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Topic

Control of Timed Event Graphs

Trajectory tracking control on a sliding horizon

Reference model defined by a P-time Event Graph.

Objective of the paper
Model predictive control is an on-line approach which allows flexibility and
the consideration of different classes of systems

But it needs efficient algorithms : Otherwise, the approach is limited to
small systems and small horizons.

The control calculation must obey the calculated dates and not
postpone the application of the control.
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Previous work based on Linear Programming (Bart De
Schutter, Ton van den Boom,...)

The best generic algorithms of Linear Programming are weakly polynomial
algorithms :

Karmarkar :O(n3.5L), Gonzaga : O(n3L), ... where L is the number of bits.

Simplex : The complexity is exponential in the worst case even if this
algorithm is relatively good in the average.

– less efficient than the algorithms of graph theory
– limitation of the sizes of the horizons and the systems.
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Previous work based on (max, +) algebra (R. D. Katz)

Modification of the initial Timed Event Graph

Calculation of the maximal set of the initial states

Based on the algorithm of P. Butkovic and G. Hegedus

The complexity is doubly exponential (paper IEEE-TAC)⇒ small systems even
if the approach needs an horizon [k, k+1] only.
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Crucial point
The structure of the matrices present specific characteristics :

the matrices are sparse and contains many rows with two non-null entries
(1 and -1) at the most.

The matrices are close to the ingoing/outgoing incidence matrices of the
fundamental marking relation.

– The goal is to make the most of these specific structures of the systems.
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First answer : the (max, +) algebra with lattice

Use of the efficient algorithms of graph theory : strongly polynomial
algorithms (Kleene star, matrix residuation,...)

Calculation of a unique solution and not a complete set of solutions : use
of lattice.
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Second answer

The predictive control is made on a sliding horizon : the horizon is slightly
moved back at each step and the control is calculated.
The idea is to avoid the repetition of the same calculations at each step
which can be costly in terms of time. Before the application of the on-line
control, a preparation can contain these calculations allowing a reduction of the
complexity of the on-line procedure.
The initial on-line procedure is divided into two steps :

Off-line preparation : calculation of a large scale (max, +) matrix

On-line control
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Conclusion : Numerical results

FIGURE: On-line control : CPU times of one step for h=50 and randomly generated
matrices until n = 97 transitions. The CPU times limited to 0.3 secondes only shows
the efficiency of the procedure.
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Conclusion : Numerical results
Consideration of important systems (until 97 transitions) for long horizons
(h =50).

The initial CPU time (approximately 2000 secondes or 33 minutes) is
replaced by a new on-line procedure which only needs 0.28 secondes :
the ratio is 1 to 7000.
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Technical part

1 Models
2 Control of Timed Event Graphs with reference model defined by a P-time

Event Graph : admissible trajectory
3 Trajectory tracking control on a fixed horizon
4 Trajectory tracking control on a sliding horizon
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Preliminary remarks

xi(k) is the date of the kth firing of transition xi.
Rmax = (R∪{−∞}∪{+∞},⊕,⊗)
with : ⊕ : maximization and ⊗ : addition

The Kleene star is defined by : A∗ =
+∞⊕
i=0

Ai.

Theorem [bacelli92]
Consider equation x = A⊗ x⊕B and inequality x≥ A⊗ x⊕B with A and B in
complete dioid D. Then, A∗⊗B is the least solution to these two relations.

——————————————
[bacelli92] F. Baccelli, G. Cohen, G.J. Olsder and J.P. Quadrat, Synchronization and Linearity. An Algebra for Discrete Event Systems, New

York, Wiley, 1992.
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Control of Timed Event Graphs with reference model defined
by a P-time Event Graph (problem 1).

Objective
The objective is to calculate an admissible trajectory (control u and state x ) on
horizon [ks +1,k f ] such that the Timed Event Graph defined by{

x(k +1)=A⊗ x(k)⊕B⊗u(k +1)
y(k) = C⊗ x(k)

(1)

satisfies the following conditions :
1 The state trajectory follows the model of the autonomous P-time Event

Graph defined by :(
x(k)
x(k +1)

)
≥
(

A= A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
(2)

for k ≥ ks ;
2 The first state vector of the state trajectory x(k) for k ≥ ks is finite and is

the known vector x(ks).
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Trajectory tracking control on a fixed horizon (problem 2)

Objective

The objective is to calculate the greatest control u on horizon [ks +1,k f ] such
that its application to the Timed Event Graph defined by :{

x(k +1) = A⊗ x(k)⊕B⊗u(k +1)
y(k) = C⊗ x(k)

(3)
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Trajectory tracking control on a fixed horizon (problem 2)

satisfies the following conditions :

1 Condition (a) : y≤ z knowing the trajectory of the desired output z on a
fixed horizon [ks +1,k f ] with h = k f − ks ∈ N ;

2 Condition (b) : The state trajectory follows the model of the autonomous
P-time Event Graph defined by(

x(k)
x(k +1)

)
≥
(

A= A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
. (4)

for k ≥ ks ;
3 Condition (c) :The first state vector of the state trajectory x(k) for k ≥ ks

is finite and is the current known vector x(ks).
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Notations : X and Dh.

