A strategy for Estimation in Timed Petri nets

Philippe Declerck¹, Amira Chouchane¹ and Patrice Bonhomme²

¹: University of Angers LISA/LARIS EA 7315

²: University François-rabelais, Tours CNRS, LI EA 6300, ROOT ERL CNRS 6305

Introduction

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Introduction

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Introduction

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Introduction

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Introduction

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

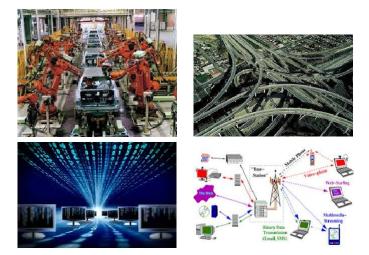
- Principle of the estimation
- Example

Phase II : for timed Petri nets

- Counter
- Model
- Checking of the existence
- Example : continued

Conclusion and perspectives

Discrete events systems



Patrice Bonhomme (CODIT'17)

A strategy for Estimation in Timed Petri nets

April 5-7, 2017 4 / 23

Definition

A Petri Net is a structure : $N = \langle P; Tr; W^+, W^- \rangle$ where :

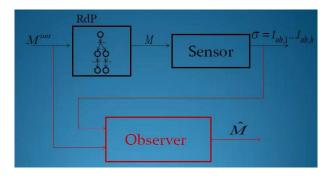
- *P* is a set of |P| places and *TR* is a set of |TR| transitions.
- the matrices W⁺ and W⁻ are resp. the |P| × |TR| post and pre-incidence matrices over N, where each row *I* ∈ {1,..., |P|} specifies the weight of the incoming and the outgoing arcs of the place p_I ∈ P.

• The incidence matrix is $W = W^+ - W^-$.

General principle of the estimation using Petri Nets

Problem

Estimate the states set of a Partially observed Petri Net supposing that the initial marking M^{init} is known.

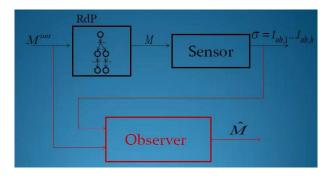


Case of untimed Petri Nets
 Case of timed Petri Nets

General principle of the estimation using Petri Nets

Problem

Estimate the states set of a Partially observed Petri Net supposing that the initial marking M^{init} is known.



- Case of untimed Petri Nets
- 2 Case of timed Petri Nets

Introductior

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Notations

- $\pi(\sigma) \in \mathbb{N}^{|TR|}$ is the count vector where $\pi(\sigma)_i$ is the firing number of the transition *i*.
- The evolution of marking *M* is obtained by : $M = M^{init} + W.\pi(\sigma)$
- A transition is enable for *M* if $M \ge W^{-}(., t)$ and gives the marking M' = M + W(., t).
- *M*[σ ≻ express that the transition sequence σ is allowed at *M*, and we write : *M*[σ ≻ *M*' to denote that the firing of σ gives *M*'.
- The transition set $TR = TR_{ob} \cup TR_{un}$ where :
 - TR_{ob} is the set of observable transitions, it is denoted t_{ob,i}
 - TR_{un} is the set of unobservable transitions, it is denoted x_{un,i}
- The incidence matrix W and M^{init} are supposed to be known.

Notations

- $\pi(\sigma) \in \mathbb{N}^{|TR|}$ is the count vector where $\pi(\sigma)_i$ is the firing number of the transition *i*.
- The evolution of marking *M* is obtained by : $M = M^{init} + W.\pi(\sigma)$
- A transition is enable for *M* if $M \ge W^{-}(., t)$ and gives the marking M' = M + W(., t).
- *M*[σ ≻ express that the transition sequence σ is allowed at *M*, and we write : *M*[σ ≻ *M*' to denote that the firing of σ gives *M*'.
- The transition set $TR = TR_{ob} \cup TR_{un}$ where :
 - TR_{ob} is the set of observable transitions, it is denoted t_{ob,i}
 - TR_{un} is the set of unobservable transitions, it is denoted x_{un,i}
- The incidence matrix W and M^{init} are supposed to be known.

