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Abstract - Based on topical algebra, this paper presents a new
modelling of Time Petri nets whose time evolution belongs to
intervals. The lower and upper bounds depend on maximiza-
tion, minimization and addition operations. P-time Petri nets
and Time Stream Petri Nets are examples which generalize
the semantic of synchronization of Timed Petri Nets. This
model allows us to apply the algebraic tools of the (max,+)
or more generally of the topical algebra. In this paper, we
consider the problem of supervision of Time Petri nets and
particularly of estimation of the greatest state. The proposed
approach presents similarities to the techniques of observers
and parity space used in continuous systems for fault detec-
tion.

Keywords— Time Stream Petri Nets, P-time Petri Nets, Esti-
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I. INTRODUCTION

of some transitions (output) of the interval descriptor sys-
tem such as a sequence of execution times, we wish to slow
down the system as much as possible without causing any
event to occur later than this sequence. In Timed Event
Graphs, optimal approaches can be found in [BAC 92]
[COH 93].The state equations and the "backward” recur-
sive equations provide the earliest and the latest times of
the tasks respectively. The differences between the co-state
and the state represent the "spare time” or the "margin”
which is available for the firing of the transitions. The exis-
tence of a negative difference prevents the future deadlines
from being achieved.

Thus, checking the control requires the knowledge of the
vector state values which is not always available from the
information system if the process has for example a human
aspect. Moreover, discrete event systems undergo perturba-

Discrete event dynamics systems involving synchronizaions such as failures that disrupt the usual behavior of the
tion can be modeled by several types of Petri nets (PNg)rocess and reduce the capacities of anticipation of the con-
Among these PNs, we can quote P-time Petri nets (P-timepl system. We must consequently, consider unavoidable
PNs), Time stream Petri nets (Time Stream PNs),.... whialodel errors produced by the following "internal” pertur-
extend the application field of Timed Event Graphs. Timéations:

Stream Event Graphs for example, allow to specify thethe physical but also human nature of the process entails
synchronization requirements of multimedia applicationg variation of the holding times;

[DIA 97] and can describe complex synchronizations. The this situation also occurs when the process undergoes a
Time Stream Petri Nets present different types of semantfgilure and must be recovered:;

as "And”, "Weak-And”, "Strong-Or”, "Or”, "Master"and

- to prevent breakdowns, the pre-emptive maintenance pro-

theirs variations [COU 96] which correspond to differenty,ces necessarily perturbations in production.

temporal evolutions. In [DID 04] and [DEC 05], we showThege perturbations can be described as "internal perturba-
that P-time Event Graphs and Stream Flow Event Graphgns” in opposition to "external perturbations” like vari-
can be modeled by a new class of systems called intefsions of desired outputs or supplying of products and
val descriptor system for which the time evolution is NOharts. These internal perturbations produce variations of
strictly deterministic but belongs to intervals. The generahe model or even ruptures of the description of the model.

model is as follows. The symbal stands for the maximum

A consequence can be a wrong assessment of the state vec-

operation whilen corresponds to the minimum operation.to, |n this context. different problems are:

Variablez; (k) is the date of the kth firing of transition

- to compute the latest firing dates of the input transitions in
such a way that the output events occur at the latest before
the desired dates;

- to estimate on-line the past values of the state from the
known values of the input and output;

In the general form, the lower and upper bounds depends eto predict the future evolution of the output and to check
the maximization, minimization and addition operationsthe optimality of the calculated solution of the control syn-
The liveness of P-time Event graphs can be studied in tlibesis.

topical algebra through the spectral vector [DID 04]

Let us notice that a variation of the model like a failure can

An important objective is to make control synthesis of sysproduce an incoherence in the data as in continuous sys-
tems described by an interval descriptor system, so that ttemms: for instance, in Parity Space [DEC 91] [DEC 92],
system fulfil its production target : given a desired behavioa residue different from zero detects this variation; in ob-



servers, two different estimated values of the state shavatA ® = < B}.

this incoherence . Let us recall the approach of parity spate (¢, ®) algebra, Kleene’s star is defined by*
using redundancy relations corresponds to an observer@;‘ﬁ A . DenotedG(A), an induced graph of a square

a particular type, whose poles are in the origin [PAT 91]matrix A is deduced from this matrix by associating: a node
Similarly, it can be shown in Interval Descriptor Systems; to the column and linei ; an arc from the nodgtowards

that the estimated state space is nonempty in the norntak nodei if A;; # €. The weight of a path, | p |., is the
case and empty in the faulty case which makes it possibéim of the labels on the edges in the path. The length of a

to detect a variation in the model.

