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State Estimation and Detection of Changes in

Time Interval Models

Philippe Declerck and Abdelhak Guezzi

Abstract

This paper presents an estimation approach for Time Event Graphs such as P-Time Event Graphs

and Time Stream Event Graphs. It is assumed that the nominal behavior is known and that transitions

are partitioned as observable and unobservable transitions. The technique is applied to the detection

of changes which are (possibly small) finite variations of dynamic models compared to this nominal

behavior. The detected changes provide indications that can be used in future maintenance operations.

Using the algebra of dioids, the approach uses a receding-horizon estimation of the greatest state and

analyzes the consistency of the data.

Index Terms

P-Time Event Graphs; Time Stream Event Graphs; Observer; Estimation; Detection; (min, max, +)

Functions.

I. INTRODUCTION

In this paper, we consider time interval models which can describe a large class of Time

Event Graphs where time intervals can be associated with places, transitions and arcs (Timed

Event Graphs, P-time Event Graphs, T-time Event Graphs, Time Stream Event Graphs [4] [5]).

The operations of maximization, minimization and addition define the lower and upper bound

constraints [10] on the trajectories.

Our objective is the detection of changes such as a (possibly slow) unexpected variation of the

holding times of the tasks. These changes can be generated by a deterioration in the process or
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preventive maintenance not modeled by the Petri Net. These changes are clearly non-drastic. Note

that the diagnostic approaches in Discrete-Event Systems generally consider drastic failures such

as ”stuck-closed valve” or ”short-circuited sensor” [13]. These changes can also be produced by

switching among different modes of operation in a switching system: In [11], the problem is the

determination of the active mode at each time point based on the input/output data.

A possible method of change detection can be based on the identification of the holding times

of Timed Event Graphs [24]. The assumption that all transitions are observable is taken (all

transition firing times are measurable). The residuals between the estimated values and the given

nominal values can be used for fault detection [25]. In our paper, we also consider unobservable

transitions and a more general class of Event Graphs described by (min, max, +) functions (see

section IV). Another study [18] also considers observers but with a different aim: its objective

is the exact determination of some components of the state vector for an autonomous (no input)

Timed Event Graph. With the aim of developing a geometric approach, the authors consider a

(max, +) system of the form x(k + 1) = A ⊗ x(k) where some entries of A are unknown but

belong to intervals. In this paper, we consider a more general class of models as this model

corresponds to the semantic ”Weak-And” of the Time Stream Event Graphs [10]. A second

important difference is that we consider that the vector of the initial condition or the first state

date on the sliding horizon, is not a datum of the problem but is unknown. The working hypothesis

of an unknown initial condition is usual for the observers for continuous systems [19] [20].

In this paper, the technique of change detection is based on the on-line analysis of the

coherence between a state estimate and known data through specific relations. The general

principle of our approach is the transposition in Petri Nets of the classical principle used in

fault detection of continuous-variable models (Parity Space [9], Observers [15], Identification

[26]). Remember that a large class of fault detection approaches relies on the different types

of continuous-variable models while another class considers Discrete-Event Systems such as

Petri Nets [17] [1][12] [16] and Automata [22] [14] [23]. In this paper, changes (or faults) are

considered as variations of dynamic models compared to a Petri Net which only describes the

normal behavior. With the aim of illustrating the efficiency of the approach, the simulation of the

examples follows the graph of the non-faulty model, but contains a change which is a (possibly

small) variation of a holding time. Firing sequences are observed by an on-line observer. The test
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of specific relations allows the analysis of the coherence of the data. If the data are incoherent

with the model of nominal behavior, a change is detected. If the data are coherent with the

model of a fault case, the relevant fault is diagnosed. If the fault is repaired, the new data will

be coherent with the nominal model again. The possible existence of faults corresponds to modes

of the process that can be in normal (normal mode if the system functions properly) and faulty

situations (fault mode 1, fault mode 2,...). The appearance of a fault leads to a fault mode and

its repair to the nominal state. Each mode corresponds to a specific model (M0, M1, M2,...)

which is a specific Petri net. Therefore, each observer relevant to a Petri net, checks the mode

associated with the Petri net considered. The reasoning for the determination of the modes of

operation in a switching system is identical and can be easily deduced.

In this paper, the estimation uses a sliding horizon principle. This means that after computation

of the state estimate on horizon {ks, . . . , kf}, the horizon shifts to the next sample, and the esti-

mation of the state estimate on horizon {ks +1, . . . , kf +1} is restarted using known information

of the new horizon. The interest in such estimation methods stems from the possibility of dealing

with a limited amount of data, instead of using all the information available from the beginning.

As a consequence, the procedure can detect faults only when the window covers the occurrence

of the faults which can be intermittent. It should also be noted that the state estimate allows a

prediction of the future trajectory of the process which can be useful in predictive control.

In the sequel, no assumption is made on the Event Graph which can be non-strongly connected.

The consistency of the models is beyond the scope of this paper and we assume their consistency

(see [8] for more details). No assumption is made on an observer structure: The structure will

be deduced from the results obtained in this paper.

