Trajectory Tracking Control of a Timed Event Graph with Specifications Defined by a P-time Event Graph: On-line control and Off-line preparation.

Ph. Declerck

University of Angers- LISA EA4014 http://www.istia.univ-angers.fr/ declerck/

Wodes 2010, August 30–September 1

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Overview of the paper
- Technical part of the approach
- Conclusion

イロト イポト イヨト イヨト

Topic

- Control of Timed Event Graphs
- Trajectory tracking control on a sliding horizon
- Reference model defined by a P-time Event Graph.

イロト イポト イヨト イヨト

Topic

- Control of Timed Event Graphs
- Trajectory tracking control on a sliding horizon
- Reference model defined by a P-time Event Graph.

Objective of the paper

- Model predictive control is an on-line approach which allows flexibility and the consideration of different classes of systems
- But it needs efficient algorithms : Otherwise, the approach is limited to small systems and small horizons.
- The control calculation must obey the calculated dates and not postpone the application of the control.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Previous work based on Linear Programming (Bart De Schutter, Ton van den Boom,...)

The best **generic** algorithms of Linear Programming are **weakly** polynomial algorithms :

- Karmarkar : $O(n^{3.5}L)$, Gonzaga : $O(n^3L)$, ... where L is the number of bits.
- Simplex : The complexity is exponential in the worst case even if this algorithm is relatively good in the average.
- less efficient than the algorithms of graph theory
- limitation of the sizes of the horizons and the systems.

イロト 人間 とくほ とくほとう

Previous work based on (max, +) algebra (R. D. Katz)

- Modification of the initial Timed Event Graph
- Calculation of the maximal set of the initial states
- Based on the algorithm of P. Butkovic and G. Hegedus

The complexity is doubly exponential (paper IEEE-TAC) \Rightarrow small systems even if the approach needs an horizon [k, k+1] only.

Crucial point

The structure of the matrices present specific characteristics :

- the matrices are sparse and contains many rows with two non-null entries (1 and -1) at the most.
- The matrices are close to the ingoing/outgoing incidence matrices of the fundamental marking relation.
- The goal is to make the most of these specific structures of the systems.

- Use of the efficient algorithms of graph theory : **strongly** polynomial algorithms (Kleene star, matrix residuation,...)
- Calculation of a unique solution and not a complete set of solutions : use of lattice.

イロト イポト イヨト イヨト

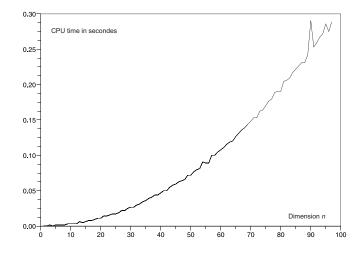
The predictive control is made on a sliding horizon : the horizon is slightly moved back at each step and the control is calculated.

The idea is to **avoid the repetition of the same calculations** at each step which can be costly in terms of time. Before the application of the on-line control, a preparation can contain these calculations allowing a reduction of the complexity of the on-line procedure.

The initial on-line procedure is divided into two steps :

- Off-line preparation : calculation of a large scale (max, +) matrix
- On-line control

Conclusion : Numerical results



Conclusion : Numerical results

- Consideration of important systems (until 97 transitions) for long horizons (h =50).
- The initial CPU time (approximately 2000 secondes or 33 minutes) is replaced by a new on-line procedure which only needs 0.28 secondes : the ratio is 1 to 7000.

Models

- Control of Timed Event Graphs with reference model defined by a P-time Event Graph : admissible trajectory
- Trajectory tracking control on a fixed horizon
- Trajectory tracking control on a sliding horizon

Preliminary remarks

• $x_i(k)$ is the date of the k^{th} firing of transition x_i .

•
$$\overline{\mathbb{R}}_{max} = (\mathbb{R} \cup \{-\infty\} \cup \{+\infty\}, \oplus, \otimes)$$

with : \oplus : maximization and \otimes : addition

• The Kleene star is defined by : $A^* = \bigoplus_{i=0}^{i} A^i$.

Theorem [bacelli92]

Consider equation $x = A \otimes x \oplus B$ and inequality $x \ge A \otimes x \oplus B$ with A and B in complete dioid D. Then, $A^* \otimes B$ is the least solution to these two relations.

Control of Timed Event Graphs with reference model defined by a P-time Event Graph (problem 1).

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(1)

Control of Timed Event Graphs with reference model defined by a P-time Event Graph (problem 1).

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(1)

satisfies the following conditions :

The state trajectory follows the model of the autonomous P-time Event Graph defined by :

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} A^{=} & A^{+} \\ A^{-} & A^{=} \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}$$
(2)

for $k \ge k_s$;

Control of Timed Event Graphs with reference model defined by a P-time Event Graph (problem 1).