II. PRELIMINARIES

A monoid is a couplé S, @) where the operatiom is as-
sociative and presents a neutral element. A semi-firng

a triplet (S, @, ®) where (S, @) and (S, ®) are monoids,
@ is commutative® is distributive relatively tap and the
zero element of @ is the absorbing element 6f (e ®a =
a®e =¢).Adioid D is an idempotent semi-ring (the op-
eration® is idempotent, that is8 ® a = a ). Let us notice

that contrary to the structures of group and ring, monoi

and semi-ring do not have a property of symmetrysn
The unitRU{—o0} provided with the maximum operation
denoted® and the addition denoted is an example of
dioid. We have R,,,, = (RU{—o0},®,®) . The neutral
elements ofp and® are represented by= —oco ande = 0
respectively. The absorbing elementsofs . Isomorphic
to the previous one by the bijection: — —z , another
dioid is R U {400} provided with the minimum operation
denotedA and the addition denote@. The neutral ele-
ments ofA and® are represented B = +oo ande = 0
respectively. The absorbing elementofs . The follow-
ing convention is takenl’ ® e = ¢ andT ©e = T. The ex-
pressioru®b anda©b are identical if at least eitheror b is

a finite scalar. The partial order denoteds defined as fol-
lows:z <y<=zrdy=y<—zANy=z<=1z; <y;

, for i from 1 to n in R™. Notationz < y means that
x < yandx # y. Adioid D is complete if it is closed
for infinite sums and the distributivity of the multiplica-
tion with respect to addition extends to infinite sums/: (

ceD)YVACD) c® (P z)= P cox. Forex-
z€A z€A

ample, Rimaz = (RU {—oc} U {+00}, &, ®) is complete.
The set ofn.n matrices with entries in a complete diai

pathp, | p |; is the number of edges in the path. A circuit is

a path which starts and ends at the same node.

Theorem 1[BAC 92] For matrix A with induced graph

G(A), if the cycle weights inG(A) are all strictly negative,

then there is a unique solution to the equatios A® z @

B which is given byA* @ B.

Definition 2 [COC 99] A (min, max, +) function of type

(n, 1) is any functionf : R* — R!, which can be written

as a term in the following grammay: = x1,xa,...,x, |

f®a | fAf | f& f wherea is an arbitrary real

aumber ¢ € R). The vertical bars separate the differ-
nt ways in which terms can be recursively constructed.

A (min,max,+) function of type(n,m) is any functionf

: R® — R™ such that each componeftis a (min, max,

+) function of type(n, 1). The set of fnin, max, +) func-

tion of type(n, m) is noticedF'(n, m) and is a special class

of topical functions which are homogeneous, monotonic

and nonexpansive. Only homogenet\(¢ R,Vz € R™

f(A®z) = A® f(x) in the usual vector-scalar convention:

(A®x); = A®z;) will be used. They includenfax, +) lin-

ear maps and (min, +) linear maps which can be written re-

spectively asy(z); = @ (A;j®x;)wheredisan xn
1<j<n

matrix with entries inRU{ —oco}; h(z); = A (Bij®z;)

1<j<n

whereB is an x n matrix with entries inR U {+o0}
Let f € F(n,n). AsubsetS C F(n,n)is said to be a max-
representation of if S is a finite set of (max,+) functions

such thatf = A h. A subsetl’ C F(n,n) is said to
hes

be a min-representation g¢fif T is a finite set of (min,+)

