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Abstract: The dater equalities constitutes an appropriate tool which allows a linear description of Timed Event Graphs in
the field of (max, +) algebra. This paper proposes an equivalent model in the usual algebra which can describe
Timed and P-time Event Graphs. Considering 1-periodic behavior, the application of a variant of Farkas’
lemma allows the determination of upper and lower bounds of the production rate and necessary conditions of
consistency.

1 INTRODUCTION

Event Graphs are a subclass of Petri nets which
can be used to model discrete event dynamic sys-
tems subject to saturation and synchronization phe-
nomena, typically, transportation networks, multipro-
cessor systems and manufacturing systems. P-time
Event Graphs are convenient tools to model systems
whose operation times are included between a min-
imum and a maximum duration. Therefore, P-time
Event Graphs can function at a maximal or a min-
imal speed and, average cycle time is one of the
most important criteria which characterizes the sys-
tem. An important result about Timed Event Graphs
is that a Timed Event Graph reaches a periodic regime
after a transient period (G. Cohen and Viot, 1983)
(Chrétienne, 1985) in the earliest functioning mode
(i.e., transitions fire as soon as they are enabled). In
this case, the trajectory is said K-periodic. More pre-
cisely, if x(k) represents the date of firings of the tran-
sition x at the number of event k, then there is a con-
stant λ (called the cycle time which is the inverse of
the periodic throughput) and two integers k0 in N and
c in N∗(called the cyclicity) such that

x(k + c) = x(k) + c× λ for k ≥ k0

and

λ = lim
k→∞

x(k)
k

(Gaubert, 1995).
However, the periodical behavior is reached only

after a transient that can be extremely long, moreover
presence of perturbations (faults, maintenance oper-
ations,...) can limit the possibility of reaching a pe-
riodical behavior. The representativeness of the pro-
duction rate can be reduced as the effectiveness of the
approaches as resources optimization or control using
transfert functions.

A possible approach is to generate periodic behav-
iors without transient period as 1-periodic behavior
which is defined by

x(k + 1) = x(k) + λ.

This technique assumes that each transition is struc-
turally controllable (F. Baccelli, 1992).

Considering an 1-periodic behavior, the objective
of the paper is the calculation of the average cycle
time of P-time Event Graphs. The proposed approach
introduces a new model based on ”daters” in the Sec-
tion 2. Defined by an inequality, the model com-
pletely describes in the usual algebra the trajectories
of different Event Graphs as Timed Event Graphs or
P-time Event Graphs.

Using a well-known Farkas’lemma of the linear
programming (Schijver, 1987), the Sections 3 and
4 presents results about cycle time. Two examples
are given in the Section 5 to illustrate the proposed
method.



2 MODEL

Definition 1 A Petri net is a pair (G,M0), where
G = (R, V ) is a bipartite graph with a finite num-
ber of nodes (the set V ) which are partitioned into the
disjoint sets of places P and transitions T ; R consists
of pairs of the form (pi,qi) and (qi,pi) with pi ∈ P and
qi ∈ T . The initial marking M0 is a vector of dimen-
sion | P | whose elements denote the number of initial
tokens in the respective places.

Definition 2 For a Petri Net with | P | places and
| T | transitions, the incidence matrix W = [Wij ]
is an | P | × | T | matrix of integers and its typical
entry is given by Wij = W+

ij −W−
ij where W+

ij is the
weight of the arc from transition j to its output place
i and W−

ij is the weight of the arc to transition j from
its input place i.

In a Petri net, from a marking M , a firing sequence
implies a string of successive markings. The charac-
teristic vector s of a firing sequence S is a vector for
which each component is an integer corresponding to
the number of firings of the corresponding transition.
Then a marking M reached from M0 by firing of a
sequence S can be deduced using the fundamental re-
lation:

M = M0 + W × s

where M0 is the initial marking and W is the inci-
dence matrix.