Problem

Given a sequence of observed firing transitions, we want to find the sequences of unobservable firing transitions denoted ($\sigma_{un} \in TR_{un}^*$)

Patrice Bonhomme (CODIT'17)

Principle

- If there is an observed firing of transition $t_{ob}^{<i>}$ for a current marking $M^{<i>}$, then there are an unobservable sequence $\sigma_{un}^{<i>}$ and a marking M' such that $M^{<i>}[\sigma_{un}^{<i>} \succ M'$ and $M'[t_{ob}^{<i>} \succ M'$ is the marking reached from the marking $M^{<i>}$ by firing the unobservable sequence $\sigma_{un}^{<i>}$ and this marking M' allows the observation of the firing of the observed transition $t_{ob}^{<i>}$.
- The marking $M^{<i+1>}$ used in step < i+1 > is obtained from the firing of $t_{ob}^{<i>}$ at marking M'. Hence, $M'[t_{ob}^{<i>} > M^{<i+1>}$.

Principle

- If there is an observed firing of transition t^{<i>}_{ob} for a current marking M^{<i>}, then there are an unobservable sequence σ^{<i>}_{un} and a marking M' such that M^{<i>}[σ^{<i>}_{un} ≻ M' and M'[t^{<i>}_{ob} ≻.
- The marking $M^{<i+1>}$ used in step <i+1> is obtained from the firing of $t_{ob}^{<i>}$ at marking M'. Hence, $M'[t_{ob}^{<i>} \succ M^{<i+1>}$.

$$\underbrace{M^{\langle i \rangle} \xrightarrow{\sigma_{un}?} M' \xrightarrow{t_{ob}} M^{\langle i+1 \rangle}}_{\text{iteration } \langle i \rangle}$$

Estimation

- Estimate the count vectors of the firing of the unobserved transitions. The associated vector to the set *TR*_{un} is denoted *x*_{un}.
- If this vector is relevant to a possible sequence in the Petri nets, it will be called explanation vector.

Principle

- If there is an observed firing of transition t^{<i>}_{ob} for a current marking M^{<i>}, then there are an unobservable sequence σ^{<i>}_{un} and a marking M' such that M^{<i>}[σ^{<i>}_{un} ≻ M' and M'[t^{<i>}_{ob} ≻.
- The marking $M^{<i+1>}$ used in step <i+1> is obtained from the firing of $t_{ob}^{<i>}$ at marking M'. Hence, $M'[t_{ob}^{<i>} \succ M^{<i+1>}$.

$$\underbrace{M^{\langle i \rangle} \xrightarrow{\sigma_{un}?} M' \xrightarrow{t_{ob}} M^{\langle i+1 \rangle}}_{\text{iteration } \langle i \rangle}$$

Estimation

- Estimate the count vectors of the firing of the unobserved transitions. The associated vector to the set *TR*_{un} is denoted *x*_{un}.
- If this vector is relevant to a possible sequence in the Petri nets, it will be called explanation vector.

Patrice Bonhomme (CODIT'17)

Definition

- Let σ^{<i>}_{un} be a non observed sequence of transitions leading to the firing of the observed sequence t^{<i>}_{ob}, from a given marking *M*.
- An explanation vector of this sequence is the vector relevant to $\pi(\sigma_{un}^{\langle i \rangle})$.

Definition

- Let σ^{<i>}_{un} be a non observed sequence of transitions leading to the firing of the observed sequence t^{<i>}_{ob}, from a given marking *M*.
- An explanation vector of this sequence is the vector relevant to $\pi(\sigma_{un}^{\langle i \rangle})$.

Result

Algebraical modelisation of the explanation vectors allowing finding a transition t from a marking M, with :

 $\left\{ \begin{array}{l} \text{Marking equation } M' = M + W_{un}.\hat{x}_{un} \\ \text{firing condition } M' \geq W_{obs}^{-}(., t_{ob}^{< i>}) \\ \text{positivity constraint : } \hat{x}_{un} \geq 0 \end{array} \right.$

Polyhedron of candidate vectors

$$A. \hat{x}_{un} \leq b^{\langle i \rangle}$$
; $\hat{x}_{un} \in \mathbb{Z}^k$

with :

$$A = \begin{pmatrix} -W_{un} \\ -I_{k \times k} \end{pmatrix} \text{ and } b^{\langle i \rangle} = \begin{pmatrix} M^{\langle i \rangle} - W_{obs}^{-}(., t_{ob}^{\langle i \rangle}) \\ 0_{k \times 1} \end{pmatrix}$$