functions such thaf = A k. The mutual distributivity of
heT

endowed with the two operatioms and® is also a com- ® andA ((z®y)Az = (xA2)D(yAz) and(zAy)®z =
plete dioid which is denoted™”. The elements of the (z@z)A(y® z) ) entails that everyrfin, max, +) function
matrices in the (max,+) expressions (respectively (min,#)ave a max-representation and a min-representation.
expressions) are either finite of(respectivelyT’). We can The set of (min, max, +) functiong'(n,n) has a natu-
deal with nonsquare matrices if we complete by rows afal representation as anfold cartesian productf'(n, n)
columns with entries equals to ( respectivelyl’). The =F(n,1)x...F(n,1). Let R; the set{h; such that: € S}.
different operations operate as in the usual algebra: THée rectangularisation of, denotedrec(S) , is defined by
notation® refers to the multiplication of two matrices in rec(S) =R1XRaX...XR,,. In other words, a sef of min-
which theA-operation is used instead of. The mapping max functions is rectangular if for all, »’ € S, and for
f is said residuated if for alj € D, the least upper bound all i = 1, ..., n the function obtained by replacing tligh
of the subse{z € D | f(x) < y} exists and lies in this component of. by thei-th component of,’ belongs taS.
subset. The mapping=x(Rma.)" — A ® x defined over So,rec(S) is finite whensS' is finite andS C rec(S) .
RmaziS residuated [BAC 92] and the left— residuation Dynamics of the form are consideredk) = f(x(k —1))
of B by Ais denoted byA\B = max{z € (Rmas)" such ,Vk > 1 andz(0) = ¢ € R™ wheref is a (min, max, +)



function of type(n,n) R® — R™. The cycle time vector is firing at absolute time; if and only if the two following
is defined byy(f) = lim z(k)/k if it exists. It does not conditions are satisfied:
koo 1) transitions is enabled for the current marking: every
depend org. In the following theorem, the notion of cycle Upstream placg of P; contains at least one token. Let
the entrance date of the token which is also the date of firing
of the upstream transition of this place.
3) For thesemantic And,the value ofz; is such as{x; +
aj) < z; < (z; + B;) for every upstream placge; € P;
and araa; € I; (every time condition has to be fulfilled).

F(n’n)i The _tvyo following conditions are equalent: For thesemantic Weak-And, the value ofz; is such as:
(i) It exists a finitex such thatr < f(x) (respectively,
(x; + a;) < x; for every upstream plage; € P; and arc

z > f(x)) (i) x(f) > 0 (respectivelyy(f) < 0) . » ;
. . e < . .
The calculation of the spectral vector can be realized Je € [ianddj € B, ; < (z; + 3) (the firing may wait

follows. If ¢ is a circuit, its cycle mean, denoted(c) is untl the last time interval).
defined bym(c) —| ¢ |» / | ¢ |i(the notation/ repre- Now, let us consider the variahlg(k) as the date of the kth

sents the classical division). A nogeis upstream from firing of transitioni and P; the set of the upstream places
. i C o o _ pstre of this transition. If we take the assumption of functioning
i, denotedi < j, if either: = j or there is a path

in G(A) from j to i. Vector u(A) € R" is defined by FIFO of the_transmon which guarantees the condmoq of
3 . non overtaking of the tokens between them, a numbering of
wi(A) = max{m(c) | i < ¢}. If f € F(n,n)is . .
; . ! the events can be carried out and the model can be written
max-only andA is the associated matrix ovét,, ., then

. = L as follows: Givenn; the number of the present tokens in
X(f) exits andy(f) = u(A) . The result is identical for . ) place; at the instant = 0 (initial marking), for each
min-only function. If.S andT are rectangular max and

iti (ke — N < s < (e —
min-representations, respectively, pfe F(n,n) , then transition 'J@?,i(%(’“ ny) ;) < zi(k) < jé}pi(xj(k
x(f) = A x(h) = D x(9)-
hes g€eT

time which always exists itF'(n,n) makes it possible to
check the existence of a solution of different inequalitie
and equalities.

Theorem 3 [GAU 98] [COC 99] [COC 01] Letf €

nj)+ ;) if the semantic is And;@P (z;(k —n;) + ;) <

JjEP;
Ill. M ODELS OFTIME STREAM EVENT GRAPHS xl(k) < @ (Z‘J(k _ nj) + ﬂ]) if the semantic is Weak-
j€P;

Time Stream PNs are an extension of Petri nets which al- !

lows to represent complex synchronizations and temporAhd.

compositions of the tasks or processes which are carrigeét us notice that the inequalities of P-time Event Graph

out [COU 96] [DIA 97]. Time Stream PNs directly extend correspond to semantic And.

