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Abstract : Fault detection in large scale physical system is more and more necessary for technical and economical reasons. Indeed,
its aim is the improvement of the reliability and of the availability of the system.

The basic principle of fault detection is the comparison of the actual behaviour of the system with the nominal one describing the
normal operation. Some approaches have been developped which commonly use the state and measurement equations .

However, such a representation is not often available for large scale complex industrial systems. Those systems are characterized by
the great number of variables which are necessary for their description, and by the difficulty of their modelization. As a consequence, a
great variety of relations linking the variables may be encountered : qualitative or quantitative, statical or dynamical, linear or non
linear.

The paper presents an approach based on structural analysis in order to exhibit coherence models for fault detection in large scale
systems. The initial knowledge upon the normal operation of the system is given by its representation under the form of a network of
elementary activities. This network defines the structure of the system under the form of a bipartite graph linking each activity to the
physical variables which are consirained by it. We propose an embedding procedure which allows to exhibit the structural
overdetermination (if any) and thus the structural analytical redundancy relationships.

Keywords : Structural Analysis,Structural Solvability, Fault Detection and Isolation, Embedding Procedure, Large Scale Systems.

1. INTRODUCTION

The basic principle of fault detection is the comparison of the
actual behaviour of the system to a reference behaviour
describing its normal operation. The reference behaviour is
issued from the knowledge which is available upon the
system, this knowledge being expressed under more or less
precise terms and under formalisms which may be very
different (knowledge base, analytical models,...).

However, most model based failure detection and isolation
methods rest on an analytical expression of the knowledge we
have about the system, state and measurement equations often
assumed to be linear [11].

One of the most frequently used approach is based on
Analytical Redundancy : the knowledge available upon the
system leads to express its normal operation by a set of
invariants named residuals. The fault detection resumes thus to
a decision problem : is the variance of the residuals the effect
of noise, of normal deviations and errors or the effect of a
failure.

The residuals are generated using state estimation [3] [10],
identification [12] or direct analytical redundancy
relationships (ARR) [2]. Some equivalence property between
ARR and the observer based approach has been prooved (dead
beat observer [9] [4] [16]).

However, it is the most frequent case that such an analytical
representation is not directly available for large scale
complex industrial systems. Those systems are characterized
by the great number of variables which are necessary for their
description, and by the great variety of the types of
relationships which link these variables : qualitative or
quantitative, statical or dynamical, linear or non linear.
Moreover, in practical situations, some models are not known
precisely (class of the model, values of its parameters,...)
although their structure, i.e the different relationships and the
variables which intervene, is kmown. The system may thus be
represented by a network of elementary activities, each of
them processing a subset of variables. Among the set of all
the variables, only some of them are known (computed by
elementary activities) or measured (a sensor performs also an
elementary activity).

The idea of the present work is to use such a representation in
order to identify possible ARR for fault detection, based on
the overdetermination, within the system of one or more
variables [14].

The interests in developping approaches which rest on the
structural model of a system are the following :

- the system's representation is close to the operators mental
representation because it takes into account the topological
structure of the process, and allows the identification of each
hardware component of the system,

- this representation allows to take into account different
levels of knowledge for the behaviour description of different
system's components,

- the obtained results are, by construction, robust with Tespect
to unknown inputs unknown system parameters, behavioural
modification of the system's components, [17].

- the structural representation is well suited for direct
extensions of FDI studies concemning, for instance, the need
and the location of extra sensors.

The ARR are the result of a systematic approach which can be
decomposed into two steps :

- qualitative step : The structural analysis of the process gives
subsets of non independant known or measured variables. It
gives also subsets of elementary (or process functions) which
link these variables. Each of those subsets will give rise to
one or more ARR,

- quantitative step : This step consists in the computation of
the ARR corresponding to each of the previously mentionned
susbsets.

The present work is concerned with the qualitative step. It is
based on the models presented in [14] and uses an embedding
procedure in order to exhibit the canonical overdetermined
component of the structure of the complex system under
investigation, and the associated ARR to be used in the FDI
system. 4



The first part presents the structural representation of a
complex system. In the second part, the embedding procedure
is applied for the structural analysis of the system. The graph
theory is used for the identification of the canonical
components via a coupling approach. The third part discusses
the application of structural analysis to the design of FDI
procedures.

2. STRUCTURAL REPRESENTION OF COMPLEX
MODEL

2.1. Structural model

The large scale system under consideration is represented by a
network of elementary activities. These activities represent :

- physical constraints : Their model is derived from mass or
energy balance considerations,

- control constraints : Their model is given by the control
algorithms which are implemented or by the human operators
who act on the system.

- measurement constraints : Their model is given by the
knowledge of the sensors which are implemented on the
system,

To each of the elementary activities corresponds a set of
constraints possibly of different kinds which constitute the
model of the activity. The overall systems is thus represented
by a set of m constraints.