A depend on the Petri net structure
 b^{<i>} depend on M^{<i>} and t^{<i>}_{ab}

Method of resolution

- Off-line : Fourier Motzkin
- On-line : Numerical computing algorithm

Polyhedron of candidate vectors

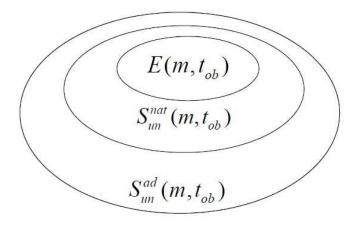
- The relevant solution is denoted $: S_{un}^{ad}(M, t_{ob}) = \{x_{un} \in \mathbb{R}^n | A. x_{un} \le b\}$
- We denote : $S_{un}^{nat}(M, t_{ob}) = S_{un}^{ad}(M, t_{ob}) \cap \mathbb{N}^n$ (nat= natural numbers)
- S^{nat}_{un}(M, t_{ob}) include the set of explanation vectors E(M, t_{ob}) for one iteration < i > (firing condition of unobserved transitions is neglected).

$$S_{un}^{ad}(M, t_{ob}) \supset S_{un}^{nat}(M, t_{ob}) \supset E(M, t_{ob})$$
(1)

- $S_{un}^{ad}(M, t_{ob})$ et $S_{un}^{nat}(M, t_{ob})$ are called *candidate vectors* over \mathbb{R} or \mathbb{N} .
- If each transition *i* is associated to a non negative cost c_i, we can
 minimize the cost of the count vector c.x_{un}

min $c.x_{un}$ such that $A.x_{un} \leq b$

 The obtained result is relevant to the minimal cost of the transition sequence if x_{un} ∈ E(M, t_{ob}).

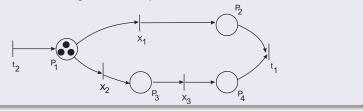


 $E(m,t_{ob}) \subset S_{un}^{nat}(m,t_{ob}) \subset S_{un}^{ad}(m,t_{ob})$

Example

Description

• Consider the Petri net where : $TR_{un} = \{x_1, x_2, x_3\}$ and $TR_{obs} = \{t_1, t_2\}$. t_2 is a source transition, it firing leads to a possible evolution of the model.



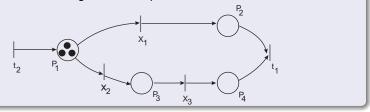
• The incidence matrices relevant to *TR_{un}* and *TR_{obs}* are :

$$W_{un} = \begin{pmatrix} -1 & -1 & 0 \\ +1 & 0 & 0 \\ 0 & +1 & -1 \\ 0 & 0 & +1 \end{pmatrix} \text{ et } W_{ob}^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Example

Description

Consider the Petri net where : TR_{un} = {x₁, x₂, x₃} and TR_{obs} = {t₁, t₂}. t₂ is a source transition, it firing leads to a possible evolution of the model.



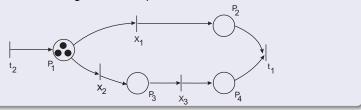
• The relations describing the problem are :

$$\begin{cases} x_1 + x_2 &\leq 3 \\ -x_1 &\leq -1 \\ -x_2 + x_3 &\leq 0 \\ -x_3 &\leq -1 \end{cases}$$

Example

Description

• Consider the Petri net where : $TR_{un} = \{x_1, x_2, x_3\}$ and $TR_{obs} = \{t_1, t_2\}$. t_2 is a source transition, it firing leads to a possible evolution of the model.