P-time PNs. We consider Event Graphs which constitute a _ _

subclass of Petri nets of which each place has exactly offe (min, max, +) algebraic models

upstream and one downstream transition. )
P One can represent the daték) by the following formal

A. Description of Time Stream Event Graphs power series iny: z(7) = k@z a(k)~*. Variable may also
€

Definition 4 (Time Stream Event Graph)Let [; a set of o raqarded as the backward shift operator in event domain
upstream arcs of a transitighand P; the corresponding (formally, va:(k) = x(k — 1)) and~-transforms of func-

set of upstream placgs. A Time Stream +Event Grafh Is ns can express this effedeciprocally, the dater alge-
Event-Graph such as: an interal, ;] (@™ U0) x (Q"U  prajc functiond (X associated to a formal(z(7)) on

JTOT) is asspcia;t]?q to eaah € I; ; definedhbelow,'gspe- a horizon is a function obtained by developing(z(~))
cial semantic of firing is associated to each transition. 5 epraically with dater variables over the appropriate di-

Considering one outgoing arc from a given place, when ganqjons. It describes every connection which links the
token is received by that place at time the token should jitterent variables which composel = (z(k),z(k +

remain in the place during an amount of time defined by il) ooy z(k -+ 1))! with (min, max, +) functions. The evolu-

value inside the rangr + «,x + 3] associated with the 5 of the system is described by the following equations
arc. As the firing time of a transition depends on the ”at“r\ﬁheref— and f* are formal (min, max, +) functions on
of the processes which will be synchronized, different sqpq get of sequences OvBrU {ioo}, ’

mantics of firing may be associated to a transition. In this

paper, we consider two types of semantics, And and Weak- F (@), u() <z(y) < fHA),u))
And, which we will use later. They are defined by a couple
[ + oy, z + (;] associated to each ingoing arc. The vectors: andu are respectively the state and the input.

Definition 5 For a transition; , let I; denote a set of We can also introduce the outpuby y(v) = C(v) @ z(7)
upstream arcs ané; the corresponding set of upstreamwithout reduction of generality. As the type of the system
places. A transition of the type "And” and "Weak-And” is defined by the types of the functiorfs and f+, we



can characterize the model by the following couple (typ@roof

of =, type of f*). The type ((min,max,+), (min,max,+))

represents naturally the more general mathematical case- o (7))@ B u(y) < 2(7) <
Under the assumption of the existence of a solution, they - -

define corresponding classes of interval descriptor systems.
y(v) =Cy) @ z(v)

Af ®x(7)® B u(y)

&
I =>=

B.1 Timed Event Graphs

If the lower bound defined by~ is a (max,+) function and So,z(v) < (A" \z(y)) A 71\ A @ x(y) ® Bfu(y)
the upper bound is infinite, the (max,+) inequation can be i=

obtained. In this case, equality arises from the assumption

that there is no extra delay for firing transitions whenevet(7) < B™\z(7)

tokens are all available. y(v) < C(y) @ a(y)

() = Ay @ a(v) DB @ u(v) andC(y) @ z(7) < y(v)

y(v) = Cly) @ z(v) i

aveck € [ks k], dim(z) = n,dim(u) = ¢,dim(y) = Inshort,z(y) < A \z(y) AC\y(v) A \ Af @ z(y) @

dim(z) = m, =1

dim(A) = n x n,dim(B) = n x q, dlm(C’) mxn Bru(y)

el (O = HE @) =M i ui) < Br\a(n) andy(a) < )@ aly) O
Clearly, this set contains (min,max,+) functions. Notice,

B.2 Time Stream Event Graphs that the first expression presents an usual backward part

A~ A (C but also, in th herg
For stream Petri nets for semantics And and Weak( \e(7)) A (Chy(v)) but also, in the case wherd,