Definition 3 A Petri net is called an Event Graph if
each place has exactly one upstream and one down-
stream transition.

P-time Petri nets allow the modeling of discrete
event dynamic systems with sojourn time constraints
of the tokens inside the places. Consistently with the
dioid Rmax (see ((F. Baccelli, 1992))), we associate a
temporal interval defined in R+ × (R+ ∪ {+∞}) for
each place.

Definition 4 A P-time Event Graph is a pair <
R, IS > where R is an Event Graph and the map-
ping IS: from P to R+ × (R+ ∪ {+∞}) is defined
by pi → [ai, bi] with 0 ≤ ai ≤ bi.

The interval [ai, bi] is the static interval of dura-
tion time of a token in the place pi belonging to the
set of places P . The token must stay in the place pi

during the minimum residence duration ai. Before
this duration, the token is in a state of unavailability
to fire the transition tj . The value bi is a maximum
residence duration after which the token must leave
the place pi (and can contribute to the enabling of the
downstream transitions). If not, the system falls into a
token-dead state. So, the token is available to fire the
transition tj in the time interval [ai, bi].

2.1 Preliminary inequalities

For Event Graphs, let us express the firing interval for
each transition of the system guaranteing the absence
of token-dead states. The set •p is the set of input
transitions of p and p• is the set of output transitions
of p. The set •ti (respectively, t•i ) is the set of the
input (respectively, output) places of the transition ti.
The set of upstream (respectively, downstream) tran-
sitions of ti is denoted ←ti =• (•ti ) (respectively,
t→i = ( t•i )

•). The following assumption alleviates
the notations. We suppose that for each pair of transi-
tions (i, j), there is at the most a unique place denoted
pij between the upstream transition tj ∈• p and the
downstream transition ti ∈ p•. Each place pij is as-
sociated with an interval [aij , bij ], where aij is the
lower bound and bij the upper bound .

We consider the “dater” type well-known in the
(max, +) algebra: each variable xi(k) represents the
date of the kth firing of transition xi. If we assume
a FIFO functioning of the places which guarantees
that the tokens do not overtake one another, a correct
numbering of the events can be carried out. In this pa-
per, we do not take the assumption of earliest (respec-
tively, latest) functioning which will be the subject of
other studies.

Therefore, the evolution can be described by the
following inequalities expressing relations between
the firing dates of transitions. An Event Graph can be
considered as a set of subgraphs made up of a place
pij linking the upstream transition j and the down-
stream transition i. We denote mij the corresponding
initial marking or initial number of tokens.

For the lower bounds aij of the upstream place of
transition i, we can write:

∀xj ∈← xi, aij + xj(k −mij) ≤ xi(k),
or equivalently,
xj(k −mij)− xi(k) ≤ −aij .

The weight 1 of xj(k − mij) (respectively, −1
of xi(k)) is the weight of the entering arc of the place
pij , from tj to place pij (respectively, the outgoing arc
of the place pij , from place pij to transition ti) which
is equal to W+

lj (respectively, −W−
lj ) if pl = pij .

Respectively, for the upper bounds bij of the up-
stream place of transition i, we have:

∀xj ∈← xi, xi(k) ≤ bij + xj(k −mij),
or equivalently,
xi(k)− xj(k −mij) ≤ bij .

The weight 1 of xi(k) (respectively,−1 of xj(k−
mij)) is the weight of the entering arc of the place pij ,
from tj to place pij (respectively, the outgoing arc of
the place pij , from place pij to transition ti) which is
equal to W+

lj (respectively, −W−
li ) if pl = pij .



2.2 Matrix expression

Let m be the maximum number of initial tokens, the
set of the previous inequalities can be expressed as
follows:

H = [HmHm−1Hm−2........... H1H0]×



x(k −m)
x(k −m + 1)

....
x(k − 1)

x(k)


 ≤

(−A

B

)
. (1)

The matrix H contains the weights of the arcs
entering and outgoing of the places defined above.
Each place pl linking the upstream transition j and
the downstream transition i corresponds to two rows
of H and particularly, −A and B are vector of tem-
porizations where Al = aij and Bl = bij .

