Trajectory Tracking Control of a Timed Event Graph with Specifications Defined by a P-time Event Graph

Ph. Declerck

Ph. Declerck A. Guezzi University of Angers- LISA EA4014 http://www.istia.univ-angers.fr/LISA

Posta 09, September 2nd 2009

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Posta 09, September

Objective

- Control of Timed Event Graphs with reference model defined by a P-time Event Graph.
- Criteria : use of strongly-polynomial algorithms (and not only polynomial (pseudo-polynomial) algorithms).
- Trajectory tracking control

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Control of Timed Event Graphs with reference model defined by a P-time Event Graph : admissible trajectory
- Trajectory tracking control on a fixed horizon
- Trajectory tracking control on a sliding horizon
- Conclusion

Posta 09, September 2nd 2009

- 2 Control of Timed Event Graphs with reference model defined by a P-time Event Graph.
- 3 Trajectory tracking control on a fixed horizon
- Trajectory tracking control on a sliding horizon
- 5 Conclusion

- $x_i(k)$ is the date of the k^{th} firing of transition x_i .
- $D = \overline{\mathbb{R}}_{max} = (\mathbb{R} \cup \{-\infty\} \cup \{+\infty\}, \oplus, \otimes)$ with $: \oplus :$ maximization and $\otimes :$ addition
- The Kleene star is defined by : $A^* = \bigoplus_{i=0}^{i} A^i$.

Theorem [bacelli92]

Consider equation $x = A \otimes x \oplus B$ and inequality $x \ge A \otimes x \oplus B$ with A and B in complete dioid D. Then, A^*B is the least solution to these two relations.

[[]bacelli92] F. Baccelli, G. Cohen, G.J. Olsder and J.P. Quadrat, Synchronization and Linearity. An Algebra for Discrete Event Systems, New York, Wiley, 1992.

The Timed Event Graph $\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$ (1) The P-time Event Graph $\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} \varepsilon & A^+ \\ A^- & A^= \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}$ (2) for $k \ge k_s$;

- Control of Timed Event Graphs with reference model defined by a P-time Event Graph.
 - 3 Trajectory tracking control on a fixed horizon
 - Trajectory tracking control on a sliding horizon
 - 5 Conclusion

Ph. Declerck, A. Guezzi

Control of Timed Event Graphs with reference model defined by a P-time Event Graph.

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(3)

Control of Timed Event Graphs with reference model defined by a P-time Event Graph.

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(3)

satisfies the following conditions :

The state trajectory follows the model of the autonomous P-time Event Graph defined by :

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} \varepsilon & A^+ \\ A^- & A^- \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}$$
(4)

for $k \ge k_s$;

Control of Timed Event Graphs with reference model defined by a P-time Event Graph.

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(3)

satisfies the following conditions :

The state trajectory follows the model of the autonomous P-time Event Graph defined by :

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} \varepsilon & A^+ \\ A^- & A^- \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}$$
(4)

for $k \ge k_s$;

2 The first state vector of the state trajectory x(k) for $k \ge k_s$ is finite and is known vector $\underline{x}(k_s)$.

Ph. Declerck, A. Guezzi

Characterization of an admissible trajectory

$$X = \begin{pmatrix} x(k_s)^t & x(k_s+1)^t & x(k_s+2)^t & \cdots & x(k_f-1)^t & x(k_f)^t \end{pmatrix}^t \text{ and}$$
$$D_h = \begin{pmatrix} \varepsilon & A^+ & \varepsilon & \cdots & \varepsilon & \varepsilon & \varepsilon \\ A \oplus A^- & A^= & A^+ & \cdots & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & A \oplus A^- & A^= & \cdots & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \cdots & \cdots \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & A^= & A^+ & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & A \oplus A^- & A^= & A^+ \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & \varepsilon & A \oplus A^- & A^= \end{pmatrix}$$

Matrix D_h presents an original block tridiagonal structure.

Posta 09, Septembe

Theorem

The state trajectories of a Timed Event Graph (3) starting from $\underline{x}(k_s)$ and following the specifications defined by a P-time Event Graph (4) on horizon $[k_s, k_f]$ satisfy the following system

$$\begin{cases}
X \ge D_h \otimes X \\
x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k) \le A \otimes x(k-1) \oplus B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) = \underline{x}(k_s)
\end{cases}$$
(5)

Control of Timed Event Graphs with reference model defined by a P-time Event Graph.