F = (f1. £2..... fi}

which are applied to a set of n variables

Y = {y1. ¥2 = ¥nl

We write :

(1) F(Y)=0

We point out that no hypothesis is made about the properties
of completeness of the model [13], so that m and n can take
any values.

Example : A variable x is represented by x(t) in the temporal
domain and by x(P) in the symbolic field.

f1 2

[ty

e1() - x1 () +x3(®) =0
f2:  x9() - x3(t) + x3() = 0
f3: x(t)-c4(0=0

4 2.x9(1) +x9() +c3() =0

xq (P)

P
: Py ———=— ¥ =0
B xF)+ 1+t P 2 ®)

6 : %-E x1(P) - x3 (P) =0
f7: axp()+b-xy()=0

x5(0) - (g2 =0

9: xg(t)-x3() +x5(1)=0

£10 : -xg(t) +x7(t) - x70(0) - X5()) = 0
£11: -xglt) + (xg(t)xg(D)2 +c5(8) = 0

=

The structure of the system (1) is defined by the following
binary relation .

{S:FxY—) {0, 1}
@ Atyp - Sy

such that S (fj, yj) = 1 iff the constraint fj applies to the
variables ¥j-

The exact nature of the constraints f; and of the values of the
parameters which could intervene does not matter in the
structural approach if the hypothesis H holds :

Hypothesis H :

(Vfie F)(Vyje Y) (V yr € Y) such that s(fj, yj) = 1 and s(f;,
yr)=1.

If the variables of Y\ {yj,yr} are constant, a variation of yj
produces an instantaneous or in time variation of yy.

Under this hypothesis, statical or dynamical systems can be
approached with a purely boolean model For example, for the
differential equation (3).

a1 y1 +a2 1M + .. +aN y1 M =by yp + b yp () + -+
bMm y2(M)

Only, the variables y; and y7 are introduced in the structure.
The bipartite graph Bg = G (F, Y; Ap) associated to the
function S is defined by :

fx)e Ao S xp=1
Let P(E) be the set of the subsets of a given set E

We define the following application, with Vg = FUY

1A : B(V0) = B(AQ)
Vo pa(V,Bo)=(ae Ag |@ (v, w)e
V x Vg) and a = (v, w) or a=(w, v)}

pA(V, Bp) is thus the set of BQ's arcs such that one of their
vertices belongs to V.

The application py is defined by :
vy : B(AQ) - B(V0)

A=A, Bo)={ve Vo |@ae A)@we Vg)a=(v, w)or

a= (W, V)]
].LV(A. Bg) is the set of BO's vertices which are extremities of

the arcs of A .

Let {C, X} be a bi-partition of the set Y (in the application, C
will be the subset of known variables and X the subset of the
unknown ones).

A restriction of B is defined by Bx = G(Fx, X; Ax) with Fx =
py (e, X, Bo), Bo N X

Ax =pA X, Bg)

3. CANONICAL REPRESENTATION
The over, under, and just determined susbsystems are now

structurally characterized. Their properties lead to algorithms
for the decomposition of the overall system into three parts.

3.1. Canonical representation of a bipartite
graph

the following notations and definitions are described in detail
in [6].

Projection : Let E ¢ Fy U X. The projection over E is a

function PE defined by :
o



PE:P(Ay) - Fx UX
A PE(A)= iy, (A, By NE

Disjoint subgraph :

A graph GP = G (Fy, X ; A) is a disjoint subgraph of By iff
considering two distinct arcs (fj,x;) (fi,x]) of Ay, fj # fi and
Xj# X1. A disjoint subgraph GP is maximal over By if [ A |
is maximal. It is said complete if all the vertices of Fy U X are

covered.
The set of the maximal disjoint subgraphs of By will be noted

E (By).

Exterior minimal cover : A pair (¢, B) is an exterior cover of
By iff :
DacPFx;pcX

Nan©@. By=2

where X (resp ﬁ) is the complement of o in F (resp of B in X).
In other words , every arc (£, xj) of Ax is such that either f; €
aor xj€ B.

An exterior cover (o, B) which achieves the minimal value of
| o |+ | B | is called a minimal exterior cover (MEC).

Définitions : A subgraph of By is said to be semi-irreducible
iff it has a unique MEC (o, &) or (&, B).

A subgraph of By is said irreducible iff it has two unique MEC
(o, @) and (B, B).

A subgraph of By neither semi-irreducible, nor irreducible is
said reducible.