The paper is organized as follows: We firstly present the motivations and the principle of the

proposed approach. Then, the interval model in the (min, max, +) algebra is briefly presented.

Based on a fixed point approach, we describe an observer allowing the detection of changes in

the process. With the aim of clearly illustrating the approach, we consider only a simple Timed

Event Graph including some uncertainties on the temporizations (more complex Time Event

Graphs can be found in [6] and [7]). Calculations have been made with Scilab. These parts are

preceded by notations and by a brief review of previous results.
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A B C[2,3] [5,6]

u x yP1 P2

Fig. 1. Example 1: A simple Timed Event Graph

II. EXAMPLE 1 AND PRINCIPLE OF THE PROPOSED APPROACH

Many transportation systems can be described as Petri Nets which can be expressed in the

(max, +) or (min, max, +) algebra [2]. In railway and urban transportation systems, state variables

represent departure and arrival times of vehicles at some stations. In urban transportation systems,

buses must follow the given timetables but are subject to environmental variations such as

bottlenecks and failures.

Let us consider example 1 which is a simple Event Graph composed of two places (Fig.

1). The first place p1 describes the journey of a vehicle from town A to town B which lasts

between 2 and 3 hours. The second place p2 represents the following journey from B to C with a

temporization between 5 and 6 hours. If the departure time u of the vehicle is known, the arrival

at the intermediate town B can obviously be estimated: [u + 2, u + 3]. Symmetrically, if the

arrival time y at town C is known, the arrival at the intermediate town B can also be estimated:

[y − 6, y − 5]. Consequently, the estimate of the date associated with B can be calculated by

a forward-backward approach: [max(u + 2, y − 6), min(u + 3, y − 5)]. If this interval is empty,

we can conclude that there is a break-down, an unpredicted event, or more generally a poor

description of the current situation: In this case, a change detection can be made.

But the model can equivalently be described by: x ≤ min(u + 3, y − 5) and two additional

relations u ≤ x − 2 and y ≤ x + 6. The first inequality has a fixed point form x ≤ f(x)

which allows the estimation of the greatest value of x. This value can be introduced in the

two remaining inequalities: A change is detected when at least one remaining inequality is not

satisfied. Assume that a breakdown of the vehicle between towns B and C entails that the

temporization associated with the second place is equal to 9: this temporization does not belong

to [5, 6]. A possible output is y = 21.5 for u = 10 in this faulty situation. The greatest estimate

x is 13 ( x ≤ min(10 + 3, 21.5− 5)). Inequality u ≤ x− 2 is satisfied (10 ≤ 13− 2 = 11) but
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inequality y ≤ x + 6 is not satisfied (21 � 13 + 6 = 19): it shows an incoherence between the

used model and the evolution of the current trajectory.

Therefore, this elementary Example 1 shows that the greatest estimate can be calculated with

a fixed point form. Moreover, the system contains relations that are not used in the estimation.

These redundant relations can check the coherence of the data (estimate, input and outputs).

III. PRELIMINARIES

With the view of keeping the usual (max,+) algebraic notation, maximization, minimization

and addition operations are denoted respectively ⊕ , ∧ and ⊗. In this section, we shall review a

few basic theoretical notions about dioids. For more extensive presentations, the reader is invited

to consult the following reference: [2].

A dioid D is an idempotent semi-ring (operation ⊕ is idempotent, that is a ⊕ a = a). The

set R∪ {−∞} provided with the maximum operation denoted ⊕ and the addition denoted ⊗ is

an example of a dioid which is usually noted Rmax = (R∪ {−∞},⊕,⊗). The neutral elements

of ⊕ and ⊗ are represented by ε = −∞ and e = 0, respectively. Let Rmax = (R ∪ {−∞} ∪
{+∞},⊕,⊗) and Γ be a subset of vectors over Rmax. The partial order denoted ≤ is defined

as follows: v ≤ w ⇐⇒ v ⊕ w = w for all v, w ∈ Γ. The partial order is also a componentwise

order which allows the comparison of any pair of vectors (v, w) i.e. v ≤ w ⇐⇒ vi ≤ wi, for

each component i. In the paper, this concept is applied to control and state trajectories. The

element v ∈ Γ is called the greatest element or maximum element if and only if w ≤ v for all

w ∈ Γ. In other words, the greatest element is greater than any other element of the subset: (see

Part 4.3.1 of [2] for more details). If this greatest element exists, it is unique since the existence

of two different maximum elements v and w implies w ≤ v and v ≤ w. Let v ∧ w denote the

lower bound of v and w.

A mapping f is monotone or isotone if x ≤ y implies f(x) ≤ f(y). Let f : E→ F be an

isotone mapping, where (E, ≤) and (F,≤) are ordered sets. Mapping f is said to be residuated

if for all y ∈ F, the least upper bound of subset {x ∈ E | f(x) ≤ y} exists and belongs to

this subset. The corresponding mapping, denoted f ](y) is called the residual of f . When f is

residuated, f ] is the only isotone mapping, such that f ◦ f ] ≤ IdF and f ] ◦ f ≥ IdE where IdF

and IdE are identity mappings. Mapping x ∈ (Rmax)
n 7→ A⊗x, defined over Rmax is residuated

[2] and the left ⊗− residual of b by A is denoted by: A\b = max{x ∈ (Rmax)
n such that
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A⊗ x ≤ b}. Moreover, (A\b)i =
m∧

j=1

Aji\bj where A is an m× n matrix.