Now, we consider the matrix representation in
different cases: the initial marking of all places is
equal to zero; the initial marking of all places is equal
to one; the general case. The two last cases will be
considered in the following sections.

a) The initial marking of all places is null
The evolution can be described by the following

inequalities expressing relations between the firing
dates of transitions:

{
xj(k)− xi(k) ≤ −aij

−xj(k) + xi(k) ≤ bij
.

As x(k) corresponds to firing sequence S, we can
deduce from the above description on the weight of
the arcs that there is a direct correspondance with the
incidence matrix W . Therefore, one can write the sys-
tem as follows:

H0 × x(k) ≤
(−A

B

)
(2)

where H0 =
(

W

−W

)
and W = W+ −W−.

b) The initial marking of all places is equal to
one

In this case, each place initially contains only one
token. One can write:

{
xj(k − 1)− xi(k) ≤ −aij

−xj(k − 1) + xi(k) ≤ bij
.

As x(k − 1) and x(k) respectively corresponds to
firing sequence S, we can deduce from the above de-
scription on the weight of the arcs that respectively,
there is a direct correspondance with the incidence

matrices W+ and −W−. Therefore, one can write
the system as follows:

(
H1 H0

)×
(

x(k − 1)
x(k)

)
≤

(−A

B

)

with H1 =
(

W+

−W+

)
and H0 =

( −W−

W−

)
.

c) General case
Now let us give the explicit form of the system (1)

or in other words, the objective is to build an equiv-
alent model such that each place of the new Event
Graph contains only zero or one token. This new form
will simplify the calculations of the cycle time.

As a place contains a maximum number of m to-
kens, the general idea is to split each place containing
m tokens into m places, where each place contains
only one token.

Let us introduce the variables α(m−j−1) for j = 0
to m− 1 in the inequations, we have:




x(k −m)
x(k −m + 1)

....
x(k − 3)
x(k − 2)
x(k − 1)

x(k)




=




α(m−1)(k − 1)
α(m−2)(k − 1)

....
α(2)(k − 1)
α(1)(k − 1)
α(0)(k − 1)

x(k)




with




α(m−1)(k) = x(k −m + 1) = α(m−2)(k − 1)
α(m−2)(k) = x(k −m + 2) = α(m−3)(k − 1)

...
α(2)(k) = x(k − 2) = α(1)(k − 1)
α(1)(k) = x(k − 1) = α(0)(k − 1)

α(0)(k) = x(k)

.

Or equivalently,



α(m−j−1)(k) = x(k −m + j + 1) = α(m−j−2)(k − 1)
for j = 0 to m− 2
α(0)(k) = x(k)

.

The new state vector is:

X = (α(m−1), α(m−2), α(m−3), ..., α(2), α(1), α(0))t

and ( 1) becomes

H ′ ×
(

X(k − 1)
X(k)

)
≤

(−A

B

)

where H ′ contains H with the addition of null
columns.

The system must be completed with 2(m− 1)× |
T | relations in the worst case: for j = 0 to m− 2,

{
α(m−j−2)(k − 1)− α(m−j−1)(k) ≤ 0
−α(m−j−2)(k − 1) + α(m−j−1)(k) ≤ 0

.



Therefore, one can write the system as follows:

(
G1 G0

)×
(

X(k − 1)
X(k)

)
≤

(
0
0

)

with G1 =
(

G11

−G11

)
and G0 =

( −G21

G21

)
.

The matrix G11 of dimension ((m − 1)× | T | ×
m) as G21, is an subdiagonal of identity matrices im-
mediately above the main diagonal, while the matrix
G21 is a diagonal of identity matrices.

Finally, we can write the algebraic form:

(
G

H ′

)
×

(
X(k − 1)

X(k)

)
≤




0
0
−A
B


 .