X =
(

x(ks)t x(ks +1)t x(ks +2)t · · · x(k f −1)t x(k f )t )t
and

Dh =



A= A+
ε · · · ε ε ε

A⊕A− A= A+ · · · ε ε ε

ε A⊕A− A= · · · ε ε ε

· · · · · · · · · · · · · · · · · · · · ·
ε ε ε · · · A= A+

ε

ε ε ε · · · A⊕A− A= A+

ε ε ε · · · ε A⊕A− A=


Matrix Dh presents an original block tridiagonal structure.
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Greatest trajectory

Theorem

The greatest state and control trajectory of a Timed Event Graph (1) starting
from x(ks) and following specifications defined by a P-time EG (2) on horizon
[ks,k f ] is the greatest solution of the following fixed point inequality system

X ≤ Dh\X
u(k)≤ B\x(k) for k ∈ [ks +1,k f ]
x(k)≤ [A⊗ x(k−1)⊕B⊗u(k)]∧C\z(k) for k ∈ [ks +1,k f ]
x(ks)≤ x(ks)

(5)

with condition x(ks)≤ x+(ks).
- (min, max, +) fixed point problem→ Algorithms of Mc Millan and Dill, Walkup
and Boriello, Cheng and Zheng, ...
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Principle of Predictive control (problem 3)

The date of transition firing of event k : at step k = ks, uks
and xks

are
known ;

A future control sequence u(k) for k ∈ [ks +1,ks +h] is determined such
that this control is the optimal solution of the problem ;

The first element of the optimal sequence (here u(ks +1)) is applied to the
process ;

At the next number of event ks +1, the horizon is shifted : at step
ks +1.The problem is updated with new information uks+1 and xks+1

and a
new optimization is performed.
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Problem 2

Condition xks
= x+(ks) is satisfied⇒ Control problem has a solution for

data z and xks
.

Condition xks 6= x+(ks)⇒ Control problem has no solution for data z and
xks

.
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Solution : modification of the just in time criteria of
Condition (a)

The problem is to find the earliest desired output denoted z− such that

there is control such that its application to the Timed Event Graph
generates a state trajectory which starts from the current state xks

(Condition (c))

this state trajectory follows the additional specifications defined by the
P-time Event Graph on horizon [ks +1,ks +h] (Condition (b)).

The optimal approach of the greatest trajectory can be applied to the modified
desired output trajectory zm(k) = z(k)⊕ z−(k) for k ∈ [ks +1,ks +h].
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Characterization of an admissible trajectory (problem 1)

Theorem
The state trajectories of a Timed Event Graph (1) starting from x(ks) and
following the specifications defined by a P-time Event Graph (2) on horizon
[ks,k f ] satisfy the following system


X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(k)≤ A⊗ x(k−1)⊕B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(6)

Remark. The space solution is not an inf-semilattice.
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Prediction of the earliest desired output z−

An arbitrary state trajectory obeying the specifications is now described with a
fixed point form. From system (6) which describe an admissible trajectory, we
deduce the following system

X ≥ Dh⊗X
x(k)≥ B⊗u(k) for k ∈ [ks +1,k f ]
x(ks) = x(ks)

(7)

Property
Each trajectory of system (6) which describe an admissible trajectory satisfies
(7).

The resolution makes the prediction of the earliest state trajectory x−(k) for
k ∈ [ks +1,ks +h] and so, of the earliest output trajectory z−(k) = C⊗ x−(k).
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Earliest firing rule

Assumption : no row of B is null.

Property
A trajectory of (7) x satisfies (6) if this state trajectory x also satisfies condition
B⊗ (B\x(k)) = x(k) for k ∈ [ks +1,k f ].

Therefore, condition on state trajectory B⊗ (B\x(k)) = x(k) leads to a control
satisfying x(k) = B⊗u(k) (and not only x(k)≥ B⊗u(k) ). The relation
expressing the earliest firing rule x(k)≤ A⊗ x(k−1)⊕B⊗u(k) can be
disregarded in the determination of the trajectory.
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Conclusion

The approach is completely defined in (max, +) algebra.

The trajectory tracking control on a sliding horizon (for specific structures
of matrix B), is given by strongly-polynomial algorithms : approximately
O(n2) :

1 The calculation time is independant on the magnitude of the coefficients
(contrary to the best algorithms of LP ( Karmarka :O(n3.5L),
Gonzaga :O(n3L), ... where L is the number of bits) ).

2 Its does not need to start from an admissible solution (its determination is
not an obvious problem in LP).

An important part of the calculations is made off-line in a preparation. A
consequence is that the approach can be applied to long horizons (h
=50) and important systems (until 97 transitions) with a reduced CPU
time.

The initial CPU time (approximately 2000 secondes or 33 minutes) is
replaced by a new on-line procedure which only needs 0.28 secondes :
the ratio is 1 to 7000.
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Perspectives

Improvement of the off-line preparation : Kleene star of a tri-diagonal
matrix.

FIGURE: Off-line preparation : Kleene star of a tri-diagonal matrix.

Analysis of the condition x(k) = B⊗u(k) and Generation of a corrector
such that this condition is always satisfied.

Generation of a causal control.
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