IV. TIME INTERVAL MODELS

Definition 1. [3] A (min, max, +) function of type (n, 1) is any function f : Rn −→ R1, which

can be written as a term in the following grammar: f = x1, x2, . . . , xn | f ⊗ a | f ∧ f | f ⊕ f

where a is an arbitrary real number (a ∈ R). The vertical bars separate the different ways in

which terms can be recursively constructed. A (min, max, +) function of type (n,m) is any

function f : Rn −→ Rm, such that each component fi is a (min, max, +) function of type (n, 1).

The set of functions (min, max, +) of the type (n,m) is denoted F (n,m).

The evolution of the system is described by the following model, called an “interval model”

or an “interval descriptor system”, where f− and f+ are (min, max, +) functions. Variable xi(k)

is the date of the kth firing of internal transition denoted xi. In a similar way, variable ui(k) is

the date of the kth firing of input transition (transitions which have no input place in the Event

graph) which is denoted ui.

f−(x(k − 1), x(k), u(k)) ≤ x(k) ≤ f+(x(k − 1), x(k), u(k)) (1)

for k ≥ 1.

Since the type of the system is defined by the types of functions f− and f+, we can characterize

the model by the following pair (type of f−, type of f+) which defines different types of system.

Type ((min, max, +), (min, max, +)) naturally represents the more general mathematical case. In

this paper, the following assumption is made: For each interval model, the lower bound denoted

f− is a (max, +) function. Therefore, we obtain the following well-known term used in the

model of Timed Event Graphs where multiplication ⊗ has priority over addition ⊕.

f−(x(k − 1), x(k), u(k)) = A−
1 ⊗ x(k − 1)⊕ A−

0 ⊗ x(k)⊕B−
0 ⊗ u(k) (2)

with (A−
1 )ij , (A−

0 )ij and (B−
0 )ij ∈ Rmax. The entry (A−

1 )i,j = a ≥ 0 (respectively, (A−
0 )i,j =

a ≥ 0) corresponds to the lower bound a of the temporization of the place linking its ingoing

transition xj to its outgoing transition xi and having a unitary (respectively, null) initial marking.

The entry (B−
0 )i,j = a ≥ 0 corresponds to the lower bound a of the temporization of the place
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linking its input transition uj to its outgoing transition xi and having a null initial marking. More

details can be found in [2] [6].

Trajectory x(k) is nondecreasing (x(k) ≤ x(k + 1)) if condition A−
1 ≥ Id holds.

Interval model (1) with the assumption (2) will be considered in the sequel. The studies [10] [6]

[7] show that this model with the assumption (2) can describe Timed Event Graphs, P-time Event

Graphs, T-time Event Graphs and Time Stream Event Graphs [4] [5] for synchronization rules

”And” and ”Weak-And” (the component f+
i associated to a transition xi is a (min, +) function

for synchronization rule ”And” and a (max, +) function for synchronization rule ”Weak-And”).

The initial marking of these Event Graphs is supposed to be known.

In this paper, the interval model can follow a trajectory, which is not extremal (not the earliest

or the latest trajectory). State trajectory x and the initial condition x(0) (the first date of firing

of the transitions) are unknown. We assume that the interval model in the non-faulty mode is

consistent, that is, the interval model can describe a trajectory whose components are finite. We

also suppose that this model is known on the observation horizon.

V. CHANGE DETECTION USING ESTIMATION

The transitions of the set of models are partitioned as TR = TRob ∪ TRun where TRob is

the set of observable transitions, and TRun is the set of unobservable transitions [12]. So, the

dates of firing of observable transitions are known by definition. With the aim of simplifying

the presentation, every input transition is assumed to be observable and we simply keep notation

u for the relevant date vector. Output transitions (transitions which have no output place) can

be observable or not. We can write for the date vector of observable output transitions, denoted

yob : yob(k) = Cob ⊗ x(k) with (Cob)ij ∈ Rmax.

The aim of the paper is as follows: Let ks and kf be the numbers of initial and final events

of horizon {ks, . . . , kf}. The first objective of the observer is to find the greatest state estimate

x̂(k) knowing the dates of firing of observable transitions on horizon {ks, . . . , kf}. The second

objective is the change detection.