Objective

The objective is to calculate an admissible trajectory (control u and state x) on horizon $[k_s + 1, k_f]$ such that the Timed Event Graph defined by

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(1)

satisfies the following conditions :

The state trajectory follows the model of the autonomous P-time Event Graph defined by :

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} A^{=} & A^{+} \\ A^{-} & A^{=} \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}$$
(2)

for $k \ge k_s$;

2 The first state vector of the state trajectory x(k) for $k \ge k_s$ is finite and is the known vector $\underline{x}(k_s)$.

Ph. Declerck

Objective

The objective is to calculate the greatest control u on horizon $[k_s + 1, k_f]$ such that its application to the Timed Event Graph defined by :

$$\begin{cases} x(k+1) = A \otimes x(k) \oplus B \otimes u(k+1) \\ y(k) = C \otimes x(k) \end{cases}$$
(3)

A D > A B > A

satisfies the following conditions :

イロト イポト イヨト イヨト

satisfies the following conditions :

Condition (a) : y ≤ <u>z</u> knowing the trajectory of the desired output <u>z</u> on a fixed horizon [k_s+1, k_f] with h = k_f − k_s ∈ N;

イロン 不良 とくほど 不良 とう

satisfies the following conditions :

- Condition (a) : y ≤ z knowing the trajectory of the desired output z on a fixed horizon [k_s + 1, k_f] with h = k_f − k_s ∈ N;
- Condition (b) : The state trajectory follows the model of the autonomous P-time Event Graph defined by

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} A^{=} & A^{+} \\ A^{-} & A^{=} \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}.$$
 (4)

for $k \ge k_s$;

・ロト ・ ア・ ・ ア・ ・ ア・ ア

satisfies the following conditions :

- Condition (a) : y ≤ z knowing the trajectory of the desired output z on a fixed horizon [k_s + 1, k_f] with h = k_f − k_s ∈ N;
- Condition (b) : The state trajectory follows the model of the autonomous P-time Event Graph defined by

$$\begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix} \ge \begin{pmatrix} A^{=} & A^{+} \\ A^{-} & A^{=} \end{pmatrix} \otimes \begin{pmatrix} x(k) \\ x(k+1) \end{pmatrix}.$$
 (4)

for $k \ge k_s$;

Sondition (c) :The first state vector of the state trajectory x(k) for k ≥ ks is finite and is the current known vector x(ks).

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

Notations : X and D_h .

$$X = \begin{pmatrix} x(k_s)^t & x(k_s+1)^t & x(k_s+2)^t & \cdots & x(k_f-1)^t & x(k_f)^t \end{pmatrix}^t \text{ and}$$
$$D_h = \begin{pmatrix} A^= & A^+ & \varepsilon & \cdots & \varepsilon & \varepsilon & \varepsilon \\ A \oplus A^- & A^= & A^+ & \cdots & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & A \oplus A^- & A^= & \cdots & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ \cdots & \cdots \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & A^= & A^+ & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & A \oplus A^- & A^= & A^+ \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \cdots & \varepsilon & A \oplus A^- & A^= \end{pmatrix}$$

Matrix D_h presents an original block tridiagonal structure.

ヘロト 人間 とくほ とくほと

Theorem

The greatest state and control trajectory of a Timed Event Graph (1) starting from $\underline{x}(k_s)$ and following specifications defined by a P-time EG (2) on horizon $[k_s, k_f]$ is the greatest solution of the following fixed point inequality system

$$\begin{cases} X \leq D_h \setminus X \\ u(k) \leq B \setminus x(k) \text{ for } k \in [k_s + 1, k_f] \\ x(k) \leq [A \otimes x(k-1) \oplus B \otimes u(k)] \wedge C \setminus \underline{z}(k) \text{ for } k \in [k_s + 1, k_f] \\ x(k_s) \leq \underline{x}(k_s) \end{cases}$$
(5)

with condition $\underline{x}(k_s) \leq x^+(k_s)$.

- (min, max, +) fixed point problem \rightarrow Algorithms of Mc Millan and Dill, Walkup and Boriello, Cheng and Zheng, ...

イロト イポト イヨト イヨト

Principle of Predictive control (problem 3)

- The date of transition firing of event k : at step k = k_s, <u>u</u>_{k_s} and <u>x</u>_{k_s} are known;
- A future control sequence u(k) for k ∈ [k_s + 1, k_s + h] is determined such that this control is the optimal solution of the problem;
- The first element of the optimal sequence (here *u*(*k*_s + 1)) is applied to the process ;
- At the next number of event $k_s + 1$, the horizon is shifted : at step $k_s + 1$. The problem is updated with new information \underline{u}_{k_s+1} and $\underline{x}_{k_{s+1}}$ and a new optimization is performed.

イロト イヨト イヨト イヨト

Principle of Predictive control (problem 3)

- The date of transition firing of event k : at step k = k_s, <u>u</u>_{k_s} and <u>x</u>_{k_s} are known;
- A future control sequence u(k) for k ∈ [k_s + 1, k_s + h] is determined such that this control is the optimal solution of the problem;
- The first element of the optimal sequence (here *u*(*k*_s + 1)) is applied to the process ;
- At the next number of event $k_s + 1$, the horizon is shifted : at step $k_s + 1$. The problem is updated with new information \underline{u}_{k_s+1} and $\underline{x}_{k_{s+1}}$ and a new optimization is performed.

