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Abstract

The dater equalities constitute a well-known tool which
allows the description of Timed Event Graphs in the field
of (max, +) algebra. This paper gives an equivalent model
in the standard algebra which can describe Timed Event
Graphs with inputs and outputs. Concepts of component-
wise order and monotone inequalities prove the existence
of unique minimum, or maximum, solution in special sys-
tem Ax ≤ b. The approach is applied to just in time con-
trol and Model Predictive Control. Connections with lin-
ear programming are made.

1. Introduction

The dater equalities [2] constitutes a well-known tool
which allows the description of Timed Event Graphs and
P-time Event Graphs in the field of (max, +) algebra.
These graphs are convenient tools to model systems with
durations. Operation times for P-time Event Graphs, are
included between a minimum and a maximum duration.
Paper [5] proposes a new model which describes P-time
Event Graphs. In that study, special incidence matrices
are introduced. Considering 1-periodic behavior, the ap-
plication of a variant of Farkas’ Lemma allows the deter-
mination of upper and lower bounds of the production rate
and conditions of consistency. In [6], the production rate
is calculated by two efficient approaches using the duality
theorem of linear programming.

In this paper, we complete the model used in these stud-
ies by introducing inputs and outputs and we make the
connection with the well-known incidence matrix used in
the fundamental relation on marking. We moreover con-
sider two problems:

- The earliest operation of Timed Event Graphs which
allows the simulation of the system knowing the inputs;

- The control synthesis which computes an optimal
controller under a just in time criterion, in the sense that
the controller delays as much as possible such that system
output occurs before a desired output on a given horizon.

In [4], we propose solutions of these two problems us-
ing (max,+) algebra. In this paper, we show that the res-
olution can also been made in standard algebra. In fact,
we need to use a special type of linear inequalities which
has been studied by different authors out the field of dis-
crete event systems. The basic concepts are lattices and
componentwise order. A pioneer is G.B. Dantzig who
analysis dynamic Leontief System in 1955. R.W. Cottle
[3] has shown a correspondence between linear inequali-
ties and lattices. A recent research is M. Queyranne 2006
[9]. Using these mathematical results, a perspective is the
analysis of the connections between (max, +) algebra and
standard algebra in the field of Discrete Event Systems.
The outline of this paper is as follows. We first com-
plete [5] and [6] by introducing inputs and outputs. Then,
we present the concept of monotone inequalities which
allows the resolution of linear inequalities. Finally, the
framework is applied to the synthesis of a just in time con-
trol of Timed Event Graphs and model predictive control.
We discuss the connections between componentwise or-
der and objective function of linear programming.

2 Model

A Petri net is a pair (G,M0), where G = (R, V ) is a
bipartite graph with a finite number of nodes (the set V )
which are partitioned into the disjoint sets of places P and
transitions TR (transitions are denoted t while temporiza-
tion are denoted T ,);R consists of pairs of the form (pi,qi)
and (qi,pi) with pi ∈ P and qi ∈ TR . The initial marking
M0 is a vector of dimension | P | whose elements denote
the number of initial tokens in the respective places. Each
place pl ∈ P is associated with an initial marking (initial
number of tokens) denoted ml. The set •p is the set of
input transitions of p and p• is the set of output transitions
of place p ∈ P . The set •ti (respectively, t•i ) is the set
of the input (respectively, output) places of the transition
ti ∈ TR.

For a Petri net with | P | places and | TR | transitions,
the incidence matrix W = [Wij ] is an | P | × | TR |
matrix of integers and its entry is given by Wij = W+

ij −
W−ij where W+

ij is the weight of the arc from transition j



to an output place i and W−ij is the weight of the arc to
transition j from an input place i [8].

In a Petri net, a firing sequence from marking M , im-
plies a string of successive markings. The characteristic
vector s of a firing sequence S is such that each compo-
nent is an integer corresponding to the number of firings
of the corresponding transition. Then marking M reached
from initial marking M0 by firing of sequence S can be
calculated by the fundamental relation: M = M0+W×s.