Trajectory tracking control on a fixed horizon

Trajectory tracking control on a sliding horizon

5 Conclusion

Posta 09. September

Trajectory tracking control on a fixed horizon (problem 1)

Objective

The objective is to calculate the greatest control u on horizon $[k_s + 1, k_f]$ such that its application to the Timed Event Graph defined by :

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(6)

Control on a fixed horizon (problem 1)

satisfies the following conditions :

Posta 09, September

Control on a fixed horizon (problem 1)

satisfies the following conditions :

Condition (a) : y ≤ <u>z</u> knowing the trajectory of the desired output <u>z</u> on a fixed horizon [k_s+1, k_f] with h = k_f - k_s ∈ N;

Control on a fixed horizon (problem 1)

satisfies the following conditions :

- Condition (a) : y ≤ z knowing the trajectory of the desired output z on a fixed horizon [k_s + 1, k_f] with h = k_f − k_s ∈ N;
- Condition (b) : The state trajectory follows the model of the autonomous P-time Event Graph defined by

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} \varepsilon & A^+ \\ A^- & A^- \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}.$$
 (7)

for $k \ge k_s$;

satisfies the following conditions :

- Condition (a) : y ≤ z knowing the trajectory of the desired output z on a fixed horizon [k_s + 1, k_f] with h = k_f − k_s ∈ N;
- Condition (b) : The state trajectory follows the model of the autonomous P-time Event Graph defined by

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} \varepsilon & A^+ \\ A^- & A^- \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}.$$
 (7)

for $k \ge k_s$;

Sondition (c) :The first state vector of the state trajectory x(k) for k ≥ ks is finite and is known vector x(ks).

Theorem

The greatest state and control trajectory of a Timed Event Graph (3) starting from $\underline{x}(k_s)$ and following specifications defined by a P-time EG (4) on horizon $[k_s, k_f]$ is the greatest solution of the following fixed point inequality system

$$\begin{cases}
X \leq D_h \setminus X \\
u(k) \leq B \setminus x(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k) \leq [A \otimes x(k-1) \oplus B \otimes u(k)] \wedge C \setminus \underline{z}(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) \leq \underline{x}(k_s)
\end{cases}$$
(8)

with condition $\underline{x}(k_s) \leq x^+(k_s)$.

- 2 Control of Timed Event Graphs with reference model defined by a P-time Event Graph.
- Trajectory tracking control on a fixed horizon
- Trajectory tracking control on a sliding horizon

5 Conclusion

Ph. Declerck, A. Guezzi

- The date of transition firing of event k : at step $k = k_s$, \underline{u}_{k_s} and \underline{x}_{k_s} are known ;
- A future control sequence u(k) for k ∈ [k_s + 1, k_s + h] is determined such that this control is the optimal solution of the problem;
- The first element of the optimal sequence (here *u*(*k*_s + 1)) is applied to the process ;
- At the next number of event $k_s + 1$, the horizon is shifted : at step $k_s + 1$. The problem is updated with new information \underline{u}_{k_s+1} and $\underline{x}_{k_{s+1}}$ and a new optimization is performed.

- The date of transition firing of event k : at step $k = k_s$, \underline{u}_{k_s} and \underline{x}_{k_s} are known ;
- A future control sequence u(k) for k ∈ [k_s + 1, k_s + h] is determined such that this control is the optimal solution of the problem;
- The first element of the optimal sequence (here *u*(*k*_s + 1)) is applied to the process ;
- At the next number of event $k_s + 1$, the horizon is shifted : at step $k_s + 1$. The problem is updated with new information \underline{u}_{k_s+1} and $\underline{x}_{k_{s+1}}$ and a new optimization is performed.

- Condition <u>x</u>_{ks} = x⁺(ks) is satisfied ⇒ Control problem 1 has a solution for data <u>z</u> and <u>x</u>_{ks}.
- Condition x_{ks} ≠ x⁺(ks) ⇒ Control problem 1 has no solution for data <u>z</u> and <u>xks</u>.

Solution : modification of the just in time criteria of **Condition (a)**

The problem is to find the earliest desired output denoted z^- such that

- there is control such that its application to the Timed Event Graph generates a state trajectory which starts from the current state \underline{x}_{k_s} (Condition (c))
- this state trajectory follows the additional specifications defined by the P-time Event Graph on horizon $[k_s + 1, k_s + h]$ (Condition (b)).

The optimal approach of the greatest trajectory can be applied to modified desired output trajectory $z_m(k) = \underline{z}(k) \oplus \overline{z}(k)$ for $k \in [k_s + 1, k_s + h]$.

< □ > < □ > < □ > < □ > < □ > < □

Prediction of the earliest desired output z^-

An arbitrary state trajectory obeying the specifications is now described with a fixed point form. From system (5) which describe an admissible trajectory, we deduce the following system

$$\begin{pmatrix}
X \ge D_h \otimes X \\
x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) = \underline{x}(k_s)
\end{cases}$$
(9)

Property

Each trajectory of system (5) which describe an admissible trajectory satisfies (9).