A. Fixed point formulation

The choice of the form of the interval model (assumption (2)) causes function f − to be

residuated. Relations (1) and (2) can consequently, be reformulated as a fixed point problem.
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Theorem 1: For interval model (1) with assumption (2), the problem of the greatest estimate

of x(k) for k ≥ 1 can be written as follows: Search for the greatest state estimate x̂ of the

following inequality

x(k) ≤ g (x(k − 1), x(k), x(k + 1), u(k)) (3)

with g (x(k − 1), x(k), x(k + 1), u(k)) = [Cob\yob(k)]∧ [A−
0 \x(k)]∧ [A−

1 \x(k+1)]∧f+(x(k−
1), x(k), u(k))

with two additional constraints 



B−
0 ⊗ u(k) ≤ x̂(k)

yob(k) ≤ Cob ⊗ x̂(k)
(4)

Moreover, the interval model (1) with assumption (2) is equivalent to the system composed

of (3) and (4).

Proof

Relation A−
1 ⊗x(k− 1)⊕A−

0 ⊗x(k)⊕B−
0 ⊗u(k) ≤ x(k) is equivalent to x(k) ≤ A−

0 \x(k)∧
A−

1 \x(k + 1) since matrix multiplication ⊗ is residuated.

Therefore, inequality f−(x(k − 1), x(k), u(k)) ≤ x(k) ≤ f+(x(k − 1), x(k), u(k)) with

f−(x(k − 1), x(k), u(k)) = A−
1 ⊗ x(k − 1) ⊕ A−

0 ⊗ x(k) ⊕ B−
0 ⊗ u(k) is equivalent to x(k) ≤

[A−
0 \x(k)]∧ [A−

1 \x(k + 1)]∧ f+(x(k− 1), x(k), u(k)) with constraint B−
0 ⊗ u(k) ≤ x(k) which

must be satisfied.

Moreover, relation yob(k) = Cob ⊗ x(k) is equivalent to yob(k) ≤ Cob ⊗ x(k) and x(k) ≤
Cob\yob(k).

Finally, inequality (3) and the two constraints (4) are obtained. ¥

B. Calculation algorithm of the greatest state

Let us now consider the problem of the state estimation. The relation (3) is a fixed point

form x ≤ f(x) which can be solved by the general algorithm of McMillan and Dill [21] [27]:

The greatest state is given by the iterations of x[i+1] ← f(x[i]) ∧ x[i] if the starting point is

finite and greater than the final solution. Here, index [i] represents the number of iterations

and not the number of components of vector x. Following this framework, we give below an

algorithm specific to the estimation of the greatest state for interval model (1) with assumption

(2). Inequality (3) can be rewritten as follows. Below the first expression presents a backward

part of (3) while the other one corresponds to a forward part of (3).
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x(k) ≤ [Cob\yob(k)] ∧ [A−
0 \x(k)] ∧ [A−

1 \x(k + 1)]

x(k) ≤ f+(x(k − 1), x(k), u(k))
for k ≥ 1.

Following this decomposition, the algorithm considers every possible relation inside the hori-

zon {ks, . . . , kf}. Term x(k)[i] is the state estimate x(k) at iteration i.

Algorithm 1

Step 0 (initialization) : i = 0 ; x(k)[i] ← +∞ for k = ks to kf ,

Repeat

Step 1: i ← i + 1 ; x(kf + 1)[i] ← +∞ ;

x(k)[i] ← x(k)[i−1] ∧ [Cob\yob(k)] ∧ [A−
0 \x(k)[i−1]] ∧ [A−

1 \x(k + 1)[i]] for k = kf to ks

Step 2: x(k)[i] ← x(k)[i] ∧ f+(x(k − 1)[i], x(k)[i], u(k)) for k = ks + 1 to kf

Until no x(k)[i] changes for ks ≤ k ≤ kf ¥
The ’Backward’ part of inequality (3) corresponds to step 1 while the ’Forward’ part of

(3) corresponds to step 2. The first iteration of step 1 allows the determination of the starting

state trajectory before the following minimizations. Finally, when the minimization of the state

stops, the algorithm gives the greatest state which verifies the inequalities of the model. The

development of the algorithm requires only the memorization of the matrices of the different

models and the estimated trajectory.

C. Horizon

Let us note that the algorithm can converge to +∞ for some situations. This fact depends on

the notion of structural observability ([2]) which gives a sufficient condition to observe an effect

in the output whose origin comes from at least one internal transition.

Definition 1: An internal transition is structurally observable if, from this transition, there

exists at least one path to an output transition in the Event Graph. An Event Graph is structurally

observable if each internal transition is structurally observable.

The following properties give sufficient conditions of a possible estimation and change detec-

tion. We assume below that the values of the output y are finite.

Property 1: Consider a structurally observable internal transition xi. Let PAi be the set of

paths connecting the internal transition xi to an output. Let the marking weight δi,j of a path

from xi to yj be the number of initial tokens in this path and let ∆i =
∧

PAi
δi,j be the minimal
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marking weight of the paths of PAi. If ∆i = kf − ks, then the first iteration of step 1 of the

algorithm produces a finite upper bound on the component xi(ks).

Proof. Algebraically, we have x(k) ≥ A−
1 ⊗ x(k − 1)⊕A−

0 ⊗ x(k) and yob(k) ≥ Cob ⊗ x(k).

We can easily deduce the different paths by building an associated graph (recall that (A−
1 )i,j

corresponds to an arc from vertex xj(k − 1) to vertex xi(k)) . Let us consider a path from a

structurally observable internal transition xi to a known output transition yj in the Event Graph.