A Petri net is called an Event Graph if each place
has exactly one upstream and one downstream transition.
Timed Petri nets allow the modeling of discrete event sys-
tems with sojourn time constraints of the tokens inside the
places. Consistent with the dioid Rmax (see [2]), we asso-
ciate a temporization defined in R+ with each place. Each
place pl ∈ P is associated with an temporization Tl, and,
an initial marking denoted ml.

2.1 Preliminary inequalities of a Timed Event Graph
We consider the “dater” type well-known in the (max,

+) algebra: each variable xi(k) represents the date of the
kth firing of transition xi. If we assume a FIFO func-
tioning of the places which guarantees that the tokens
do not overtake one another, a correct numbering of the
events can be carried out. The evolution can be described
by the following inequalities expressing relations between
the firing dates of transitions. Let us recall that an Event
Graph can be considered as a set of subgraphs made up of
a place pl linked with one upstream transition {tj} =• p
and one downstream transition {ti} = p•.

Using temporization Tl we can write the following in-
equality for each place pl where (j, i) = (•p, p•):
Tl +xj(k−ml) ≤ xi(k) or equivalently, xj(k−ml)−

xi(k) ≤ −Tl.
Weight 1 of xj(k −ml) (respectively, −1 of xi(k)) is

the weight of the arc going from tj to place pl (respec-
tively, the arc going from place pl to transition ti) which
is equal to W+

lj (respectively, −W−li ).

2.2 Matrix expression of a Timed Event Graph
Let m be the maximum number of initial tokens. The

set of the previous inequalities which describes a Timed
Event Graph, can be expressed with the following form:
Column-vector −T is a vector of temporization where Tl

is the temporization of place pl.

(
G
)
×


x(k −m)

x(k −m+ 1)
....

x(k − 1)
x(k)

 ≤ ( −T )
(1)

where G = [GmGm−1Gm−2........... G1G0] with a di-
mension equal to | P | . (m+ 1). | TR |.

Each place corresponds to a row of G which contains
the weights of its entering and outgoing arcs. Particularly,
matrix Gm for i ∈ [1,m] contains the weights of the arcs

entering the places with tokens (m ≥ 1). Matrix G0 con-
tains:

1. the weight of arc entering the places with no token ;

2. also, the weight of the arc outgoing from each place
(usually expressed by W−).

From the above description on the weight of the arcs,
we can deduce the following relation with the incidence
matrix W :

W =
i=m∑
i=0

Gi

Now let us express system inequalities (1) on a reduced
horizon. Such a form will simplify the calculation. The
objective is to build an equivalent model such that each
place of the graph contains only zero or one token.

As a place contains a maximum number of m tokens,
the general idea is to split each place containing m tokens
into m places, where each place contains only one token.
A systematic procedure is as follows.

Let us introduce new variable X , that is:
X(k) =

(
X0(k) .... Xi(k) .... Xm−1(k)

)
with

Xi(k) = x(k − m + i + 1). By construction, we have:
Xm−1(k) = x(k) and Xi(k) = Xi+1(k − 1) for i going
from 0 to m− 2.

So, system (1) becomes:

(
G′1 G′0

)
×
(
X(k − 1)
X(k)

)
≤ (−T )

where: G′1 =
(
Gm 0 . . . . . . 0

)
and G′0 =

(
Gm−1 Gm−2 . . . G1 G0

)
.

By completing the system with following (m − 1) ×
|TR| relations,

Xi(k)−Xi+1(k − 1) ≤ 0

for i = 0 to m− 2. The system can be written as follows:

(
V01 V00

)
×
(
X(k − 1)
X(k)

)
≤ (0)

where matrix V01 of dimension ((m − 1) × |TR| × m)
is an subdiagonal of identity matrices immediately above
the main diagonal, while the matrix V00 is a diagonal of
negative identity matrices.