And, f~(z(v),u(v)) can be a (max, +) function and
ft(x(v),u(y)) a (min, max, +) function. We can andB; have positive exponents a forward paA((A+®

write: f(z(y),u(7)) = A~ @ () & B-u(y) and i=1
i z(v) ® B u(v))) which increases the complexity of the
(), u) = A\ Af @ 2(y) ® Bfu(y) problem and forbids the writing of simple equations on a

=1 short horizon as the classical backward equations in con-
So, this form generalizes the form of Timed Event GraphgOI In other words, we must solve a (min, max, +) fixed-
if we take: j, — 1; A~ — At — Ay; B~ = B — B point problem of typer < f(z) over the horizon of the
known values of the contral and the outpuy. Let us no-
IV. ESTIMATION tice thath is not a (min, max, +) function of type (n,m)
which is homogeneous. The form of our practical problem

The objective is to find the least upper bound:¢%) know- is to find a greatest (if = exists) such that

ing the values of the input(k) and the outpuy(k) for &
from k, to k¢ with &, andk; the numbers of start and final x < f(z) )
events. The model is supposed to be known on the same o
horizon of observation. One can notice that this prOblerth f a non_homogeneous (min, mawx, +) function
of estimation is thus different from the control synthesisyhich can be defined by the following grammaf: =
which considers that the control and the output are the up-, z,, ..., 2, | f®a | f A f | f @ f wherea,b are
known data. The upper bound of the estimate and the cgrbitrary reals.
state have a similar type but meet two different aims.
As functionsf ~ is residuated , the determination of theA. Analysis by spectral theory
greatest solution:(~y) of the following inequality set, will
give the greatest estimate. In the aim of applying the spectral theory about these
theorem 6 The problem of the greatest estimate can b#inctions, we will realize a relaxation by associating in
written as follows: search the greatest state of the followinfl€ above definition a variable, to b such thath is re-
inequalityz(y) < h (z(v)) with placed byb ® xy. So, the problem is to find a greatest
y = (z0,21,...,2,)" (if y exists) such thaty = 0 and
x; < fi(wo, x1, ..., xy)") fOri # 0. If we introduce the ob-
(A= \z (7)) A (C\y(7))A vious inequalityzg < z¢ , the general problem becomes:
h(z(y)=1| & & " (1) find a greatesy = (g, 1, ..., 7,)" (if y exists) such that
( i/=\1(Ai ®l(7) @Bi u(,}/)) ) 9 < xg andzx; < fi(.fo,xl,...,.%‘n)t) for 4 75 0 with
xo = 0. In other terms, we have to solve the new system

with the constraints,(y) < B~ \z(7y) andy(y) < Cz(y) y<g(y) (3



with ¢ an homogeneous function of type + 1,n + 1). parth; verifiesh(x) < x and gives an upper bound of the
The followin theorem makes it possible to apply the specsolutions ofz < h(z) andz = h(x)

tral theory to the estimation problem. Proof
Theorem 7 The system of ((max, +), (min, max, +)) type Givenh(z) = hy(x) A ha(z) A hg(z) A .... with h; a max
can be defined formally by only function.

- A circuit whose weight equals zero, is associated:¢o
which is associated to every known values particularly the
( To ) <h ( To ) (4) outputs. If we assume that the system is observable, from
z(y) )~ "\ z(v) every internal transition, there exists a path to at least one
output transition in the event graph. In the associated
graph, the direction of the paths are opposite and for ev-

with ery vertex corresponding to a transition /gtit exists a
o path going fromzy. The definition of the spectral vector
< o ) _ | (A\z() A (C\(7) @ 20)A zTO_WZ I?;S(hl) = 0. Consequently, it exists, such that
T - ]’1 — .
Z‘(’Y) /\ (Aj_ ® l‘(’}/) S5 Bj_u(')/) ® 1‘0) As h(l‘l) = h1(‘Tl)/\hg(l'l)/\hg(xl)/\.... < hl(l‘l) =1,
=1 the greatest solution of "backward” part verifiegr) < x
Remark :