From a graphic point of view, successive iterations of step 1 follow the previous path but in

the opposite direction: From the known output transition yj to the internal transition xi. This

path is one of the paths expressed by [Cob\yob(k)] ∧ [A−
0 \x(k)] ∧ [A−

1 \x(k + 1)] . Each known

value of output transition yj(k) produces a finite upper bound on the values xi(k − δi,j) of the

relevant internal transitions xi with a backward shift of the number of events δi,j . Finally, we

can consider xi(ks) , ∆i and the corresponding path from xi to output yj , such that δi,j = ∆i .

¥
Therefore, a structurally observable Event Graph is a condition whereby the algorithm con-

verges to values different from +∞ for each internal transition. An additional condition is that

the considered horizon must be sufficiently large for the backward effect to exist, and produces

an upper bound a certain number of events for each internal transition. We use below notation

∆j defined in Property 1.

Property 2: Let h = kf − ks be the horizon of detection. The detection of changes can be

made for (B−
0 )j,. 6= ε and internal transition xj for j ∈ [1, dim(x)] with (B−

0 )j,.⊗u(k) ≤ (x̂(k))j

if h ≥ ∆j . Similarly, the detection of changes can be made for (Cob)i,. 6= ε and output (yob)i

with (yob(k))i ≤ (Cob)i,. ⊗ x̂(k) if each internal transition xj such that (Cob)i,j 6= ε satisfies

h ≥ ∆j .

Proof. Immediate. ¥
If the horizon is the maximal marking weight of the paths of PAi for every internal transition

xi, a more efficient estimation and change detection is obtained since the algorithm can take into

account every path structure and the corresponding output. The choice of a wide horizon which

can take into account a great quantity of data is only limited by the CPU time of the algorithm.
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D. Complexity in the case of specific interval models

As the general algorithm of McMillan and Dill [21] [27] is known to be pseudo-polynomial

(that is, the number of iterations generally depends on the values of the temporizations), we can

also conclude that the proposed algorithm V-B is also pseudo-polynomial. The following result

however, shows that the proposed algorithm V-B can be fast for some specific interval models

such as the Timed Event Graphs where temporizations are unknown but belong to intervals (study

[18] also considers this model in the autonomous case). Defined by x(k) = A⊗x(k−1)⊕B⊗u(k)

where A−
1 ≤ A ≤ A+

1 and B−
0 ≤ B ≤ B+

0 , the model of Timed Event Graphs with time

uncertainties can be described as follows:





f−(x(k − 1), u(k)) ≤ x(k) ≤ f+(x(k − 1), u(k)) with

f−(x(k − 1), u(k)) = A−
1 ⊗ x(k − 1)⊕B−

0 ⊗ u(k + 1)

f+(x(k − 1), u(k)) = A+
1 ⊗ x(k − 1)⊕B+

0 ⊗ u(k + 1)

(5)

Time stream Event Graphs for the semantic rule Weak-And presents the same algebraic model.

Note that, (5) satisfies f+(x(k− 1), u(k)) ≥ f−(x(k− 1), u(k)) for any x(k− 1) and u(k). This

characteristic will be useful in the following property.

Property 3: The algorithm V-B applied to the model defined by (5) converges in one iteration.

Proof.

Considering the model (5), the algorithm converges in one iteration if x(k)[2] = x(k)[1]. More

precisely, the algorithm can stop at the end of the first iteration if the second iteration of step 1

does not minimize the estimate: Indeed, the second iteration of step 2 does not minimize if step

2 considers the same data. Let λ(k) = x(k)[1] (respectively, µ(k) = x(k)[1]) be the calculated

estimate x(k)[i] at the first iteration 1 of step 1 (respectively, step 2). Therefore, we must prove

that x(k)[2] = µ(k) . We show below that the property holds if we prove that

[Cob\yob(k)] ∧ [A−
1 \µ(k + 1)] ≥ µ(k) . (6)

Indeed, the analysis of the second iteration of step 1 shows that step 1 does not produce a

new minimization: The following recursion proves that x(k)[2] = µ(k) for k in {ks, . . . , kf}.

For k = kf , x(kf )[2] = x(kf )[1] ∧ [Cob\yob(kf )] = µ(kf ) ∧ [Cob\yob(kf )] = µ(kf ) (we have

µ(kf ) ≤ λ(kf ) ≤ Cob\yob(kf ))
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Assuming x(k)[2] = µ(k) for a given k ∈ {ks, . . . , kf − 1}, we have, x(k − 1)[2] = x(k −
1)[1] ∧ [Cob\yob(k − 1)] ∧ [A−

1 \x(k)[2]]

= µ(k − 1) ∧ [Cob\yob(k − 1)] ∧ [A−
1 \x(k)[2]]

= µ(k−1)∧ [Cob\yob(k−1)]∧ [A−
1 \µ(k)] . The application of (6) gives x(k−1)[2] = µ(k−1)

and the recursion is finished.