Finally, the concatenation of the two systems gives the
algebraic form:

(
H
)
×
(
X(k − 1)
X(k)

)
≤
(
−T
0

)

where: H =
(
G′1 G′0
V01 V00

)
.
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2.3 Input/output model
Internal transitions, input transitions and output tran-

sitions are denoted x, u and y respectively. The corre-
sponding set of transitions are denoted TRx, TRu and
TRy . The set of places P is the union of three sets , that
is P = Pu→x ∪ Px→x ∪ Px→y where Pu→x is the set
of places between inputs and internal transitions, Px→x is
the set of places between internal transitions and Px→y is
the set of places between internal and output transitions.
This graphical notation is kept for relevant matrices and
roughly speaking, we note W+

u→x . This abuse of notation
facilitates the writing of the matrices.

Without reduction of generality, we assume that the ini-
tial marking of places of Pu→x and Px→y is null. More-
over, to simplify the presentation, we assume that the ini-
tial marking of places of Px→x is equal to one and the set
of places linking inputs to outputs is empty. Therefore,
we can write the relevant inequalities which express rela-
tions between the firing dates of internal, input and output
transitions.

One obtains for Px→x , Pu→x and Px→y , respectively:

(
W+

x→x −W−x→x

)(x(k − 1)
x(k)

)
≤ (Tx→x) (2)

(
W+

u→x −W−u→x

)(u(k)
x(k)

)
≤ (−Tu→x) (3)

(
W+

x→y −W−x→y

)(x(k)
y(k)

)
≤ (−Tx→y) (4)

where dimensions of incidences matrices are as fol-
lows. dim(W+

x→x) = dim(W−x→x) = |Px→x|.|TRx|,
dim(W+

u→x) = |Pu→x|.|TRu|, dim(W−u→x) =
|Pu→x|.|TRx|, dim(W+

x→y) = |Px→y|.|TRx| and dim(
W−x→y) = |Px→y|.|TRy|.

Remark.

1. From the above description on the weight of the arcs,
we can deduced that W+

u→x, W+
x→y , W−u→x, W−x→y

are submatrices of the incidence matrices W+ and
W−.

2. No row of incidence matrices is null as we express
relations of each place of the Event Graph. Similarly,
no column ofW+

ux andW−xy is null knowing that each
input/output transition is supposed connected to the
graph.

Example 1 :
Graph G = (P, TR) in figure (1) illustrates the In-

put/output model.
P = Pu→x ∪ Px→x ∪ Px→y where : Pu→x = {P1},

Px→x = {P2, P3} and Px→y = {P4}.
TR = TRu ∪ TRx ∪ TRy where : TRu = {u},

TRx = {x1, x2} and TRy = {y}.
Let us suppose that M0 = (0, 1, 1, 0)t.
The input/output model is as follows :

Figure 1. Timed event graph

(
W+

x→x −W−x→x

)
x1(k − 1)
x2(k − 1)
x1(k)
x2(k)

 ≤ ( −4
−5

)
where :

W+
x→x =

(
1 0
0 1

)
and W−x→x =

(
0 1
1 0

)
(
W+

u→x −W−u→x

)( u(k)
x1(k)

)
≤
(
−2

)
where :
W+

u→x =
(

1 0
)

and W−u→x =
(

0 1
)

(
W+

x→y −W−x→y

)(x2(k)
y(k)

)
≤
(
−8

)
where :
W+

x→y =
(

1 0
)

and W−x→y =
(

0 1
)

�

3 Monotone inequalities

In this paper, we focus on partial order ≤ defined on
a set S which is defined componentwise: x ≤ y iff
xi ≤ yi for all i ∈ {1, 2, ..., card(x)} . This part presents
vocabulary (see part 4.3.1 of [2]) and theoretical results
used in parts 5 and 6.

A maximum (minimum) of a subset is an element of
the subset which is greater (lower) than any other element
of the subset. If it exists, it is unique.

A majorant (minorant) of a subset is an element
not necessarily belonging to the subset which is greater
(lower) than any other element of the subset. If a majo-
rant belongs to the subset, it is the maximum (minimum)
element. Majorant (minorant) is also called upper (lower)
bound.