3 CYCLE TIME

The aim of this part is the determination of the
existence of 1-periodic trajectory in P-time Event
Graphs. Let us consider an Event Graph such that
mij = 0 or 1.

H×
(

x(k)
x(k + 1)

)
≤

(−A

B

)
withH =

(
H11 H10

H21 H20

)

(3)

The 1-periodic behavior can be defined by
x(k + 1) = λ× u + x(k) with u = (1, 1, ..., 1)t and
the average cycle time λ.

The following result will be useful.

Corollary 1 Farkas’ lemma (variant) Corollary 7.1.e
in (Schijver, 1987) (Hennet, 1989).

Let A be a matrix and let b a vector. Then the
system A×x ≤ b of linear inequalities has a solution
x, if and only if y × b ≥ 0 for each row vector y ≥ 0
with y ×A = 0

Theorem 1 The system (3) can follow a 1-periodic
behavior for a given cycle time λ, if and only if, for
each row vector y ≥ 0 with

y ×
(

H11 + H10

H21 + H20

)
= 0, (4)

we have:

y ×
(−A

B

)

y ×
(

H10

H20

)
× u

≥ λ (5)

if y ×
(

H10

H20

)
× u > 0,

y ×
(−A

B

)

y ×
(

H10

H20

)
× u

≤ λ (6)

if y ×
(

H10

H20

)
× u < 0,

y ×
(−A

B

)
≥ 0 (7)

if y ×
(

H10

H20

)
× u = 0.

Proof: We have

(
H11 H10

H21 H20

)
×

(
x(k)

λ× u + x(k)

)
≤

(−A

B

)

i.e.,
{

H11 × x(k) + H10 × (λ× u + x(k)) ≤ −A
H21 × x(k) + H20 × (λ× u + x(k)) ≤ B

i.e.,
{

(H11 + H10)× x(k) ≤ −A−H10 × (λ× u)
(H21 + H20)× x(k) ≤ B −H20 × (λ× u)

or equivalently,(
H11 + H10

H21 + H20

)
×x(k) ≤

(−A

B

)
−

(
H10

H20

)
×λ×u.

(8)

From Farkas’ lemma, we can deduce that the sys-
tem (8) of linear inequalities has a solution x, if and

only if y×(
(−A

B

)
−

(
H10

H20

)
×λ×u) ≥ 0 for each

row vector y ≥ 0 with y ×
(

H11 + H10

H21 + H20

)
= 0.

So, y ×
(−A

B

)
− y ×

(
H10

H20

)
× (λ× u) ≥ 0

y ×
(−A

B

)
≥ y ×

(
H10

H20

)
× (λ × u) = λ ×

y ×
(

H10

H20

)
× u.

In this relation, the product by u gives the addition

of all columns of
(

H10

H20

)
. From the sign of y ×

(
H10

H20

)
× u, the two cases (6)(5) and the relevant

necessary and sufficient conditions of existence of x
(7) for the system (8) can be deduced. ¥

Let us note that the existence of a solution depends
on λ in the two first relations contrary to the last one.



4 Links with other results

We assume that mij = 1, which simplifies the
presentation of the connections with notions of in-
cidence matrix and P-semi flows. So, H11 = W+,
H10 = −W−, H21 = −H11 and H20 = −H10. The
previous theorem is now applied.

To summarize, for each row vector y ≥ 0 with

y ×
(

W
−W

)
= 0 (9)

- if y ×
( −W−

W−

)
× u > 0 then

y ×
(−A

B

)

y ×
( −W−

W−

)
× u

≥ λ, (10)

- if y ×
( −W−

W−

)
× u < 0 then

y ×
(−A

B

)

y ×
( −W−

W−

)
× u

≤ λ, (11)

- if y ×
( −W−

W−

)
× u = 0 then

y ×
(−A

B

)
≥ 0. (12)

Moreover, we consider particular vectors y: The
row-vector y can highlights the lower bounds of the
temporizations A which correspond to a Timed Event
Graph; The row-vector y can also highlight the upper
bounds of the temporizations B. However, they give a
rough estimate of λ which must be improved by con-
sidering the space of the orthogonal vectors y. Now,
we successively consider the upper bounds B and the
lower bounds A.