Dulmage and Mendelsohn [7] [8] define the canonmical
decomposition of By via the construction of a given number
of subsets §; and Tj (i = 1,...k) such that :

Fx=0a,uU$] uSz...uSkuO'«*

*
X =B uTy uT2..uT VB,
with :

Sina, =3 fori=1,2,..,k

SinSj = for all i, j, i# ]
Tin By =@ fori=1,2, ..,k
T,nT, =@ foralli, j, i#]
Isi |= ITi |

(0, B7) is 2 minimal exterior cover of By, i=1,2, .k
where o, =0, U S1 US.US;

B, =Tix1 U Tis2 - U T U By
*
If (o, B*) and (o , B,.) are the EMEC of digraph By [5], the
three canonical components are defined by :
*
B>=G (a » B* Ax>)

_*
B<=G (a,, B  Ax®

- * * —
B==G (o \o,, B \B,: AxY)
with

*
A=Ay 0 (O .By)

*
AxS=Ax N (a*.ﬁ )

* %k
A= =Ax N @ \a, .B\B,)

*
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Figure 1 : the Bipartite Graph B*
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3.2. The Embedding Procedure

In this part, we define extended graphs Bt and W' which

include the initial structures By and W € E (By). The new
structures consider all the information contained in the initial
ones.

The following sets are associated to W :
(W) = Fx\PE, (A(W))
J(W) =X\Py (AW))

The elements of I(W) (resp.J(W)) belong to Fx (rep. X) and are
not the extremity of any arc of A(W) (A(W) is the set of arcs
associated to W)

Let Fi={fi, Ixie W)
F =F,UF,
X, ={xip If; € T(W)}
Xt=xuX,
Vo= {(fxiy) | fi € IW) xiy € Xy)
Ve={(fpx;) | xj € TW) fi, € E}

Example : A(W) = {(f4.x1), (f5,x2), (f,x3), (£7.x4). (£8.x5),
(fo.x6), (f10.x7), (f11.x8)}

I(W)={f1.f2.f3} J(W)={x9.x10}

X+={x1+x2+,x3+)

V>={(f1,x1+).(f2,x2+).(f3.x3+)}

F+=(fg+,f10+)

V<={(fg+x9)(f10+x10)}

Lee BY=c@E xT;AhHwihAT=A, U Vs U V.

and W=GE X AWH)withAWH=AW) U
V> (W) V<

The proofs of all the following properties can be found in [6].
4



Property 1 : The graph whisa complete disjoint subgraph of

B,

3.2.1 P i .

The following properties show the conservation of the

structure of B in the new structure obtained by the embedding

*
procedure. Particularly, the partition of Fyx \(at, U & ) and X
—*
\(B U B,) is conserved.

Property 2 : Let o:i' =0,V Fy; Bi' = Bi v Xy (ai', Bi') is a
MEC of B™.

Property 3 :The irreducible components Bi of By are
irreducible in B*.

3.2.2. New characteristics

The differences between the graphs W and w, Bx and B are

now shown.

Property 4 : The graph B" has no semi-irreducible
components.

Le B =G B,UX ;A
B<+—G( u F B*.A<+)
=3l - A e ¢

. >+ _ A+ ~ (O
with Ax =ATn( .(ﬂ*uX_'_) 3
<t At gy B*
A St =A* (@, U F).P)

The element of l"'+ and X+ are given by the knowledge of I (W)

a* E*
and J (W) whereas the elements of o, , By and are

given by the following theorem based on alterned chain.

Définition : Let W = G (Fx, X ; A (W)) € E (Bx)

An alterned chain L = G (FL, XL ; AL) on W is defined by :
DFLUXL=py (AL FLeF XL e X 5 ALc AT

2) The n arcs of AL, are renamed upon the form aj such that :

(Vi=1.n)(a € AL)
aje A (W), 2i41 ¢ A (W) e PpHaj) = PR+ (ai41)
a ¢ A (W), a1 € AW & PxHa) = Px+ (ais1)

Theorem

a)ee a*UB*ﬁEleG (FL, XL;AL) such that
Dee by (an B

2)Pxt (@) e Xy

_t
beca,ub ©IL=C (FL XL;AL) such tha:
lee !»LV(ﬂl,B+)

2)PFt (ap) € Fi
The proof is given in [6].

Example : a1=(f1,x1+) ; FL={f1.fg} ; XL={x1+.x3,x1}
AL={(f1,x1+),(f1,x3),(f6.x3).(fg.x1)}

%
So, & ={f1,02,£3.14.5,86} ; B.={(x1.x2,%3}

. R*
6, =(tiofi1) P =t e ao.xi0)

* *
o \o,.={f7.f3.f9} ; B \B, =(x4.x5.x6)
The following properties give important indications on the

structure of B>T and B<T and then on the structures of the
ARR.

Property 5 : The maximal disjoint subgraph over B>* and

B<*"are complete.

Property 6 : (V W € E (By)) B>T and B<™ are not irreducible.