Upper bound (lower bound) is the least majorant
(greatest minorant). When ’majorant’ is called ’upper
bound’, this notion is called ’ least upper bound’. Re-
spectively, when ’minorant’ is called ’lower bound’, this
notion is called ’greatest lower bound’.

Sup-semilattice (respectively, inf-semilattice) (S,≤) if
an ordered set such that there exists an upper (respectively
lower) bound in S for each pair of elements. It is called
lattice if it is both a inf-semilattice and a sup-semilattice.

In this part, we present theoretical results used in parts
5 and 6.

The intersection of a finite number of closed half
spaces in Rn is called a convex polyhedron or simply a
polyhedron. Equivalently, a polyhedron is a subset Γ of
Rn which can be represented as the solution set to a sys-
tem of linear inequalities : Γ = {x ∈ Rn : Ax ≤ b}
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where A is an m× n real matrix and b is a real m dimen-
sional vector.

In this paper, we focus on a particular class of linear
systems defined as follows.

Definition 1 The system of linear inequalities Ax ≤ b is
inf-monotone (respectively, sup-monotone ) if each row of
matrix A has one strictly negative (respectively positive)
coefficient at the most.

Example 2 :
System Ax ≤ b is as follows :

where : A =

−3 −2 1
1 −1 −1
1 0 −1

 and b =

2
3
4


We remark that each row of matrix A has one strictly

positive coefficient at the most. So the system is sup-
monotone �

Definition 2 If an inequality is inf-monotone and sup-
monotone at the same time, this inequality is said bi-
monotone. A system is called bi-monotone if each inequal-
ity is bi-monotone.

Therefore, each row of matrix A has one strictly posi-
tive coefficient at the most and one strictly negative coef-
ficient at the most. Another definition is as follows.

Definition 3 A bimonotone linear inequality is of the
form aixi + ajxj ≤ c, for some i,j with the product aiaj

nonpositive.

Example 3:
Let system Ax ≤ b with:

A =

 1 0 −1
−1 1 0
0 1 −1

 and b=

−2
3
1

. The product

of the coefficients of each inequality is nonpositive, what
means, inequalities are bimonotone. Each row of matrix
A has one strictly positive and negative coefficient at the
most �

If the initial marking is null, m = 0 and W = G0. We
can write W × x(k) ≤ −T−for a Timed Event Graph.
This system is bi-monotone as each row of incidence ma-
trix W contains zero elements except two non-null co-
efficients 1 and −1. Let us note that matrix A of a bi-
monotone system can also contain rows with one non-null
coefficient.

4 Monotone system having a least element

Theorem 1 [13] [3]. Let Γ be the set of solutions of a
inf-monotone (respectively sup-monotone)systemAx ≤ b.
The following are equivalent :

1. Set Γ is a inf-semilattice (respectively sup-
semilattice).

2. If x and y are two elements of Γ then their minimum
x ∧ y (respectively, maximum x ∨ y) belongs to Γ.

Property 1 A set of solutions of a bi-monotone system
Ax ≤ b is a lattice.

The proof is immediate as a inf-semilattice which is
sup-semilattice, is a lattice. �

The following Theorem is important as it guarantees
the existence of minimal or maximal solution of sets Γ . It
is applied in the following parts as it proves the existence
of earliest trajectory or greatest control in the following
problems.

Theorem 2 Set Γ has a largest (respectively, least) ele-
ment if the set is non-empty and has a majorant (respec-
tively, minorant).

Example 4 :

Ax ≤ b with A =

 2 −1
−1 2
−1 0

 and b=

2
4
0


We remark that the system is bimonotone. Set

Γ is non-empty as
(

0
0

)
∈ Γ and

(
4
6

)
is a majorant

of Γ. The largest element is:
(

8/3
10/3

)
. Equally

(
−5
−6

)
is a

minorant of Γ. The least element is
(

0
−2

)
�

Figure 2. curves of system example 4

5 Earliest trajectory

In (max, +) algebra, it is well-known that Timed Event
Graphs has an earliest trajectory expressed by an equality.
In this part, we interpret this by using the proposed model
defined in standard algebra. Knowing initial state x0 and
control u in R , the aim is to prove the existence of the
minimum state trajectory. Input and state inequalities are
as follows.