As the resolution is now applied to system (3), the cor- It can be proved that the greatest solution of thg equality
straintsu(~) < B~\z(7) andy(y) < Cz(v) are replaced & = hi(x) , denotedz, is also the greatest solu_t|on sat-
by 2o = 0 which must be verified. As the approach is'SYing « < hi(z). Moreover, as: < h(z) is equivalent

based on a minimization af, andz , a fault is detected t© the set of inequalities < h,(x), every variabler must
whenz, < 0 satisfy each inequality and particulatty< h,(z). Conse-

Theorem 8 quently, each solutiom dez < h(x) is lower than or equal
It exists a solution verifying the system (4) on horizoif to xo. Finally, this set includes the solution set satisfying

and only if x (@5, ,(.)) > 0 v = h(z) -

Proof The final inequality set presents the general fom]'heorem 111n a structurally observable event graph,
z(y) < ¢(x(y)) and is associated to the algebraic inequal- .

ity X < ®;,,(X). The spectral vector is hesg®; ;(X)). there exists a solution verifying the equal'(yx(() ) ) =
The system of ((max, +), (min, max, +)) type is reduced
to a (oo, (Min, max, +)) type and can be analyzed by the .
relevant theorem (3). If the cycle time verifies the correk ( x?,y)
sponding condition of existence, it describes a compatible

interval descriptor system. O Proof The spectral vector of the complete system is lower
Now, we consider the expression of the spectral vector aRfan or equals zero. The termdz(k — 1) & Bu(k) ®

its underlined structure of. o xo] andu(k)\(B\xz(k)) Ay(k)\(Cz(k)) can create strictly
In the function, we can consider the classical "backward’negative circuits and in this case, there is no solutionl

part. ( i((JW) ) < ( i_‘()py) ) with hy ( i?w) ) _  B. Algorithm

The notation) (i, .) represents the lingof matrix M, and
X M(.,7) represents the colums of matrix M. Now we
(A7 \z(7)) A (C\(y(v) ® x0)) specify the model of Time Stream Event Graphs as follows:

The structural observability (respectively controllability) , (1)

gives a condition to observe an effect in the output (resgi (@(),u(v)) = 14\1 ha(2(7), u(7))

transition) whose origin comes from at least one internal a

transition (resp. input) and allows us to introduce the folwith j(i) is the number of the functions max-plus ortly
lowing propositions. corresponding to component (transitian)and

Definition 9 [BAC 92] An event graph is structurally con- h;(z(v), u(v)) = A} (i,.) @ z(y) @ B, (i,.) @ u(y)
trollable if, every internal transition can be reached by &lementA4;" (i, ) equalse (respectivelyB;" (i, j) = ¢)
path from at least one input transition. An event grapif there are not places connecting internal transition di-
is structurally observable if, from every internal transitionyectly fromz; to x; (respectively from input transition,
there exists a path to at least one output transition. to internal transitionz;). Al*(z‘, )= (T,T,...,T) and
Theorem 10A structurally observable event graph verifiesBl*(i, )= (T,T,...,T) for each component; such that
X(®r,.:(.)) = 0 and the greatest solution of "backward”{ > j(7).

) or there exists no solution in inequality (4)



Remark The matricesAjr and B," can comprise at the of the process. So, the fault detection approach is as fol-
same times andT" elements. The manipulation of theselows.
matrices is possible since we considered a complete dioigtor a4 given horizon I, check(®, ;(.)) = 0 in a struc-

? 1,0\

turally observable event graph or chegk®,, ;(.)) > 0

The effective calculation of the greatest control can bgtherwise. In any cases, the cas€®;, ;(.)) is not great-
made by a classical iterative algorithm [HAS 99]. The resast than or equals zero) corresponds to the existence of a
olution ofz < f(x) is given by the iterations of;11 < fault. Consequently, the spectral vector in a structurally
f(zi) A; if the starting point is greater than the final solu-gpservable event graph, corresponds to the vector of par-
tion. Numberi represents here the number of iteration anﬁy space. Moreover, the structural analysis of the spectral
not the number of component of the vecior vector shows that equalities linking only known values can
Following this framework, we give below an algorithm speqe generated. This fact shows that a strong analogie can
cific to the estimation of the greatest state for Time Streame realized between substructure generated by the spectral

Event Graph. It can also be applied to Timed and P-tim@ector and analytical redundancy relations of parity space.
Event Graphs. Observer

