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Motivation of the study : the causality phenomenon.

1 The future calculated control is applied on-line.
2 The application of the first calculated control must be made after the

(standard) addition of :

- the last past date of the known state and
- the computer time.

Objective
To analyze this causal constraint for predictive control

To propose some techniques.
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Main parts

1 Optimal control problem and fixed point algorithm (IEEE-TAC 10, JDEDS
12)

2 Causality phenomenon
3 Compromise technique and consistency of the constraints
4 Conclusion
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Control Problem

Variable xi(k) is the date of the kth firing of the transition xi

For one control step, the objective of this paper is the determination of the
greatest control u (with respect to the componentwise order) on an arbitrary
horizon [ks +1,k f ] with h = k f − ks ∈ N such that its application to the Timed
Event Graph defined by{

x(k +1) = A⊗ x(k)⊕B⊗u(k +1)
y(k) = C⊗ x(k)

(1)

for k ≥ ks, satisfies the following conditions :

Philippe Declerck Causality phenomenon and Compromise Technique 5 / 24



Control problem

1 y≤ z knowing the trajectory of the desired output z ;
2 The state trajectory follows the model of the P-time Event Graph defined

by (
x(k)
x(k +1)

)
≥
(

A= A+

A− A=

)
⊗
(

x(k)
x(k +1)

)
; (2)

3 The initial value of the state trajectory x(ks) is finite and is a known vector.
This “ non-canonical ” initial condition is the result of a past evolution of a
process.→ Observers if unknown (JDEDS 12, IEEE-TASE 14)
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Relations on horizon

The relations of the Timed Event Graph can be rewritten under the following
classical form on horizon [ks,k f ].

X = Ωh⊗ x(ks)⊕Ψh⊗U (3)

where h = k f − ks,
X =

(
x(ks +1)t x(ks +2)t · · · x(k f −1)t x(k f )t )t

(t : transposed),

U =
(

u(ks +1)t u(ks +2)t · · · u(k f −1)t u(k f )t )t
, Ωh is a column of h

blocks (Ωh)i = Ai for i = 1 to h and Ψh is a h x h matrix of blocks (Ψh)i, j for
i, j ∈ {1,2, . . . ,h} where (Ψh)i, j = Ai− j⊗B for i > j and ε otherwise.
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
(

x(ks)
X

)
≥ Dh⊗

(
x(ks)
X

)
x(ks) = x(ks)

(4)

In this system, we consider :

the additional constraints for k ≥ ks and

an autonomous Timed Event Graph defined by the inequality
x(k)≥ A⊗ x(k−1) coming from the state equation (relaxation of the
earliest firing rule), starting from x(ks) = x(ks).
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Tridiagonal matrix

Matrix Dh is a tridiagonal matrix of blocks (Dh)i, j for i, j ∈ {1,2, . . . ,h+1}

Dh =



A= A+
ε · · ·

A⊕A− A= A+ · · ·
ε A⊕A− A= · · ·
· · · · · · · · · · · · · · · · · ·

· · · A= A+

· · · A⊕A− A=


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Fixed point form and algorithm

Extended state vector x =
(

(x(ks))t (X)t )t
which expresses the complete

state trajectory.
Let (x)+ be the greatest estimate of state trajectory and
F =(

x(ks)t (C\z(ks +1))t (C\z(ks +2))t · · · (C\z(k f ))t )t
.

Theorem
The greatest state and control trajectory of the control problem is the greatest
solution of the following fixed point inequality system

x≤ Dh\x∧F
U ≤Ψh\X
X ≤Ωh⊗ x(ks)⊕Ψh⊗U

(5)

with condition x(ks)≤ x+(ks). �
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Algorithm 1

(x)1 =
(

(x1(ks))t (X1)t )t
and (x)2 =

(
(x2(ks))t (X2)t )t

correspond to
intermediate values.

Algorithm 1

Step 0 (initialization) : 〈i〉 ← 〈0〉 ; (x)2← F
Repeat

- 〈i〉 ← 〈i+1〉 (numbering of the iteration)
- Step 1 : (x)1← D∗h\(x)2

- Step 2 : U ←Ψh\X1

- Step 3 : (x)2← (x)1∧
(

+∞

Ωh⊗ x1(ks)⊕Ψh⊗U

)
until X1 = X2. �
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Analysis of Algorithm 1

The following result shows the minimization of the state trajectory and the
property that the state equation is satisfied at the end of each iteration.

Property

X ′ ≤ X1 and X2 = X ′ where X ′ = Ωh⊗ x1(ks)⊕Ψh⊗U . �
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Causality phenomenon

The application of the control u(ks +1) must be made after the dates of
x(ks) which are the data of the problem.⊕

i∈[1,n]

xi(ks)⊗Tcomp ≤
∧

i∈[1,card(u)]

ui(ks +1) (6)

where
⊕

i∈[1,n]

xi(ks)⊗Tcomp is the availability date of the calculated control. We

can also rewrite this causality condition under the form of a (max, +) inequality

Gu⊗ x(ks)≤ u(ks +1) (7)

where Gu is the ⊗−product of Tcomp and a full matrix of zeros (e = 0) with
appropriate dimensions.
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Compromise technique (technique 3)

Gu⊗ x(ks)≤ u(ks +1) (8)

At each step of Algorithm 1, we have

The increase of the availability date Gu⊗ x(ks) (produced by the increase
of the computer time Tcomp which depends on the number of iterations)

and, the decrease of the dates of the control u(ks +1) (minimized by the
fixed point algorithm at each iteration) .