For k ≥ 1,

W−u→x x(k) ≥ (Tu→x) +W+
u→x.u(k)

and

(
I

W−x→x

)
x(k) ≥

(
0

Tx→x

)
+
(

I
W+

x→x

)
x(k − 1)

with x(0) = x0 in R.
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The first row expresses non-decreasing characteristic
of the state. The two last inequalities are a system of linear
inequalities which are expressed in form Ax ≥ b.

W−
u→x

I
W−

x→x

x(k) ≥

Tu→x

0
Tx→x

+

 0 W+
u→x

I 0
W+

x→x 0

(x(k − 1)
u(k)

)
(5)

Property

Proposition 1 Knowing the control, there is a minimum
state and output for initial state x(0) = x0.

Proof

Let A=

W−u→x

I
W−x→x


and

b =

Tu→x

0
Tx→x

+

 0 W+
u→x

I 0
W+

x→x 0

(x(k − 1)
u(k)

)
.

- This system Ax ≥ b is inf-monotone as each row of

matrixA =

W−u→x

I
W−x→x

 has one strictly positif coefficient.

- This set is non-empty as we can easily calculate an
arbitrary value x(k) inR for any initial state and control as
each row of matrix A contains a only non-null coefficient.

- Moreover, we know that x0 is a minorant of x(1) as
the state trajectory is non-decreasing: this property is ex-
pressed in the state inequality. We can generalize to an
arbitrary state trajectory which has a minorant.

We can deduce from Theorem 2 that the space solution
set has a minimum state x(k). In other words, a Timed
Event Graph has a unique earliest trajectory.

Output inequality isW−x→y.y(k) ≥ Tx→y+W+
x→yx(k)

and the same result holds as x(k) is deduced.
Finally, we can deduce that the minimum state and

output exist knowing initial state x0 and control u in R.�

Remark. This result also holds for autonomous case
(without input transitions) as the input inequality can be
removed from the previous proof. An application is for
instance the determination of 1-periodic trajectory.

Optimal solution
Knowing initial state x(0) = x0 and control u(k) on

an arbitrary known horizon, different algorithms can give
the state and output trajectories. For instance, the general
Fourier-Motzkin algorithm can give an arbitrary solution
but also the optimal solution after an adaptation [10]. A
more specific algorithm is given in [1]: it solves systems
of linear inequalities with two variables per inequality
in polynomial time. See also [11] for the same type of
systems.

In fact, the optimal solution is also solution of special
linear programming problem as indicated by the follow-
ing result [3] [7]. Set Γ = {x ∈ Rn : Ax ≤ b} has

a maximum element x0 if and only if x0 is optimal for
the problem max {cx, such that Ax ≤ b for any c > 0}.
Therefore, approaches using componentwise order rela-
tion give the same results as the relevant problems using
linear programming for c > 0 if the inf-monotone (respec-
tively, sup-monotone) system define a non-void set with a
minorant(respectively, majorant).

6 Control synthesis

We propose here a method to compute an optimal con-
troller under just in time criterion, in the sense that the
controller delays as much as possible such that system
output occurs before a reference trajectory z on horizon
[ks, kf ]. As we have no information after event kf , there is
no demand on the production and we take z(k) = +∞ (or
an arbitrary large value) for k > kf . So the problem is the
determination of the greatest control so that y(k) ≤ z(k)
on horizon [ks, kf ]. We assume that the event graph is
structurally observable and controllable (definitions are
given below). A well-known solution of this problem ex-
ists in (max, +) algebra and is described in part 5.6 of [2].