Let us now exploit the presented properties. As wh s

complete, the canonical decomposition applied to B" leads o
a structure without semi-irreducible component. The structure
of the irreducible components of By are conserved. Moreover,
B>* and B<* are complete and are composed of at least two
irreducible components (property 6).

We will now use the preceding results in order to exhibit all
the structures of possible ARR and give a guide for the
computation of the residuals.

4. APPLICATION

Let us use a special case of overdetermination is used : the
overdetermination is represented by two different means for
the determination of special variables.

4.1. Determination over B

The disjoint maximal subgraphs over Bt are complete and so,
a blocktriangularisation whose blocks are square can
represent BY after permutation of rows and columns in a
matricial formalism : all the variables can be structurally
expressed (fig. 1). Identically, the maximal disjoint
subgraphs over B>% and B<* are complete and a
blocktriangularisation permits the expression of the

_*
variables belonging to B, U X+ and B ;

4.2. Redundancy

The process, described by Bg or By is a physical one and so,
each variable which belongs to Y or X obviously exists.
Under the hypothesis that the model represents perfectly the
process and that the sensors introduce no noise, the system of
equations is compatible. The graphs Bg and By are the
structural representations of a compatible system of
equations.

An other description is given by the graph B which includes
the initial structure of By. This superstructure is distinguished

by the introduction of the variables x. € X and relations f.
i+ T i+

7e

= F+ whose reles will now be precised.



Roles : - F, : For every variable of J(W), a function fi+' which

constitutes a new constraint, has been introduced. In order to
achieve the equivalence of the models represented by By and

BT, each fi+ is given by the following form :

£, 2=l
i+

with X, € J(W)
Ii € J-es, +eof

The introduced variable Ii is unknown ( case a).

= X+_ For every function of I(W), a variable X, which
constitutes a new degree of freedrom, has been introduced. In
order to achieve the equivalence of the models represented by
By and BF, each function of I(W) is given by the following
form :

f£:£(C,X)+x, =0

it i+

with R 0

The introduced variable X, is known (case b).

Note that the algebraic information (a) and (b) are not

introduced in the graph B* in order that the disjoint subgraph
would be complete.

Let us now discuss the physical interpretation of the system
described by B+ .

- F+ : Every function fi+ of F+ represents a fictituous sensor

whose measure is Ii (fig. 2). However, this data cannot reach

the supervisor computer : no line exists or the sensor does not
operate. So , Ii is unknown .

supervisor
computer

Figure 2

- X+ : Every variable Xy of X+ is a fictituous ouput variable of
a function fi (fig. 3). However, this variable is a data already

known whose value has to be zero. The detection procedure
will compare to zero the actual ouput variable (a residual)

decisions
Xi+ knowledge
X X
L_1§ eXw) |—
*m
Figure 3

Exploitation : two kinds of information concern the variables
of X+:

- algebraic information

v X, € X+) xi+=0

- structural information

(v X, € X+) X, = f(C) where f represents the structural
expression of X o the two knowledges being different, the
redundancy is concretely expressed by :

v X, € X+) f(C)=0

The number of ARR is equal to the cardinal of X+.

For the FDI application, each variable X, Tepresents a

residual which can be tested by a decision procedure.
Example : The ARR are in the symbolic field :

(1 +1P)
x1+=c1-03(1+2+1:P T2 “2+1P =4
(1 +1P) 1 1+14P
= - +e¢3 [1+ 2
2= 2 BT Gt gp

(1+1P)
(1 +19P)
(1 +1P) (c3)
X3+ =T Hh v ) @+1P) 4

The structure of the ARR relatively to the sensors and the
physical functions can be written in a qualitative sensitivity
table.

ARR1 . L—L
ARR2
ARR3 ﬁ 1 + 1 3

(c1,c2,¢3,c4 are sensors)

Each column represents the sensitivities to the corresponding
element. So, the isolation of a component can be made, if the
respective column is different from the others. Equally, two
components which present identical columns can not be
structurally isolated .

Moreover, the structural table can be used on-line : the fault of
an element has for consequence, the modification of the
residuals which are sensitive to it. For example, the result of
the fault of the function f6 would be appearent through the test
of the residuals xq, and x9,.

V. CONCLUSION

The design of model based FDI procedures for complex
industrial plants supposes the handling of large scale models.
These plants are often constituted by the interconnexion of a
great number of elementary activites, each of them being
represented by an elementary model, more or less precisely
known. Structural analysis gives a means to identify those
parts of the overall system whose instrumentation gives
enough information for FDI procedure. The problem is that of
the decompostion of a bipartite graph into its three canonical
components, namely the under, just and overdetermined
subsystems. Starting with the initial graph, we use an
embedding procedure in order to construct an overgraph on
which some simple manipulations lead to the canonical
decomposition. The overdetermined subsystem represents tl;. /{



structure of the part of the overall system which can be
monitored via the FDI procedure.
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