Prediction of the earliest desired output z^-

An arbitrary state trajectory obeying the specifications is now described with a fixed point form. From system (5) which describe an admissible trajectory, we deduce the following system

$$\begin{pmatrix}
X \ge D_h \otimes X \\
x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) = \underline{x}(k_s)
\end{cases}$$
(9)

Property

Each trajectory of system (5) which describe an admissible trajectory satisfies (9).

The resolution makes the prediction of the earliest state trajectory $x^-(k)$ for $k \in [k_s + 1, k_s + h]$ and so, of the earliest output trajectory $z^-(k) = C \otimes x^-(k)$.

Assumption : no row of *B* is null.

Property

A trajectory of (9) *x* satisfies (5) if this state trajectory *x* also satisfies condition $B \otimes (B \setminus x(k)) = x(k)$ for $k \in [k_s + 1, k_f]$.

Therefore, condition on state trajectory $B \otimes (B \setminus x(k)) = x(k)$ leads to a control satisfying $x(k) = B \otimes u(k)$ (and not only $x(k) \ge B \otimes u(k)$). The relation expressing the earliest firing rule $x(k) \le A \otimes x(k-1) \oplus B \otimes u(k)$ can be disregarded in the determination of the trajectory.

Structure 1

Each column of *B* contains a non-null element at the most. \Rightarrow There is a control such that $(B \otimes u(k))_i = x_i(k)$ for some *i* and condition $B \otimes (B \setminus x(k)) = x(k)$ is partially satisfied.

Specific structure 1 : structure 2.

B = I (more generally, a diagonal matrix BD) after a possible reorganization of the rows and the columns.

This assumption also corresponds to the hypothesis of "fully controlled" transitions : the firing of each transition can be delayed in a control way and all the transitions are said to be controllable.

 \Rightarrow The control law is obviously u(k) = x(k) (more generally, $BD \otimes u(k) = x(k)$)

Two classes of internal transitions :

- Transitions whose dates obey the additional constraints. Set T_c is the set of transitions x_i such that there is a non-null coefficient A^-_{ij} or A^+_{ij} or A^+_{ij} . Recall that $x_i(k+1) \ge A^-_{ij} \otimes x_j(k)$, $x_i(k+1) \ge A^-_{ij} \otimes x_j(k+1)$ and $x_i(k) \ge A^+_{ij} \otimes x_j(k+1)$, for $k \ge k_s$.
- The other ones : T_{nc} .

Using the previously calculated state trajectory, the application of control $u(k) = B \setminus x(k)$ must lead to the exact firing dates of the first class but can minimize the firing dates of the second class.

After reorganization of the rows and the columns, matrix *B* is as follows : vector x_c (respectively x_{nc}) expresses the firing dates of transitions $x_i \in T_c$ (respectively $x_i \in T_{nc}$); $\begin{pmatrix} x_c(k) \\ x_{nc}(k) \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \otimes \begin{pmatrix} u_1(k) \\ u_2(k) \end{pmatrix}$ where B_{11} follows structure 2 and $B_{21} = \varepsilon$. There is no condition on B_{12} and B_{22} . So, the control can satisfy $x_c(k) = B_{11} \otimes u_1(k)$ with $x_c(k) \ge B_{12} \otimes u_2(k)$ and $x_{nc}(k) \ge B_{22} \otimes u_2(k)$.

- Control of Timed Event Graphs with reference model defined by a P-time Event Graph.
- 3 Trajectory tracking control on a fixed horizon
- Trajectory tracking control on a sliding horizon

5 Conclusion

Posta 09, September

Conclusion

- The approach is completely defined in (max, +) algebra.
- Introduction of a special block tridiagonal matrix.
- A **weakly-polynomial** algorithm (pseudo-polynomial algorithm of Mc Millan and Dill) or almost **strongly-polynomial** (E. Walkup and G. Borriello, Y. Cheng and D-Z Zheng...) gives the control and proposes an initial condition which must satisfy a condition of coherence of the state trajectory.
- The trajectory tracking control on a sliding horizon (for specific structures of matrix *B*), is given by **strongly-polynomial algorithms** : approximately $O(n^2)$:
 - The calculation time is independant on the magnitude of the coefficients (contrary to the best algorithms of LP (Karmarka : $O(n^{3.5}L)$, Gonzaga : $O(n^3L)$, ... where *L* is the number of bits)).
 - Its does not need to start from an admissible solution (its determination is not an obvious problem in LP).
- The problem of causality is discussed.