More formally, the system is described below by the
inequalities of model and the constraint on the output:

W−u→x x(k) ≥ (Tu→x) +W+
u→x.u(k) (6)

(
I
W−x→x

)
x(k) ≥

(
0

Tx→x

)
+
(
I
W+

x→x

)
x(k−1)

(7)

W−x→y.y(k) ≥ Tx→y +W+
x→y.x(k) (8)

and
y(k) ≤ z(k) (9)

Let us write an equivalent system under form Ax ≤ b.
From (8) and (9), we can write :

W+
x→y.x(k) ≤ −Tx→y+W−x→y.y(k) ≤ −Tx→y+W−x→y.z(k)

as W−x→y is non-negative. From (7), we obtain:

(
I
W+

x→x

)
x(k) ≤

(
0

−Tx→x

)
+
(
I
W−x→x

)
x(k+1)

Finally, we must solve the following system inequalities
expressed in form Ax ≤ b.
∀k ∈ [ks, kf ]

W+
x→y

I
W+

x→x

x(k) ≤

−Tx→y

0
−Tx→x

+

W−
x→y 0
0 I
0 W−

x→x

( z(k)
x(k + 1)

)
(10)

W+
u→x.u(k) ≤ −Tu→x +W−u→x.x(k)

In (max, +) algebra, the structural observability [2]
gives a condition to observe an effect at the output due
to one internal transition at least. In this definition, the
dates of firing of the outputs are not especially known.
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Definition 4 [2] An event graph is structurally observ-
able if from every internal transition, there exists a path to
one output transition at least. The minimal initial number
of tokens of these paths to internal transition ti is denoted
πi,out.

In Petri nets, another definition is used. A transition
is said to be observable if the relevant dates of firing is
known. Let us assume that 1) every output is observable
2) the event graph is structurally observable 3) the date of
firing of an internal transition can be modified. Therefore,
an arbitrary large date of firing of this internal transition
yields an arbitrary large date of firing of an output tran-
sition. In other words, in a structurally observable event
graph, every internal transition have a structural influence
on one output transition at least. This structural influence
can be see if every output is observable.

The assumption of structural observability is used in
the proposition below.

Property
There is a maximum date x+

i (k) ∈ R on horizon
[ks,kf − πi,out] satisfying (10) to each internal transition.

Proof :
This system of linear inequalities is sup-monotone as

each row of matrix A =

 W+
x→y

I
W+

x→x

 has one strictly

positif coefficient per row.
The resolution of the following system gives a majo-

rant:
W+

x→y.x(kf ) ≤ −Tx→y + W−x→y.z(kf ) and x(k) ≤
x(k + 1) for k < kf .

However, as each internal transition is not directly con-
nected to output transition, some columns of W+

x→y can
be null and only some components of x(kf ) has a finite
majorant if z(kf ) is finite. If we assume that the system
is structurally observable, then there exists from every in-
ternal transition xi at least a path to one output transition
yi in the event graph. The resolution follows the opposite
direction and there is a relation linking values of an output
transition and an internal transition but with a shift in the
numbering of events. For every internal transition, its min-
imal value πi,out exists as the event graph is structurally
observable. Therefore, a finite value z(k) generates a ma-
jorant of xi(k − πout). Therefore, we must consider the
observable values of internal transitions as they present a
majorant.

Finally, the set reduced to variables with majorant is
non-empty as we can easily calculate a solution (if con-
dition x(0)= x0 is removed). From Theorem 2, we can
deduce that the solution set has a maximum element.

Moreover, inequality (6) gives W+
u→x.u(k) ≤

−Tu→x + W−u→x.x(k) which is also sup-monotone. The
same reasoning can be made for the inputs: as every input
transition is connected to the system and, we can deduce a
majorant from majorant of state (or maximum state). The
greatest control trajectory exists and can be deduced from
the above inequality.�

The determination of the optimal control can use the
algorithms cited in part 5. Starting from kf , the algorithm
can successively solve system (10) following a backward
iteration from kf to ks . In the initial step, x(kf + 1) is
equal to infinite (or an arbitrary large value).

Let us note that the concept of structural controllabil-
ity is not used in the calculation of the greatest state and
control. A possible effect on dates of internal transitions
can be made only if there a path between an input transi-
tion and each internal transition. This condition is named
structural controllability.

Definition 5 [2] An event graph is structurally control-
lable if, every internal transition can be reached by a path
from one input transition at least.