Upper bounds B
Let us consider a row-vector y such that the m

first entries are null. It can be defined by the vector
y = (y1, y2) with y1 = 0. From (9), we deduce that
y2×W = 0. So, y2×W−×u ≥ 0, then y2×B

y2×W−×u ≥
λ.

Lower bounds A
Let us consider a row-vector y such that the m

last entries are null. It can be defined by the vector
y = (y1, y2) with y2 = 0. From (9), we deduce that
y1 ×W = 0. As W− ≥ 0, y1 × (−W−) × u ≤ 0,
then

y1 × (−A)
y1 × (−W−)× u

=
y1 ×A

y1 ×W− × u
≤ λ. (13)

Calculation of the state
Considering any non-negative row vector y, the

set of the relations defined by (11) (respectively, (10))
gives the lower bound (respectively, upper bound) of
λ1. Given an arbitrary cycle time λ1 satisfying (11)
and (10), the objective is the calculation of the date of
firing of the transitions for a given k.

As H11 = W+, H10 = −W−, H21 = −H11 and
H20 = −H10, from (8), x(k) must satisfy(

W
−W

)
× x(k) ≤

(−A

B

)
−

( −W−

W−

)
×

λ1 × u.
This inequality follows the general form A× x ≤

B which can be solved by the Fourier-Motzkin algo-
rithm.

4.1 Link with Karp’s theorem

The following well-known result is based on circuits
(Gaubert, 1995).

Theorem 2 (Karp’s theorem)
In a strongly connected system, the minimal cycle

time can be defined by the maximum of the ratio of
the sum of the delays to the sum of tokens, for each
elementary circuit Ck, i.e.,

minimal cycle time = max
k

(
sum of delays in Ck

sum of tokens in Ck
).

Let us now consider (13). Its numerator y1 ×A is
a sum of durations as y1 > 0 which is the total delay
in Ck.

Consider the denominator of (13): y1×W−×u.
As each row of W− contains a unique entrie

different from zero which can be associated with
the unique token of the relevant place, the right-
multiplication by u generates a column-vector v =
(1, 1, ..., 1)t whose dimension is m and which is the
initial marking M0. So, the denominator y1×W−×u
is equal to y1 × M0 which is the number of tokens
in Ck at M0. Therefore, there is a correspondance
between (13) and the expression of the theorem of
Karp.

Strictly speaking, the Karp’s theorem can be apply
even if the behavior of the graph is not 1-periodic as
we suppose here.

4.2 Link with ((Murata, 1989))

Another result can be found in ((Murata, 1989)). If
we model a Timed Petri Net which is consistent (i.e.,
∃ x > 0, W.x = 0) by assigning delay di to each
place pi, then it can be shown that the minimal cycle
time is given by:



max
k

(yk.D.W+.x
yk.M0

)

where yk is the P-semi flow k and D is the diago-
nal matrix of di,i = 1, 2, .., m.

So, W+.x = v and yk.D.W+.x = yk.A which is
the numerator of (13).

5 EXAMPLES

5.1 First example

Let us consider a simple example based on two ele-
mentary strongly connected subgraphs.

Figure 1: A simple P-time Event Graph.

(
W+ −W−

−W+ W−

)
.

(
x(k − 1)

x(k)

)
≤

(−A

B

)

with x(k) =
(

x1(k) x2(k) x3(k)
)t

, W+ =


1 0
1 0
0 1


 , −W− =



−1 0
0 −1
0 −1


 , −A =



−1
−2
−3


 and B =




6
5
4


 . We have

W =




0 0
1 −1
0 0


 .