Now, let us provide proof of inequality (6). Simple substitutions and the property of distribu-

tivity of the left-residual \ relative to ∧ are applied below. So, [Cob\yob(k)] ∧ [A−
1 \µ(k + 1)] =

[Cob\yob(k)] ∧ [A−
1 \[λ(k + 1) ∧ f+(µ(k − 1), u(k))]]

= [Cob\yob(k)] ∧ [A−
1 \λ(k + 1)] ∧ [A−

1 \f+(µ(k − 1), u(k))] using the expression of µ in the

first iteration of step 2.

Therefore,

[Cob\yob(k)] ∧ [A−
1 \µ(k + 1)] = t1 ∧ t2 (7)

where t1 = [Cob\yob(k)] ∧ [A−
1 \λ(k + 1)] and t2 = A−

1 \f+(µ(k − 1), u(k)) .

- We have t1 = [Cob\yob(k)]∧ [A−
1 \λ(k + 1)] = λ(k) at the first iteration of step 1 because of

the initialization x(k)[0] = +∞.

- Now, let us prove that t2 ≥ µ(k) by using the monotonie of the residuation \. Since the model

(5) satisfies f+(x(k− 1), u(k)) ≥ f−(x(k− 1), u(k)) , we have t2 = A−
1 \f+(µ(k− 1), u(k)) ≥

A−
1 \f−(µ(k − 1), u(k))

= A−
1 \[A−

1 ⊗ µ(k)⊕B− ⊗ u(k + 1)] ≥ A−
1 \[A−

1 ⊗ µ(k)] ≥ µ(k).

The last inequality is an application of residuation (see Preliminaries on residuation): Indeed,

if a function f is residuated, then f ] exists such that f ◦ f ] ≤ IdF and f ] ◦ f ≥ IdE . The direct

application gives A−
1 ⊗ (A−

1 \x) ≤ x and A−
1 \[A−

1 ⊗ x] ≥ x.

Finally, relation (6) is proved as t1 ∧ t2 = λ(k) ∧ t2 ≥ µ(k) : Indeed, λ(k) ≥ µ(k) (step 2

minimizes the result of step 1) and t2 ≥ µ(k) . ¥

E. Application to change detection

Described in the previous parts, the estimation of the greatest state is based on a relation (3)

whereas the change detection considers the two remaining constraints (4). Let us analyze these

relations (4).
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• If constraints (4) are satisfied, then no change is detected. The trajectory follows the model

of the non-faulty process on the considered horizon.

• If there is a constraint in (4) which is not satisfied, there is an incoherence between (3)

and (4) and a change is detected. Indeed, the analysis of the two constraints (4) and a

direct application of the residuation shows that the state estimate x̂(k) has the lower bound

B−
0 ⊗u(k) and Cob\Yob(k) . In other words, the greatest state estimate x̂(k) must always be

greater than these lower bounds. If these conditions are not satisfied, the value of x̂(k) is

not high enough to satisfy (4) while x̂(k) is limited by (3). The trajectory on the considered

horizon does not follow the model of the non-faulty process expressed by (1) and (2).

Using the known values of yob(k) and u(k) on horizon {ks, . . . , kf}, the procedure of change

detection is as follows:

• 1) Estimation of x̂: we must solve a (min, max, +) fixed-point problem of type x ≤ f(x)

over horizon {ks, . . . , kf} (the algorithm is given in part V-B).

• 2) Determination of the non-satisfied inequalities over horizon {ks, . . . , kf} in the relations:

(yob(k))i ≤ (Cob)ij⊗x̂(k)j and (B−
0 )jl⊗ul(k) ≤ x̂(k)j for i ∈ [1, dim(yob)], j ∈ [1, dim(x)],

k ∈ {ks, . . . , kf} and l ∈ [1, dim(u)] .

VI. EXAMPLE 2

Xx1 T
3

Xx
2

Xu
1

Xyyyyyy

Xy1

T
2

T
2

-
T

2
T

2

+[ , ] T
4

-
T

4
T

+[ , ]

T
1

T
-
TT

1

+[ , ]

P
2

1
P P

3

P
4

Fig. 2. Example 2: A Timed Event Graph with time intervals

Let us consider a Timed Event Graph including some uncertainties on the temporizations (Fig.

2). The transitions are: Input transition {u1}, output transition {y1} and internal transitions x1 and

x2. Recall that input and output transitions often model the input and output of parts, products,
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messages,... in the system. Associated with places pi, the intervals of temporizations are denoted

[T−
i , T+

i ] for index i ∈ {1, 2, 4}. We have [T−
1 , T+

1 ] = [1, 3], [T−
2 , T+

2 ] = [5, 7], [T−
4 , T+

4 ] = [2, 3]

and T3 = 4. Functions f− and f+ are defined as follows: x(k) =
(

x1 x2

)t

, u(k) = u1(k),

A−
0 = A+

0 =


 ε ε

ε ε


 , A−

1 =


 0 T−

2

T−
4 0


 , A+

1 =


 0 T+

2

T+
4 0


, B−

0 =


 T−

1

ε


 and

B+
0 =


 T+

1

ε


. We have TRob = {u1, y1} , TRun = {x1, x2}and Cob =

(
T3 ε

)
. Written

in conventional algebra, the relations allowing the estimation are as follows:





x̂1(k) ≤ [y1(k)− T3] ∧ x̂1(k + 1) ∧ [x̂2(k + 1)− T−
4 ]

∧max[x̂1(k − 1), x̂2(k − 1) + T+
2 , u1(k) + T+

1 ]

x̂2(k) ≤ x̂2(k + 1) ∧ [x̂1(k + 1)− T−
2 ] ∧max[x̂1(k − 1) + T+

4 , x̂2(k − 1)]

(8)

The sliding horizon of calculation of the observer is [kf − 2, kf ].