→ Compromise between :

the search of optimality of the ideal problem and

the on-line application which considers the causality phenomenom and
the used computer.
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Technique 3

In addition, each iteration of the algorithm proposes a control which generates
an output satisfying the desired output (expressed by vector F) and the state
equation (Property 1). Moreover, a subset of the constraints is satisfied.

Approach

Since the causal inequality Gu⊗ x(ks)≤ u(ks +1) must be satisfied for the
current calculated control, the approach is to reduce the CPU time by stopping
Algorithm 1 before the convergence.

⇒The control is suboptimal as the convergence is not waited and only a
subset of the constraints is satisfied. This approach is possible if the crucial
constraints are guaranteed :

The satisfaction of safety regulations for a grade crossing is obligatory

Non-crucial constraints in the food industry
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Constraint consistency

The following theorem highlights an important case where Algorithm 1 gives
the final state trajectory at the first iteration 〈1〉.

Theorem

The state trajectory (x)2 (generated by step 3) satisfies the system
X = Ωh⊗ x(ks)⊕Ψh⊗U(

x(ks)
X

)
≥ Dh⊗

(
x(ks)
X

)
(9)

when (
I ε

ε Ψh

)
⊗
(

x0(ks)
U

)
= (x)1. (10)

Moreover, (x)2 = (x)1. �
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Existence problem

The problem is now to check the solution existence of u ∈ Rq in the equality

B⊗u = x for any x ∈ Rn satisfying x≥ A⊗ x (11)

with the following notation : B =
(

I ε

ε Ψh

)
, u =

(
x(ks)
U

)
, x =

(
x(ks)
X

)
, A = D.

h , n=card(x) and q=card(u).
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Complete validity of the constraints

B⊗u = x for any x ∈ Rn satisfying x≥ A⊗ x (12)

Theorem

The greatest vector u=B\x satisfies the above system if and only if B ⊗(B
\A∗) = A∗. �

The relevant algorithm is strongly polynomial (convergence of the
algorithm at the first iteration).
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Partial consistency

A⊗ x = b (13)

where A ∈ Rmxn
max, b ∈ Rm. The relevant set of solutions over R is denoted S .

The set of indexes for the rows I = {1, ..,m} and for the columns J = {1, ..,n}
as A is a (mxn) matrix. x+ is the greatest solution to A⊗ x≤ b.
For j ∈ J , Vj = {i ∈ I such that Ai, j is finite and x+

j = Ai, j\bi} .

Lemma
(R.A. Cuninghame-Green, K. Zimmermann, P. Butkovic)
x ∈ S if and only if x≤ x+ and

⋃
j∈J|x j=x+

j

Vj = I. �
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Result

B⊗ v = A∗ , (14)

Corresponding to column j ∈ J of B and column k ∈ K of A ∗ , Vj,k is defined by
Vj,k = {i ∈ I such that Bi, j is finite and v+

j,k = B i, j\(A
∗)i,k} .

Property

The system (14) has a solution v if and only if v≤ v+ and
⋂
k∈K

⋃
j| v j,k=v+

j,k

Vj,k = I.

The set
⋂
k∈K

⋃
j∈J

Vj,k gives the rows of (14) where the equality holds for v=v+. �
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Generalization

B⊗u = x for any x ∈ Rn satisfying x≥ A⊗ x (15)

Property

For the greatest vector u=B \ x,

each equality B i,. ⊗u = xi with i ∈ Ig =
⋂
k∈K

⋃
j∈J

Vj,k is always satisfied for

any x ∈ImA∗.

each equality B i,. ⊗u = xi with i ∈ Ip,k =
⋃
j∈J

Vj,k is always satisfied when

x ∈Im(A∗).,k for a given k ∈ K.

An equality B i,. ⊗u = xi with i ∈ Ip = {i ∈
⋃
k∈K

⋃
j∈J

Vj,k and i /∈ Ig} is

possibly satisfied when x ∈ImA∗. �
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Example

B⊗u = x for any x ∈ Rn satisfying x≥ A⊗ x (16)

Each entry ∆i,k of the following n x n symbol matrix gives the row index
i ∈

⋃
j∈J

Vj,k for each column (A∗).,k where symbol = expresses that the relevant

equality Bi,.⊗ v.,k = (A∗)i,k is satisfied while symbol < shows that Bi,.⊗
v.,k < (A∗)i,k is obtained.
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∆ = 

= = = = = = = = = = = =
= = = = = = = = = = = =
= = = = = = = = = = = =
= < = < = < = < = < = <
= = = = = = = = = = = =
< < < < < < < < < < < <
= = = = = = < = < = < =
= = = = = = = = = = = =
< < < < < < < < < < < <
= = = = = = = = = < = =
= = = = = = = = = = = =
< < < < < < < < < < < <


(17)

The analysis of the rows of this matrix ∆ gives Ig = {1,2,3,5,8,11} and
Ip = {4,7,10}.
Therefore, the equality B ⊗u = (A∗).,k does not hold for any k ∈ K but the
equality for the rows i ∈ Ig is guaranteed.
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Conclusion

The causality phenomenon under the form of a (max, +) expression has
been described.

In Technique 1 (sketched in the paper) and future studies, this limitation
will considered as a standard additional constraint.→ Application to a
general class of models.

Technique 3 can be applied when only a subset of (crucial) constraints
must be satisfied. The suboptimal solution is the result of a compromise
between the availability time of application of the control and the
calculated dates. Condition y≤ z and the model of the Timed Event Graph
are satisfied.

When the causality phenomenon forbids the application of the calculated
control, the proposed techniques enlarge the class of the processes
where the predictive control can operate.
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