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Objective
Control of Timed Event Graphs with reference model defined by a P-time
Event Graph.

Criteria : use of strongly-polynomial algorithms (and not only polynomial
(pseudo-polynomial) algorithms).

Trajectory tracking control
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Models

xi(k) is the date of the kth firing of transition xi.
D = Rmax = (R∪{−∞}∪{+∞},⊕,⊗)
with : ⊕ : maximization and ⊗ : addition

The Kleene star is defined by : A∗ =
+∞⊕
i=0

Ai.

Theorem [bacelli92]
Consider equation x = A⊗ x⊕B and inequality x≥ A⊗ x⊕B with A and B in
complete dioid D. Then, A∗B is the least solution to these two relations.

——————————————
[bacelli92] F. Baccelli, G. Cohen, G.J. Olsder and J.P. Quadrat, Synchronization and Linearity. An Algebra for Discrete Event Systems, New

York, Wiley, 1992.
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Models

The Timed Event Graph{
x(k +1)=A⊗ x(k)⊕B⊗u(k +1)

y(k) = C⊗ x(k)
(1)

The P-time Event Graph(
x(k)
x(k +1)

)
≥
(

ε A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
(2)

for k ≥ ks ;
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Control of Timed Event Graphs with reference model defined
by a P-time Event Graph.

Objective
The objective is to calculate an admissible trajectory (control u and state x ) on
horizon [ks +1,k f ] such that the Timed Event Graph defined by{

x(k +1)=A⊗ x(k)⊕B⊗u(k +1)
y(k) = C⊗ x(k)

(3)

satisfies the following conditions :
1 The state trajectory follows the model of the autonomous P-time Event

Graph defined by :(
x(k)
x(k +1)

)
≥
(

ε A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
(4)

for k ≥ ks ;
2 The first state vector of the state trajectory x(k) for k ≥ ks is finite and is

known vector x(ks).
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Characterization of an admissible trajectory

X =
(

x(ks)t x(ks +1)t x(ks +2)t · · · x(k f −1)t x(k f )t )t
and

Dh =



ε A+
ε · · · ε ε ε

A⊕A− A= A+ · · · ε ε ε

ε A⊕A− A= · · · ε ε ε

· · · · · · · · · · · · · · · · · · · · ·
ε ε ε · · · A= A+

ε

ε ε ε · · · A⊕A− A= A+

ε ε ε · · · ε A⊕A− A=


Matrix Dh presents an original block tridiagonal structure.

Ph. Declerck, A. Guezzi Trajectory Tracking Control of a Timed Event Graph
Posta 09, September 2nd 2009 9

/ 25



Characterization of an admissible trajectory

Theorem
The state trajectories of a Timed Event Graph (3) starting from x(ks) and
following the specifications defined by a P-time Event Graph (4) on horizon
[ks,k f ] satisfy the following system


X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(k)≤ A⊗ x(k−1)⊕B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(5)

Ph. Declerck, A. Guezzi Trajectory Tracking Control of a Timed Event Graph
Posta 09, September 2nd 2009 10

/ 25



Plan

1 Models

2 Control of Timed Event Graphs with reference model defined by a P-time
Event Graph.

3 Trajectory tracking control on a fixed horizon

4 Trajectory tracking control on a sliding horizon

5 Conclusion

Ph. Declerck, A. Guezzi Trajectory Tracking Control of a Timed Event Graph
Posta 09, September 2nd 2009 11

/ 25



Trajectory tracking control on a fixed horizon (problem 1)

Objective

The objective is to calculate the greatest control u on horizon [ks +1,k f ] such
that its application to the Timed Event Graph defined by :{

x(k +1) = A⊗ x(k)⊕B⊗u(k +1)
y(k) = C⊗ x(k)

(6)
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Control on a fixed horizon (problem 1)

satisfies the following conditions :

1 Condition (a) : y≤ z knowing the trajectory of the desired output z on a
fixed horizon [ks +1,k f ] with h = k f − ks ∈ N ;

2 Condition (b) : The state trajectory follows the model of the autonomous
P-time Event Graph defined by(

x(k)
x(k +1)

)
≥
(

ε A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
. (7)

for k ≥ ks ;
3 Condition (c) :The first state vector of the state trajectory x(k) for k ≥ ks

is finite and is known vector x(ks).
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Greatest trajectory

Theorem

The greatest state and control trajectory of a Timed Event Graph (3) starting
from x(ks) and following specifications defined by a P-time EG (4) on horizon
[ks,k f ] is the greatest solution of the following fixed point inequality system

X ≤ Dh\X
u(k)≤ B\x(k) for k ∈ [ks +1,k f ]
x(k)≤ [A⊗ x(k−1)⊕B⊗u(k)]∧C\z(k) for k ∈ [ks +1,k f ]
x(ks)≤ x(ks)

(8)

with condition x(ks)≤ x+(ks).
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Principle of Predictive control

The date of transition firing of event k : at step k = ks, uks
and xks

are
known ;

A future control sequence u(k) for k ∈ [ks +1,ks +h] is determined such
that this control is the optimal solution of the problem ;

The first element of the optimal sequence (here u(ks +1)) is applied to the
process ;

At the next number of event ks +1, the horizon is shifted : at step
ks +1.The problem is updated with new information uks+1 and xks+1

and a
new optimization is performed.