Constraints allowing the detection are as follows:

 u1(k) + T−

1

y1(k)


 ≤


 x̂1(k)

x̂1(k) + T3


 (9)

for k ∈ [kf − 2, kf ].

1) Simulation 1: Scenario of the simulation on {0, . . . , 10}
The normal values of the temporization of place p2 belong to [T−

2 , T+
2 ] = [5, 7] for k ∈ {1, 2, 3, 4}

and k ∈ {8, 9, 10}. We suppose that the task associated to p2 is stopped before its end: Place

p2 has a temporization T2(k) = 2 for k ∈ {5, 6, 7}. Clearly, this provisional decrease of T2(k)

produces a temporary increase in the production rate.

We assume that input transitions (control input) may be delayed from firing until some arbitrary

time provided by a supervisor. Input u1(k) is such that u1(k) = k for k ≥ 1. Following these

conditions, a possible trajectory, which is not extremal (not the earliest or the latest trajectory)

is as follows:
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k 0 1 2 3 4 5 6 7 8 9 10

u1 − 1 2 3 4 5 6 7 8 9 10

x1 0 6 8 14 16 18 20.5 22.5 29 31 37

x2 0 2 8 10 16 18.5 20.5 23 25 31.5 33.5

y 4 10 12 18 20 22 24.5 26.5 33 35 41

The fault detection procedure gives the following number of incoherent relations (9) on horizon

{k − 2, . . . , k}. This number is denoted nc(k).

k 0 1 2 3 4 5 6 7 8 9 10

T2(k) − [5, 7] [5, 7] [5, 7] [5, 7] 2 2 2 [5, 7] [5, 7] [5, 7]

nc(k) 0 0 0 0 0 1 1 1 0 0 0

So, the procedure detects the fault on horizon {k− 2, . . . , k} for k = 5, 6 and 7. We consider

below the horizons {8, 9, 10} and {3, 4, 5}.

Horizon {8,9,10}(normal behavior).

As the calculations of the observer are independent of the initial condition x(0), the estimation

can be made on any horizon if the process follows its normal mode on this horizon. Therefore,

the estimation can be made after a past perturbation or an unknown change in the system. Using

known data on the horizon {8, 9, 10}, the observer (8) gives the following the optimal greatest

estimate:

k 8 9 10

x̂1 29 31 37

x̂2 26 32 34

.

The verification of constraints (9) shows that each inequality for k ∈ {8, 9, 10} is satisfied:

The system composed of (8) and (9) is consistent and no change is detected.

Horizon {3, 4, 5} (faulty behavior)

Using known data on the horizon {3, 4, 5}, the observer (8) gives the following table:
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k 3 4 5

x̂1 11 16 18

x̂2 11 13 19

.

The verification of constraints (9) shows that there is a unique non-satisfied inequality: Relation

y1(3) = 18 ≤ x̂1(3) + T3 = 11 + 4 = 15 is not satisfied. Therefore, the system composed of (8)

and (9) is inconsistent on horizon {3, 4, 5} and a change is detected. The estimates of the observer

are not guaranteed: We can note that x(k) 
 x̂(k) for k = 3, 4 and 5 as x1(3) = 14 
 x̂1(3) = 11

and x2(4) = 16 
 x̂2(4) = 13.

A deeper analysis of the relations (8) shows that the following subset of inequalities is

incoherent for the considered data:





y1(ks) ≤ x̂1(ks) + T3

x̂1(ks) ≤ x̂2(ks + 1)− T−
4

x̂2(ks + 1) ≤ x̂1(ks + 2)− T−
2

x̂1(ks + 2) ≤ y(ks + 2)− T3

which gives (10)





18 
 11 + 4

11 = 13− 2

13 = 18− 5

18 = 22− 4

. (11)

Indeed, the observer considers the normal behavior for ks + 2 = 5 which is expressed by

inequality x̂2(ks + 1) ≤ x̂1(ks + 2)− T−
2 with T−

2 = 5 while the faulty behavior is described by

the relation x1(ks + 2) = x2(ks + 1) + T2(ks + 2) with T2(ks + 2) = 2 .

2) Simulation 2: We consider below another simulation for example 2 where the change is

an increase of T2(k).

