(ei) 6= ∅ (respectively, each outgoing place pl

in F(ei)
• when F(ei)

• 6= ∅) and to manage the events of the relevant Jl. Algorithm 1

providing the set TOK for step < k > is as follows.

Algorithm 1

Input: σ = e1e2e3, ....es; Output: TOK.

Initialization: TOK = ∅ (no choice) ; Jl = ∅ (no event) for any pl ∈ P

i = 0

Repeat

- i← i+ 1

- For any pl ∈• F(ei) with •F(ei) 6= ∅,

a) choose ej ∈ Jl,

b) remove ej from Jl (Jl ← Jl\{ej})

c) and build TOK(j, i) = {pl} //consumption

- For any pl ∈ F(ei)
• with F(ei)

• 6= ∅, add ei ( Jl ← Jl ∪ {ei}) //creation

Until i = s �
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As |Jl| 6= 1 in general, different tokens can be consumed and different evolutions are

possible. The classical FIFO assumption below suggests a unique choice.

FIFO assumption

For each event i, the FIFO assumption implies that we take the smallest rank j with

j < i in Jl for pl ∈• F(ei) as it avoids the token overtaking. The smallest rank is unique

by construction of Jl which is based on the creation of a unique event for each firing. The

first choice of consumption is based on the first creation, that is, the oldest token in the

place (as i < i′ implies ei ≤ ei′ for the creation dates). Providing a specific choice, this

behavior rule is generated when the step a) ”Choose ej ∈ Jl” in Algorithm 1 is replaced

by:

- Choose ej ∈ Jl such that j = min(i) such that ei ∈ Jl
Example 2 continued.

Considering that Fig. 1 represents a P-time PN, we desire to make the schedulability

analysis of the untimed sequence x1y3 for step < 3 > with M<3> =
(

1 0 1 0
)

.

The two tokens of M<3> are created by the firings of two fictive transitions y4 and y5.

So, σ = e1e2e3e4 with F(e1) = y4, F(e2) = y5,F(e3) = x1, and F(e4) = y3.

We follow below the increasing order of the sequence.

e1 : the fictive firing of y4 creates a token in p1. So, J1 becomes {e1}.

e2 : the fictive firing of y5 creates a token in p3. So, J3 ← {e2}.

e3 : the firing of transition x1 consumes the token relevant to e1 in J1 = {e1} for p1.

So, J1 ← {ε}), and creates a token in p4 (so, J4 ← {e3}).

→ TOK(e1, e3) = {p1} from the creation by e1/consumption by e3 of token in p1

e4 : the firing of transition y3 consumes the token relevant to e3 in J4 = {e3} for p1

(J4 ← {ε}).

→ TOK(e3, e4) = {p4} from the creation by e3/consumption by e4 of token in p4 �

G. Computation graph

As the previous step has established a global choice expressed by TOK for step < k >

, a more accurate form of (6) can now be written. The system describing the cre-

ation/consumption of the tokens is

ej + T−l ≤ ei ≤ ej + T+
l

for TOK(j, i) = {pl}.
(7)
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Let us show that a solution can easily be computed as System (7) presents strong

properties. Indeed, we can deduce from (7) a computation graph denoted CG defined

as follows. We associate with each event a new transition F(ei) denoted with an abuse

of notation ei which appears once in the new graph by construction. The relevant set

of transition is denoted T R with |T R| = s. So, a transition tri ∈ TR in the Petri

net presenting more than one firing event in the sequence σ can be duplicated in two

transitions or more F(ei) ∈ T R in CG. For each pair (j, i) satisfying TOK(j, i) = {pl}

we introduce a new place corresponding to pl with time interval [T−l , T
+
l ] but appearing

once in the computation graph CG. To avoid a confusion with the places pl ∈ P , they are

indexed with a letter in upper case of the Latin alphabet (or a word if necessary) and

are denoted pletter. The relevant set is denoted P = {pA, pB, pC , ...}. So, a place pl ∈ P in

the Petri net satisfying TOK(j, i) = {pl} can be duplicated in two places or more places

pletter ∈ P in CG but each place pletter ∈ P appears once. The relevant time durations are

also duplicated.

Property 3: The computation graph CG is conflict-free.

Proof. Algorithm 1 has chosen for each event ei and incoming place pl ∈• F(ei), a

unique event ej and, has built TOK(j, i) = {pl} where pl is replaced by a place pletter ∈ P

in CG relevant to the pair (i, j). By construction, each considered place pletter ∈ P has a

unique incoming transition and a unique outgoing transition, that is, •pletter = F(ej) and

p•letter = F(ei), which defines the conflict-free structure of an event graph. �

The following property shows that the complete approach always builds an acyclic

system.