イロト イヨト イヨト イヨト

- Condition <u>x</u>_{ks} = x⁺(ks) is satisfied ⇒ Control problem has a solution for data <u>z</u> and <u>x</u>_{ks}.
- Condition $x_{k_s} \neq x^+(k_s) \Rightarrow$ Control problem has no solution for data \underline{z} and \underline{x}_{k_s} .

イロト イポト イヨト イヨト

Solution : modification of the just in time criteria of **Condition (a)**

The problem is to find the earliest desired output denoted z^- such that

- there is control such that its application to the Timed Event Graph generates a state trajectory which starts from the current state \underline{x}_{k_s} (Condition (c))
- this state trajectory follows the additional specifications defined by the P-time Event Graph on horizon $[k_s + 1, k_s + h]$ (**Condition (b)**).

The optimal approach of the greatest trajectory can be applied to the modified desired output trajectory $z_m(k) = \underline{z}(k) \oplus \overline{z}(k)$ for $k \in [k_s + 1, k_s + h]$.

Theorem

The state trajectories of a Timed Event Graph (1) starting from $\underline{x}(k_s)$ and following the specifications defined by a P-time Event Graph (2) on horizon $[k_s, k_f]$ satisfy the following system

$$\begin{cases}
X \ge D_h \otimes X \\
x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k) \le A \otimes x(k-1) \oplus B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) = \underline{x}(k_s)
\end{cases}$$
(6)

Remark. The space solution is not an inf-semilattice.

A D F A A F F A

Prediction of the earliest desired output z^-

An arbitrary state trajectory obeying the specifications is now described with a fixed point form. From system (6) which describe an admissible trajectory, we deduce the following system

$$\begin{cases} X \ge D_h \otimes X \\ x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\ x(k_s) = \underline{x}(k_s) \end{cases}$$
(7)

Property

Each trajectory of system (6) which describe an admissible trajectory satisfies (7).

A D F A B F A B F A

Prediction of the earliest desired output z^-

An arbitrary state trajectory obeying the specifications is now described with a fixed point form. From system (6) which describe an admissible trajectory, we deduce the following system

$$\begin{pmatrix}
X \ge D_h \otimes X \\
x(k) \ge B \otimes u(k) \text{ for } k \in [k_s + 1, k_f] \\
x(k_s) = \underline{x}(k_s)
\end{cases}$$
(7)

Property

Each trajectory of system (6) which describe an admissible trajectory satisfies (7).

The resolution makes the prediction of the earliest state trajectory $x^-(k)$ for $k \in [k_s + 1, k_s + h]$ and so, of the earliest output trajectory $z^-(k) = C \otimes x^-(k)$.

・ロン ・ ア・ ・ ア・ ・ ア・

Assumption : no row of B is null.

Property

A trajectory of (7) *x* satisfies (6) if this state trajectory *x* also satisfies condition $B \otimes (B \setminus x(k)) = x(k)$ for $k \in [k_s + 1, k_f]$.

Therefore, condition on state trajectory $B \otimes (B \setminus x(k)) = x(k)$ leads to a control satisfying $x(k) = B \otimes u(k)$ (and not only $x(k) \ge B \otimes u(k)$). The relation expressing the earliest firing rule $x(k) \le A \otimes x(k-1) \oplus B \otimes u(k)$ can be disregarded in the determination of the trajectory.

イロン イボン イヨン イヨン 三日

Conclusion

- The approach is completely defined in (max, +) algebra.
- The trajectory tracking control on a sliding horizon (for specific structures of matrix *B*), is given by **strongly-polynomial algorithms** : approximately $O(n^2)$:
 - The calculation time is independant on the magnitude of the coefficients (contrary to the best algorithms of LP (Karmarka : $O(n^{3.5}L)$, Gonzaga : $O(n^{3}L)$, ... where L is the number of bits)).
 - Its does not need to start from an admissible solution (its determination is not an obvious problem in LP).
- An important part of the calculations is made off-line in a preparation. A consequence is that the approach can be applied to long horizons (h =50) and important systems (until 97 transitions) with a reduced CPU time.
- The initial CPU time (approximately 2000 secondes or 33 minutes) is replaced by a new on-line procedure which only needs 0.28 secondes : the ratio is 1 to 7000.

Perspectives

 Improvement of the off-line preparation : Kleene star of a tri-diagonal matrix.

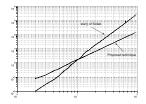


FIGURE: Off-line preparation : Kleene star of a tri-diagonal matrix.

- Analysis of the condition *x*(*k*) = *B* ⊗ *u*(*k*) and Generation of a corrector such that this condition is always satisfied.
- Generation of a causal control.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A