A possible integer matrix Y ≥ 0 such that

Y.

(
W
−W

)
= 0 is as follows. Y =




7 0 0 0 0 0
0 0 7 0 0 0
0 0 0 7 0 0
0 0 0 0 0 7
0 7 0 0 7 0




( −W−

W−

)
× u =

( −1 −1 −1 1 1 1
)t

Y.

( −W−

W−

)
× u =

( −7 −7 +7 +7 0
)t

Y ×
(−A

B

)
=

( −7 −21 +42 +28 +21
)t

.

The two first terms lead to lower bounds (−7
−7 = 1,

−21
−7 = 3), the two successive terms gives the upper

bounds (+42
+7 = 6, +28

+7 = 4) and the last one is a
condition of consistency (+21 ≥ 0).

Therefore, the 1-periodic trajectory exists with
max(1, 3) = 3 ≤ λ ≤ min(6, 4) = 4.

For λ = 3, a possible trajectory is
(
1
0

) → (
4
3

) →(
7
6

) → ...

For λ = 3.5, a possible trajectory is
(
1.5
0

) →(
5

3.5

) → (
8.5
7

) → ...

For λ = 4, a possible trajectory is
(
2
0

) → (
6
4

) →(
10
8

) → ...

5.2 Second example

Now, we consider a P-time Event Graph without di-
rected circuit.

[6, 8]
[4,14][3,5]

[2 ,11][0,10]

[7, 9]

X
1

X
2

3
X

X
4

X
5

X
6

[1, 2]

Figure 2: A P-time Event Graph.

(
W+ −W−

−W+ W−

)
.

(
x(k − 1)

x(k)

)
≤

(−A

B

)

with x(k)
(

x1(k) x2(k) x3(k) x4(k) x5(k) x6(k)
)t,

W+ =




1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




, W− =




0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0




, −A =




−1
−3
−4
0
−6
−2
−7




and



B =




2
5
14
10
8
11
9




W =




1 −1 0 0 0 0
1 0 −1 0 0 0
0 −1 1 0 0 0
0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 0 1 −1 0
0 0 0 0 −1 1




A possible integer matrix Y ≥ 0 such

that Y.

(
W
−W

)
= 0 is as follows. Y =




1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 1 0 1 0




( −W−

W−

)
× u =

( −1 −1 −1 −1 −1 −1 −1 1 1

1 1 1 1 1
)t

Y.

( −W−

W−

)
× u =

(
0 0 0 0 0 0 0 +1 −1 0 0

)t

Y ×
(−A

B

)
=

(
+1 +2 +10 +10 +2 +9 +2 +18

−5 +15 +10
)t

The 9nd term leads to the lower bound (−5
−1 = 5),

the 8nd term gives the upper bound (+18
+1 = 18) and

the last one are conditions of consistency which are
satisfied.

Therefore, the 1-periodic trajectory exists with 5≤
λ ≤ 18

For λ = 5, a possible trajec-
tory is

(
3 0 1 5 4 1

)t →(
8 5 6 10 9 6

)t →(
13 10 11 15 14 11

)t → ...

6 CONCLUSION

Using a new incidence matrix, the model we pro-
pose allows the counting of the events in Timed and
P-time Event Graphs. The connections with usual
incidence matrix has been realized. Considering 1-
periodic behavior, the application of a variant of
Farkas’ lemma leads to the introduction of a gener-
alization of the P-semi flow vectors for Timed and
P-time Event Graphs, and allows the determination
of upper and lower bounds of the possible cycle time.
Each limit is respectively a complex function of lower
and upper bounds of the temporizations. Moreover,
even if cycle time λ belongs to this interval, the sys-
tem must also satisfy conditions of consistency such
that the finite initial dates of firing exist. With the
restriction that a 1-periodic behavior has been con-
sidered, the proposed lower bound of the cycle time
includes the Karp’s relation.
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