Ph. Declerck, A. Guezzi Trajectory Tracking Control of a Timed Event Graph
Posta 09, September 2nd 2009 16

/ 25



Principle of Predictive control

The date of transition firing of event k : at step k = ks, uks
and xks

are
known ;

A future control sequence u(k) for k ∈ [ks +1,ks +h] is determined such
that this control is the optimal solution of the problem ;

The first element of the optimal sequence (here u(ks +1)) is applied to the
process ;

At the next number of event ks +1, the horizon is shifted : at step
ks +1.The problem is updated with new information uks+1 and xks+1

and a
new optimization is performed.

Ph. Declerck, A. Guezzi Trajectory Tracking Control of a Timed Event Graph
Posta 09, September 2nd 2009 16

/ 25



Problem 2

Condition xks
= x+(ks) is satisfied⇒ Control problem 1 has a solution for

data z and xks
.

Condition xks 6= x+(ks)⇒ Control problem 1 has no solution for data z
and xks

.
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Solution : modification of the just in time criteria of
Condition (a)

The problem is to find the earliest desired output denoted z− such that

there is control such that its application to the Timed Event Graph
generates a state trajectory which starts from the current state xks

(Condition (c))

this state trajectory follows the additional specifications defined by the
P-time Event Graph on horizon [ks +1,ks +h] (Condition (b)).

The optimal approach of the greatest trajectory can be applied to modified
desired output trajectory zm(k) = z(k)⊕ z−(k) for k ∈ [ks +1,ks +h].
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Prediction of the earliest desired output z−

An arbitrary state trajectory obeying the specifications is now described with a
fixed point form. From system (5) which describe an admissible trajectory, we
deduce the following system

X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(9)

Property
Each trajectory of system (5) which describe an admissible trajectory satisfies
(9).

The resolution makes the prediction of the earliest state trajectory x−(k) for
k ∈ [ks +1,ks +h] and so, of the earliest output trajectory z−(k) = C⊗ x−(k).
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Earliest firing rule

Assumption : no row of B is null.

Property
A trajectory of (9) x satisfies (5) if this state trajectory x also satisfies condition
B⊗ (B\x(k)) = x(k) for k ∈ [ks +1,k f ].

Therefore, condition on state trajectory B⊗ (B\x(k)) = x(k) leads to a control
satisfying x(k) = B⊗u(k) (and not only x(k)≥ B⊗u(k) ). The relation
expressing the earliest firing rule x(k)≤ A⊗ x(k−1)⊕B⊗u(k) can be
disregarded in the determination of the trajectory.
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Structure 1

Each column of B contains a non-null element at the most.
⇒ There is a control such that (B⊗u(k))i = xi(k) for some i and condition
B⊗ (B\x(k)) = x(k) is partially satisfied.

Specific structure 1 : structure 2.
B = I (more generally, a diagonal matrix BD) after a possible reorganization of
the rows and the columns.
This assumption also corresponds to the hypothesis of ”fully controlled”
transitions : the firing of each transition can be delayed in a control way and all
the transitions are said to be controllable.
⇒ The control law is obviously u(k) = x(k) (more generally, BD⊗u(k) = x(k))
.
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Generalization of structure

Two classes of internal transitions :

Transitions whose dates obey the additional constraints. Set Tc is the set
of transitions xi such that there is a non-null coefficient A−i j or A=

i j or A+
i j .

Recall that xi(k +1)≥ A−i j ⊗ x j(k) , xi(k +1)≥ A=
i j ⊗ x j(k +1) and

xi(k)≥ A+
i j ⊗ x j(k +1) , for k ≥ ks.

The other ones : Tnc.

Using the previously calculated state trajectory, the application of control
u(k) = B\x(k) must lead to the exact firing dates of the first class but can
minimize the firing dates of the second class.
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Generalization of structure

After reorganization of the rows and the columns, matrix B is as follows : vector
xc (respectively xnc) expresses the firing dates of transitions xi ∈ Tc

(respectively xi ∈ Tnc) ;(
xc(k)

xnc(k)

)
=
(

B11 B12
B21 B22

)
⊗
(

u1(k)
u2(k)

)
where B11 follows structure 2 and

B21 = ε . There is no condition on B12 and B22.
So, the control can satisfy xc(k) = B11⊗u1(k) with xc(k)≥ B12⊗u2(k) and
xnc(k)≥ B22⊗u2(k) .
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Conclusion

The approach is completely defined in (max, +) algebra.
Introduction of a special block tridiagonal matrix.
A weakly-polynomial algorithm (pseudo-polynomial algorithm of Mc
Millan and Dill ) or almost strongly-polynomial (E. Walkup and G.
Borriello, Y. Cheng and D-Z Zheng... ) gives the control and proposes an
initial condition which must satisfy a condition of coherence of the state
trajectory.
The trajectory tracking control on a sliding horizon (for specific structures
of matrix B), is given by strongly-polynomial algorithms : approximately
O(n2) :

1 The calculation time is independant on the magnitude of the coefficients
(contrary to the best algorithms of LP ( Karmarka :O(n3.5L),
Gonzaga :O(n3L), ... where L is the number of bits) ).

2 Its does not need to start from an admissible solution (its determination is
not an obvious problem in LP).

The problem of causality is discussed.
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