Property 4: The computation graph CG is acyclic.

Proof. As the indices satisfy j < i in (7) by construction, the computation graph is

acyclic. �

Moreover, the rewriting of (7) leads to a polyhedron A′.e ≤ b′ which is inf-monotone and

sup-monotone (the system of linear inequalities A′.e ≤ b′ is inf-monotone (respectively,

sup-monotone ) if each row of matrix A′ has one strictly negative (respectively positive)

element at most [10]). From the relevant theorems in [10], we can say that the least

solution exists since the problem is lower bounded as e ≥ 0 and is unique. The greatest

solution exists and is unique as es = t<k> is an upper bound. The analysis of the

consistency can be made by a minimization or maximization with c′.e with c′ unitary.

The computation is efficient as standard algorithms of linear programming as the Simplex
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(Section IV.D. in [10]).

Example 2 continued.

The relations can directly be deduced from TOK relevant to sequence x1y3 for step

< 3 > with M<3> =
(

1 0 1 0
)

.

 TOK(e1, e3) = {p1} : e1 + T−
1 ≤ e3 ≤ e1 + T+

1 (A)

TOK(e3, e4) = {p4} : e3 + T−
4 ≤ e4 ≤ e3 + T+

4 (B)

where e1 = t<2> and e4 = t<3>.

We can deduce system A′.e ≤ b′ with eT =
(
e1 e2 e3 e4

)
≥ 0, e3 ≤ e4,

e2 ≤ e3, e1 ≤ e3

(b′)T =
(
−T−1 −T−4 T+

1 T+
4

)
and A′ =


1 0 −1 0

0 0 1 −1

−1 0 1 0

0 0 −1 1

 . A direct resolution

gives max(t<2> +T−1 , t
<3>−T+

4 ) ≤ e3 ≤ min(t<2> +T+
1 , t

<3>−T−4 ). For t<2> = 3, t<3> =

12,
(
T−1 , T

+
1

)
= (3, 5) ,

(
T−2 , T

+
2

)
= (1, 12) ,

(
T−3 , T

+
3

)
= (1, 3) and

(
T−4 , T

+
4

)
= (4, 13) , we

obtain 6 ≤ 8 which is consistent and shows the schedulability of the sequence x1y3 for

step < 3 >. Now if we take t<3> = 8, the system becomes inconsistent (6 � 4) and the

sequence x1y3 cannot occur. The same approach applied to the sequence x2y3 shows the

existence of a schedule for t<3> = 8. �

VI. Conclusion and perspectives

As the complexity of the problem implies the use of different descriptions of the

trajectories developed on a given horizon, the Phase 1 exploits a relaxation of the time

model which must be checked in the Phase 2 where the constraints of the P-Time PN

are considered. In Phase 2, a technique based on a token tracking generates a matrix

description of the creation/consumption of the tokens that permits to build an acyclic

conflict-free computation graph describing the candidate sequence which can easily be

checked.

Providing an optimal solution for each subproblem, the proposed approach uses efficient

standard tools of linear programming contrary to the classical techniques which are based

on the generation of marking sets which are generally time and space costly. Note that

this generation of marking sets is an estimation of sets and not an exact determination as

some markings can be inconsistent with a future evolution: the relevant markings which

can be basis markings must be withdrawn with a procedure [6]. The resolution of Phase 2

is effective as the obtained system presents strong properties and standard algorithms as
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the Simplex can be applied directly. Similarly, for Phase 1, the paper [10] has presented

some classes of models where solutions over Z or R are equal [13].

This paper tackles different issues of estimation but many perspectives extending the

proposed two-staged approach can be considered at middle term. 1) As the principle of the

approaches based on a sliding horizon is to consider a limited amount of information which

guarantees the efficiency of the algorithms but can limit the accuracy of the results, a

numerical analysis allowing the study of the compromise between accuracy of the estimate

and execution time in function of the horizon can be made. 2) As each phase of the

proposed approach exploits a respective optimization, the proposed technique which is

suboptimal is a bi-criteria optimization: a deeper insight into the global optimality and

suboptimality for different criteria can be the subject of a theoretical study. Starting from

an obtained solution, a search of a better local solution can complete the technique. 3)

Finally, a natural perspective is the extension of this technique to models as Time Stream

PNs which generalizes P-time PNs.
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