Scenario of the simulation 2: T2

The normal values of the temporization of place P2 belong to [T−
2 , T+

2 ] = [5, 7] for k ∈ {1, 2, 3, 4}
and k ∈ {8, 9, 10}. We consider the following change in the system: place P2 has a temporization

T2(k) = 8.1 for k ∈ {5, 6, 7}. Clearly, this change produces a temporary decrease in the

production rate: The process shows some signs of wear.
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We assume that input transitions (control input) may be delayed from firing until some arbitrary

time provided by a supervisor. Input u1(k) is such that u1(k) = k for k ≥ 1.

Following these conditions, a possible trajectory, which is not extremal is as follows.

k 0 1 2 3 4 5 6 7 8 9 10

u1 − 1 2 3 4 5 6 7 8 9 10

x1 0 6 8 14 16 24.1 26.6 34.6 35 43 44

x2 0 2 8 10 16 18.5 26.5 29 37 37.5 45.5

y 4 10 12 18 20 28.1 30.6 38.6 39 47 48

The fault detection procedure gives the following number of incoherent relations (9) on horizon

{k − 2, . . . , k} which is denoted nc(k).

k 0 1 2 3 4 5 6 7 8 9 10

T2(k) − [5, 7] [5, 7] [5, 7] [5, 7] 8.1 8.1 8.1 [5, 7] [5, 7] [5, 7]

nc(k) 0 0 0 0 0 1 1 1 0 0 0

So, the procedure detects the fault on horizon {k− 2, . . . , k} for k = 5, 6 and 7. We consider

below the horizons {8, 9, 10} and {3, 4, 5}.

Horizon {8,9,10}(normal behavior).

As the calculations of the observer are independent of the initial condition x(0), the estimation

can be made on any horizon if the process follows its normal mode on this horizon. Therefore,

the estimation can be made after a past perturbation or an unknown change in the system. Using

known data on the horizon {8, 9, 10}, the observer (8) gives the following sub-optimal lower

bound and greatest estimate:

k 8 9 10

x−1 35 43 44

x−2 −∞ 37 45

and

k 8 9 10

x̂1 35 43 44

x̂2 38 38 46

.

The comparison with the simulation shows that the observer gives the exact state x1 and not x2

(note that x(k) ≤ x̂). The comparison with the lower bound detects that this estimate is accurate
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for x−1 .

Moreover, the verification of constraints (9) shows that each inequality for k ∈ {8, 9, 10} is

satisfied: The system composed of (8) and (9) is consistent and no change is detected.

Horizon {3, 4, 5} (faulty behavior)

Using known data on the horizon {3, 4, 5}, the observer (8) gives the following table:

k 3 4 5

x̂1 14 16 24

x̂2 11 17 19

.

The verification of constraints (9) shows that there is a unique non-satisfied inequality: The

relation y1(5) = 28.1 ≤ x̂1(5)+T3 = 24+4 = 28 is not satisfied. Therefore, the system composed

of (8) and (9) is inconsistent on horizon {3, 4, 5} and the change of T2 is detected. The simulation

of the scenario shows that non-drastic changes in the model such as a small variation of the

value of a temporization can be detected. As a change is detected, the estimates of the observer

are not guaranteed and we can note that x(k) 
 x̂(k) for k = 5 as x1(5) = 24.1 
 x̂1(5) = 24.

A deeper analysis of the relations (8) shows that the following subset of inequalities is

incoherent for the considered data:





y1(kf ) ≤ x̂1(kf ) + T3

x̂1(kf ) ≤ x̂2(kf − 1) + T+
2 with x̂2(kf − 1) + T+

2 ≥ x̂1(kf − 1) and

x̂2(kf − 1) + T+
2 ≥ u1(kf ) + T+

1

x̂2(kf − 1) ≤ x̂1(kf − 2) + T+
4 with x̂1(kf − 2) + T+

4 ≥ x̂2(kf − 2)

x̂1(kf − 2) ≤ y1(kf − 2)− T3

(12)

So,





28.1 � 24 + 4

24 = 17 + 7 with 17 + 7 ≥ 16 and 17 + 7 ≥ 5 + 3

17 = 14 + 3 with 14 + 3 ≥ 11

14 = 18− 4

(13)

Indeed, the observer considers the normal behavior for kf = 5 which is expressed by inequality

x̂1(kf ) ≤ x̂2(kf − 1) + T+
2 with T+

2 = 7 while the faulty behavior is described by the relation
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x1(kf ) = x2(kf − 1) + T2(kf ) with T2(kf ) = 8.1 .

VII. CONCLUSION

In this paper, we propose an on-line approach composed of two steps: An observer estimates

the earliest state trajectory; using the state estimate, a change detection checks on-line the

coherence of the model and the known data. Based on a sliding horizon, the change detection

can start at any number of events and detect the appearance of change.

The places of the Event Graph can be unbounded and the synchronizations of the transitions

can follow complex semantics. Contrary to numerous approaches in fault detection and model

checking, our approach considers that the values of the temporizations are defined in R+. A

direct consequence is that small changes in the process can be detected. As this situation can

occur when the process shows some signs of wear, the detected changes bring indications which

can be used in future maintenance operations.
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