If the event graph is structurally controllable, the pos-
sible effect of an input transition on an internal transition
ti is made with a shift in the numbering of events. Its min-
imal value is denoted πi,in . To sum up, the assumption of
structurally observable and controllable event graph yields
a pair (πin, πout) for each internal transition ti.

Example 5 :

Continuation of Example 1, on horizon [1, 10] refer-
ence trajectory z is given in the following table:

k 1 2 3 4 5 6 7 8 9 10
z(k) 42 42 42 90 90 90 138 138 138 186

From z(k), the solution set of inequality (10) has a

maximum element, which can be calculate by the Fourier-
Motzkin algorithm. This greatest state corresponds to
vector denoted x+given in the following table:

k 1 2 3 4 5 6 7 8 9 10
30 30 69 78 78 117 126 126 174 +∞

x+(k) 25 34 34 73 82 82 121 130 130 178

We can calculate control u from x+:

k 1 2 3 4 5 6 7 8 9 10
u(k) 28 28 67 76 76 115 124 124 172 +∞

Finally, given initial state

x(0) =
(

0
0

)
and control u, we solve inequality (5)

by using Fourier-Motzkin algorithm. The calculated min-
imum represents the earliest trajectory, given in the fol-
lowing table:

k 1 2 3 4 5 6 7 8 9 10
30 30 69 78 78 117 126 126 174 +∞

x(k) 4 34 34 73 82 82 121 130 130 178

The relevant earliest trajectory y is:

k 1 2 3 4 5 6 7 8 9 10
y(k) 12 42 42 81 90 90 129 138 138 186

6



Figure 3. Trajectory simulation

7 Model Predictive control

Now, the optimal control can be extended to on-line
approach and particularly Model Predictive Control. After
an optimal control on horizon [ks, ks + h], the horizon is
shifted and becomes [ks + 1, ks + h + 1]: the problem is
updated with new information of the measurements and a
new optimization at step ks+1 must be performed. Below,
we detail the general technique of the sliding horizon in
Model Predictive control.

7.1 Data and sliding horizon
We assume that each event date of transition firing is

available for current number of event k: at step k =
ks,uks

and xks
are known. A future control sequence u(k)

for k ∈ [ks +1, ks +h] is determined such that this control
is the optimal solution of the problem. The first element
of the optimal sequence (here u(ks + 1)) is applied to the
process. At the next number of event ks + 1, the horizon
is shifted: the problem is updated with new information of
the measurements and a new optimization at step ks +1 is
performed. Two approaches using componentwise order
relation or objective function can solve this problem.

7.1.1 Approach using objective function

- Input cost criterion
The objective can be the maximization of the sum of

the components of the control on the horizon. A conse-
quence is that the internal buffer levels are kept as low as
possible.

Jin =
kf∑

k=ks+1

dim(u)∑
i=1

ui(k)

- Tardiness
If initial state x(ks) = xks and control u(k) are known

on an arbitrary horizon, the resolution of part 5 gives the
earliest state denoted χ and earliest output trajectories.
The control synthesis generates a greatest state which is
denoted ξ(k). The difference ξ(k) − χ(k) expresses the
margin but the two trajectories must be coherent and sat-
isfies constraint χ≤ξ otherwise, the Timed Event Graph
cannot (provisionally) obeys the Just-in-time criteria y≤z
as state ξ is the greatest possible trajectory. If we have to
pay a penalty for every delay by respect to the desired out-
put z, an interesting cost criterion is the tardiness which is

equal to yi − zi if yi ≥ zi or 0 if yi < zi. If the tardiness
is denoted v, we can write(

I
0

)
y(k)−

(
I
I

)
v(k) ≤

(
z(k)
0

)
and we can minimize the sum of the components of the

tardiness on the horizon

Jout =
kf∑

k=ks+1

dim(y)∑
i=1

vi(k)

- Approach
Considering input cost and tardiness, the problem of

minimization of J = Jout − λ.Jin with λ a nonnegative
scalar can be solved by linear programming .