~

• the relevant polyhedron is :
$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} . x \le \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$

Count Vectors

- The set of the count vectors is : $S_{un}^{nat}(M^{init}, t_1) = \{ (1 \ 1 \ 1 \)^{\top}, (2 \ 1 \ 1 \)^{\top}, (1 \ 2 \ 1 \)^{\top}, (1 \ 2 \ 2 \)^{\top} \}.$
- Each solution is an explanation vector because TRun is acyclic
- For the vector $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^{\top}$, more than three possible firing sequences : $x_1x_2x_3$, $x_2x_3x_1$ and $x_2x_1x_3$. etc.
- Pour $\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}^{\top}$, more than six possibilities $x_1x_1x_2x_3$, $x_1x_2x_3x_1$, $x_1x_2x_1x_3$, $x_2x_1x_1x_3$, $x_2x_1x_1x_3$, $x_2x_1x_3x_1$ et $x_2x_3x_1x_1$. etc.

Introductior

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

- Counter
- Model
- Checking of the existence
- Example : continued

Definition of counter

The firing number of a transition x before the time τ denoted $x(\tau)$.

Hypothesis

- The time is discrete ($au\in\mathbb{Z}$)
- The occurrence of events is synchronized by an external clock
- The events start at $\tau \ge 1, \Rightarrow x(\tau) = 0$ for $\tau \le 0$.
- The sequences are non decreasing

Consequent

For a given transition, the occurrence of two events at $\tau = 3$ and $\tau = 5$ allows obtaining the sequence 0, 0, 0, 1, 1, 2, 2, 2, between $\tau = 0$ and $\tau = 7$. $\Rightarrow x(\tau = 3) = 1$ and $x(\tau = 5) = 2$ and also $x(\tau = 4) = 1$ and $x(\tau = 7) = 2$.

Objective

Notations

- $\tau^{\langle i \rangle}$ is the date of the last observed transition fired at the iteration $\langle i \rangle$.
- *x_{un}* the candidate vector produced by the the phase without time.
- $x_{obs}(\theta)$ (resp., $x_{un}(\theta)$) the sub-vector of the state vector $x(\theta)$ such that the relevant transition belongs to the set TR_{obs} (resp., TR_{un}).

Objective

Notations

- $\tau^{\langle i \rangle}$ is the date of the last observed transition fired at the iteration $\langle i \rangle$.
- *x_{un}* the candidate vector produced by the the phase without time.
- $x_{obs}(\theta)$ (resp., $x_{un}(\theta)$) the sub-vector of the state vector $x(\theta)$ such that the relevant transition belongs to the set TR_{obs} (resp., TR_{un}).

objective

Check the candidate vector x_{un} estimated at the iteration $\langle i \rangle$ by analyzing the existence of an estimated sequence $x(\theta)$ for a timed Petri net; if it exists, we conclude that x_{un} is an explanation vector.

Objective

Notations

- $\tau^{\langle i \rangle}$ is the date of the last observed transition fired at the iteration $\langle i \rangle$.
- *x_{un}* the candidate vector produced by the the phase without time.
- $x_{obs}(\theta)$ (resp., $x_{un}(\theta)$) the sub-vector of the state vector $x(\theta)$ such that the relevant transition belongs to the set TR_{obs} (resp., TR_{un}).

objective

Check the candidate vector x_{un} estimated at the iteration $\langle i \rangle$ by analyzing the existence of an estimated sequence $x(\theta)$ for a timed Petri net; if it exists, we conclude that x_{un} is an explanation vector.

Hypothesis

- We associate to each place $p_l \in P$ a temporization $T_l \in \mathbb{N}$.
- The initial marking is the element I of the vector M^{init} denoted $(M^{init})_I$.
- A token remains in a place p_l at least a time T_l.
- the tokens of the initial marking are available at t = 1:

Patrice Bonhomme (CODIT'17)

Model

Model

$$\sum_{i\in\rho_l^{\bullet}} x_i(\tau) \leq \sum_{i\in {}^{\bullet}\rho_l} x_i(\tau-T_l) + (M^{init})_l$$

Each weight 1 of $x_i(\tau - T_l)$ (resp., 1 de $x_i(\tau)$) is relevant to the weight of an incoming arc of a transition x_i to a place p_l (resp., th outgoing arc from a place p_l to an output transition x_i) which is equal to W_{li}^+ (resp., W_{li}^-).