Step 0 (ky) — T \i(kys) — T If the resolution is applied to system (1), the constraints

Repeat until\; (k) = p;(k) for 1 <i < n and u(y) < B\z(y) andy(y) < Cz(y) must be verified
ke < k < ky ! ! - when the system follows its normal or nominal model and

. y(k) = y(k) . Otherwise an evolution of the process is
Step 1 Ai(k) — pi(k) A [AT(LiN\AG + 1)) A gt(at()actedg( ) P
[C(,)\y(k)]
Step 2 :u;(ks) — \i(ks)
i(4) V. EXAMPLE

i(
pi(k) — )\i(k)/\l/_\l[A;“(i, Jeuk—1)®B (i,.)®u(k))
B In the aim of clearly illustrating the approach, we consider

for k > ki a tutorial example. Calculations has been realised with
As the general algorithm is known to be pseudoScilab.
polynomial, the above algorithm converges to the greatest

state for Time Stream Event Graphs (with semantics And

and Weak-And) in a finished number of iterations.

Proposition 12

For Timed Event Graph , the algorithm converges to the
greatest state in one iteration. And-weak
proof

- If fis residuated, then it exists h such thath < Id and
hof > Id [BAC 92]

S0,A® (A\z) < IdandA\[A® z] > Id
ConsequentlyA\[4A @ pu(k)] > wu(k) andA\[A @ p(k) @
B ®u(k+1)] > u(k) by isotonie of\

- moreover, step 3 entailg k) < A(k)

In short, (k) < A(k) AN A\[A® (k) & B @ u(k +1)]
Moreover, P, (16} X P, y

A\p(k+ 1) AC\y(k) = A\[Mk+ 1) A[Au(k) @ Bu(k + . .
Fig. 1. Time Stream Event Graphs
D] A C\y(k) = ’ P
AN+ 1) A A\[Ap(k) @ Bu(k + 1)) A C\y(k) =
A\ + 1) AC\y(k) AN A\[Ap(k) @ Bu(k +1)] = Estimation
Ak)NA\[Au(k) ® Bu(k+1)] b k) = T forth
fir(st)step.\[ (k) & Bu(k +1)] becauseu(k) orthe We consider a simple Time Stream Event Graph (see Figure

Finally, asu(k) < [A\u(k +1)] A[C\y(k)] , the algorithm 1) whose nominal modél/;is as follows:

does not need a new minimisation by step 1. O

g € ¢ € € ¢

C. Application to fault detection 1l ¢ e € € ¢

_ A- _ e 1 € 2 ¢ ¢
Parity Space e 2 3 ¢ ¢ ¢ |’

As a fault is not modelled in the nominal model, it entails e € e 1 € ¢

an incoherency between the nominal model and the change e € ¢ ¢ 1 ¢
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Knowing the input and the outpout frotn= 1 to 10, the
procedure detects the fault : the constraintss C®z =y
and B~ ® v < Z are not verified on the horizof, 10)
(y(k) is not lower than or equals @(k) for k = 4 to 10
andB~ ® u(k) is not lower than or equals (k) for k=6
to 10)
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VI. CONCLUSION

and

In this paper, we propose an approach based on an con-

straint propagation (Declerck P. and Didi Alaoui K. 2003)

which estimates the greatest solution in Stream Event

Graphs. The particular case of the classical state equa-
C=(ec cccce). tion of Timed Event Graphs can be reformulated under the
First, we calculate an acceptable trajectory which satisfiderm = < f(z) with f(z) a special (min, max,+) func-
the algebraic model of the system in the horizbri0]. tion. This formulation is similar to the form of observer in

classical automatic control and in usual algebra. A "back-

2 5 6 7 8 9 10 ward/forward” resolution calculates the greatest estimate of
9 11 13 17 19 22 24 the state. Moreover, the checking of the estimate make it
g 1(1) g’ H 12 gg gé possible to detect the possible incoherencies in the model
9 15 17 20 22 25 as variations in the values of temporizations. At last, the
10 13 15 18 20 23 25 spectral vector in a structurally observable event graph,

9 11 14 16 19 21 24 ; ;
N T e show a strong analogie to the vector of parity space.
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