Remark. Contrary to the state equation of (max, +)
algebra, the model of this paper is defined by inequali-
ties. Let us express the earliest functioning with A and
b defined in part 5. Recall that the earliest functioning is
expressed by a simple equality in (max, +) algebra. As
each row contains only one non-null coefficient, the cal-
culation of the minimum of xi(k) uses the rows j such that
Aj,i 6= 0 and takes the maximal value calculated on this
relevant inequality.∏

Aj,i 6=0

(Aj,ixi(k)− bj) = 0

Expressing the earliest functioning of a Timed Event
Graph, this equality contains a product of sums. In [12] it
is proved that this condition can be neglected for a slightly
more general problem .

7.1.2 Approach using componentwise order relation

- Input criterion
This criterion is considered in part 6. Therefore, ap-

proaches using componentwise order relation give the
same results as the relevant problems using linear pro-
gramming (see part 5) if the sup-monotone system define
a non-void set with a majorant.

- Tardiness
We also desire to solve the tardiness case. A priori, an

approach is to apply the technique already applied in part
6 based on a maximization. A convenient form is a sup-
monotone inequality Ax ≤ b. As we want to minimize
v(k) or maximize −v(k), the convenient form is:(

I
0

)
y(k) +

(
I
I

)
(−v(k)) ≤

(
z(k)
0

)
Un-

fortunately, the system which define the tardiness is not
sup-monotone as there is rows with two positive coeffi-
cients: we cannot directly apply a technique based only on
componentwise order. The following multi-step approach
solves this problem.

- Approach A possibility is to delay the desired output
with a realistic desired output which can be followed by
the Timed Event Graph. Therefore, the technique is as
follows:

a) Step a is the calculation of the earliest possible tra-
jectory y−p such that the Timed Event Graph can start from
initial condition x0. The earliest trajectory can simply be
calculated by application of approach described in part 5.
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Known data are initial condition xks and minimal control
u(k) = uks for k ≥ ks.

b) Step b is the replacement of desired output z by mod-
ified desired output max( (y−p (k))i, (z(k))i ) for each
component i. The tardiness is minimized as trajectory y−p
is minimal. c) Step c is to apply the control synthesis de-
scribed above.

Example 6 Let us consider the following prob-
lem which can only be solved by predictive control ap-
proaches: the just in time criteria (y(k) ≤ z(k) ) cannot be
satisfied for the following current state and desired output.
Horizon h is equal to 10 and we consider 10 steps of the
algorithm. The desired output is z(k) = 42 + 24.E(k−1

3 )

for k ≥ 1. We assume that x(0) =
(

50
50

)
. From the

Figure 4. Trajectory simulation of Model
Predictive Control

model, we deduce that y(1) ≥ 62 > z(1) = 42 for any
control and y(k) � z(k) for k ≥ 1. In this situation,
Figure 4 shows the performance of the Model Predictive
Control: output y converges to desired output z at k = 11.

8 Conclusion

We propose in this paper, an input/ouput model based
on new particular incidence matrices relevant to input, in-
ternal and output places. The connection between these
matrices and the classical incidence matrix (usually de-
noted W ) of the fundamental relation on marking is
shown. We give a new state inequality system which de-
scribes Timed Event Graphs in standard algebra. Let us
recall that the model of Timed Event Graph is a state equa-
tion in (max,+) algebra. We prove that the minimum state
trajectory exists.

We also consider the problem of just in time control of
Timed Event Graphs. Classically, this problem is solved
in (max,+) algebra by using a componentwise order and
residuation theory. Using the new model, we show that
this problem can also be solved in standard algebra with
componentwise order. The resolution can be made with
Fourier-Motzkin algorithm. This fact suggests a connec-
tion between approaches using standard algebra and (max,
+) algebra in context of control.

The results are based on the structure of inequalities
which are inf-monotone or sup-monotone. In part 5,
the determination of the earliest trajectory leads to a inf-
monotone system while the determination of the greatest
control yields a sup-monotone system in part 6. Applica-
tion of Theorem 2 shows that minimal or maximal solu-
tion exists. The study is generalized to Model Predictive
Control. A simple example illustrates the approach.
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