If the temporization of each place is 0 or 1, we obtain

$$G \cdot \left(egin{array}{c} x(au-1) \ x(au) \end{array}
ight) \leq M^{init}$$

- The order of the matrix $G = [G_1 \ G_0]$ is $(|P| \times 2.|TR|)$.
- The matrices G_1 and G_0 verify :
 - The row *I* of G_0 or G_1 contains the unitary weight of the incoming arcs from places p_I with $(T_I = 0 \text{ or } 1)$, with a negative sign, generally $(-W^+)$.
 - The row *l* of G_0 contains the unitary weight of the outgoing arcs from places p_l , with a positive sign, generally (W^-).

We denote (<u>x_{un}</u>, <u>x_{obs}</u>) the starting point and (<u>x_{un}</u>, <u>x_{obs}</u>) the final point.
We can solve the problem with an arbitrary optimization *c*:

min $c.\mathbf{x}_{un}$ with c > 0 such that $A \cdot \mathbf{x}_{un} < b$ over \mathbb{Z}

If the space is non empty, the minimization of c.x_{un} with c > 0 converges to a finite solution as the space is under-bounded by zero.

This sequence satisfies the untimed problem.

- We denote $(\underline{x_{un}}, \underline{x_{obs}})$ the starting point and $(\overline{x_{un}}, \overline{x_{obs}})$ the final point.
- We can solve the problem with an arbitrary optimization *c* :

min $c.\mathbf{x}_{un}$ with c > 0 such that $A \cdot \mathbf{x}_{un} \leq b$ over \mathbb{Z}

- If the space is non empty, the minimization of c.x_{un} with c > 0 converges to a finite solution as the space is under-bounded by zero.
- This sequence satisfies the untimed problem.

Example : continued

Checking

- Let us check the count vector $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^{+}$.
- As we consider the first iteration in this example, the initial count vector is : $(0 \ 0 \ 0)^{\top}$.
- The problem is to determine a time sequence connection the two vectors.
- The time relations with time t are : -

$$egin{array}{rll} x_1(t)+x_2(t) &\leq 3 \ y_1(t+1) &\leq x_1(t) \ x_3(t+1) &\leq x_2(t) \ y_1(t+1) &\leq x_3(t) \end{array}$$
 The

resolution gives the following table :

t	0	1	2	3	4
У 1	0	0	0	0	1
x 1	0	0	0	1	1
x ₂	0	0	1	1	1
<i>Y</i> ₁ <i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₃	0	0	0	1	1

• The relevant sequence is x_2 then x_1 and x_3 simultaneously.

• \Rightarrow The count vector is an explanation vector.

Patrice Bonhomme (CODIT'17)

Checking

- Let us check the vector $\begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^{\top}$ The resolution gives the following table with time *t*:
- The relevant sequence is : x_2 then x_1, x_2, x_3 simultaneously, and finally x_3 .
- \Rightarrow The count vector is an explanation vector.

Plan

Introductior

- Discrete events systems
- Petri Nets
- General principle of the estimation using Petri Nets

Phase I : for untimed Petri nets

- Principle of the estimation
- Example

Phase II : for timed Petri nets

- Counter
- Model
- Checking of the existence
- Example : continued

Conclusion and perspectives

Conclusion and perspectives

Conclusion

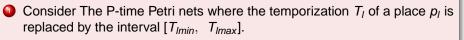
- The general strategy can deal with timed or untimed models.
- The first phase based on a simplification gives the candidate count vectors.
- The introduction of time in Petri nets allows checking the candidate count vector and the verification of its logical aspect in the untimed Petri net : The technique of the second phase is to find an arbitrary sequence.
- More precisely, in the second phase, if the space is non empty then :
 - the candidate vector is an explanation vector
 - A sequence containing the order of the events is generated.
- Note that the firing of the unobserved transitions can be simultaneous.

Conclusion and perspectives

Conclusion

- The general strategy can deal with timed or untimed models.
- The first phase based on a simplification gives the candidate count vectors.
- The introduction of time in Petri nets allows checking the candidate count vector and the verification of its logical aspect in the untimed Petri net : The technique of the second phase is to find an arbitrary sequence.
- More precisely, in the second phase, if the space is non empty then :
 - the candidate vector is an explanation vector
 - A sequence containing the order of the events is generated.
- Note that the firing of the unobserved transitions can be simultaneous.

Perspectives



Note that the P-time Petri net does not follow, obligatory, the minimum traiectory.

Thank you for your attention