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Abstract

In Partially Observable Petri Nets, a necessary parameter is the guaranteed hori-
zon, which allows the modelling of the estimation problem with the counter form
and can be exploited in estimation for any linear criterion: a problem is the on-
line estimation of the guaranteed horizon, which is a maximum sequence length
relevant to a sliding horizon or a receding horizon starting from the initial mark-
ing. Considering large scale Petri nets, the objective of this paper is to facilitate
the resolution by the construction of a triangular form guiding a sequential reso-
lution of the problem based on substructures. This study shows that the classical
Dulmage-Mendelsohn decomposition can be applied to a class of Petri nets where
the unobservable induced Petri Net is mainly Forward Conflict Free. An exten-
sion of this result to any Petri net based on the building of an associated Petri
net is made.

Keywords: structural analysis, bipartite graph, Petri nets, estimation, sequence,
horizon, unobservable transitions

1 Introduction

The aim of on-line estimation of optimal current subsequences in Partially Observ-
able Petri Net is to determine firing sequences of unobservable transitions, which are
coherent with the observed label sequence produced by the observable transitions and
have an optimal value for a criterion, which can present the form of a linear weighting
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of the transition firing numbers [9] [11]. Various criteria can be treated as the mini-
mum or maximum number of firings in the fault detection presented in [2]. Another
criterion is the balance-sheet, that is a global price depending on the costs and gains
provided by the tasks [9]. The studies [33] [24] consider the least cost, where each
transition has a nonnegative cost in labeled Petri nets. Applications of estimation can
be found in fault detection [16] [2], diagnosability [1] [29] [30], estimation for untimed
Petri nets [9] and schedulability analysis for P-time Petri nets [4] [10].

In estimation, an interesting objective is that any possible sequence can be modelled
in the estimation problem on a receding horizon or a sliding horizon. Indeed, as we
desire to describe all the sequences and to write a finite set of relations describing the
model with the counter form (System (8) in [9]), a horizon which is sufficient large is
necessary. Particularly, if the estimation considers an observation relevant to a given
finite time, the length of all the possible sequences starting from the initial marking and
finishing in this event must also be finite, otherwise, the modelling of the estimation
problem is not sufficient to characterize the relevant unobservable sequences [11]. A
consequence is that this situation can affect the estimation and the fault detection.
This difficulty can arise due to an error modelling, the lack of sensors or inadequate
positions of the sensors in the Petri net.

Therefore, the objective is to determine a majorant of these horizon lengths relevant
to the current observations (in lattice vocabulary, a majorant of a subset is an element
not necessarily belonging to the subset, which is greater than any other element of the
subset [8]). In addition, a finite majorant brings a useful condition to write a finite set
of constraints describing the evolution of the marking and the transition firings [16]
[1] [2] [9]. The paper [11] presents a developed motivation of this problem.

However, Petri nets can describe large scale systems as production systems [5]
and transportation systems [14], which can limit or even forbid the computation of
an estimation approach. Indeed, many estimation approaches consider modest-size
systems as they suffer of the state explosion particularly when the estimation tries to
determine all the numerical solutions of the state space. Clearly, a computation based
on a sequential resolution of smaller subsystems can improve the numerical efficiency
of the chosen technique.

In the context of large scale systems, the aim of the paper is the procurement
of a partition of the transitions and places in notable sub-structures, which is the
support of a sequential estimation. Indeed, the computation (and also the algebraic
analysis [11]) in large scale Petri nets can be guided by a structural analysis based
on a decomposition of any bipartite graph (and its matrix representation, which is
rectangular in general). An interest is the possibility to treat a part of the Petri net
even if the consideration of the complete system leads to a state explosion.

The aim is also the establishment of a case study which highlights all the
remarkable substructures of the DM decomposition and is usable in a standard paper.

Moreover, an objective is also the improvement of the numerical efficiency of any
algorithm applied to the estimation problem in the context of this paper, or potentially
outside, in the case of Partially Observable Petri Net defined in this paper. Clearly, the
reduction of the size of the subsystems which must be treated directly by an algorithm
provides a faster processing and a reduced necessary memory space.
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In this paper, we choose the Dulmage-Mendelsohn decomposition (DM decom-
position) [17] [18], which has been adapted by different authors for the structural
resolution of large scale systems in various fields [26] [28] [12] [7] [6] [27] [11]. The DM
decomposition highlights remarkable subsystems as the overdetermined subsystems
(roughly speaking,”too many” equations) and the underdetermined subsystems (”too
few” equations). Depending of the applications, these subsystems must be desired
or avoided. In the field of the simulation of continuous systems, applications are the
debugging of software based on modeling languages [6] [27] which focuses on rank
deficiencies. [6] works on simple electrical systems while [27] considers different plants
as a reduction reactor extracted from a chemical looping process, an iron-based oxy-
gen carrier particle in the presence of methane, and a transient gas pipeline network,
which are modeled under a partial differential–algebraic equation system. Performing
the Dulmage–Mendelsohn partition on the system of equations resulting from dis-
cretizing, this reactor model yields a large square system (1,293 equations × 1,293
variables), and an over-constrained system (25 equations × 17 variables) suggesting a
difficulty in the modelling of the plant. Another useful field is fault detection in con-
tinuous systems, which is based on overdetermined subsystems. The studies [12] [13]
are the first papers considering the DM decomposition allowing the computation of
a basis of ARRs. Analogous to bond graphs, the study [19] improves this structural
approach by taking into account integral and differential causal interpretations for
differential constraints. The case study in [19] is an Advanced Water Recovery Sys-
tem which converts waste water to potable water (35 equations × 33 variables). The
research theme treated in [21] is the fault detection and isolation in hybrid systems
which are characterized by continuous behaviors that are interspersed with discrete
mode changes. Recently, [22] proposes a generalization of the DM decomposition for
arbitrary graphs. Considering any triangular form of the unobservable induced subnet
of large scale systems, [11] analyzes the RSB property. Contrary to [11], this proposed
paper considers not the dual problem but the primal problem and focuses on the appli-
cability of the DM decomposition and the relevant sequential resolution; it highlights
a class of unobservable subnets, where the DM decomposition can directly be applied.

Let us complete this short overview by some studies which go beyond automatic
control. The paper [35] investigates deadlock control and applies structural analy-
sis techniques, which are based on solving systems of linear algebraic equations. To
gain an extra computational speed-up when solving sparse linear systems, a sequen-
tial clan-composition process, represented by a weighted graph is examined. The
study [31] considers the design of Petri net-based cyber-physical systems as a sys-
tem containing beverage production and distribution machine. This paper focuses on
the splitting of the system into sequential components that can be further imple-
mented as an integrated or distributed system. Employing the p-invariant property,
[15] proposes a method for controller synthesis where the original Petri net model is
broken down into some smaller models in which the computational cost reduces signif-
icantly. The approach is applied to typical production systems and automated guided
vehicle systems. In [32], the decomposition into state machine components is made
with p-invariant and hypergraph theory, both methods having their advantages and
disadvantages.
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In this paper, we assume the following assumptions for the different Petri nets
under investigation:

- Assumption AS−1 : the incidence matrices and the initial marking (denoted
M init below) are known.

- Assumption AS−2 : the Petri net is live.
- AssumptionAS−3 : the firing number of some transitions (observable transitions)

is known while the current marking of all places is unknown.
- Assumption AS−4 : the firing number of each observable transition is finite.
- Assumption AS − 5 : the observations are distinguishable, that is, the same

label cannot be associated with more than one observable transition ([2] considers the
estimation problem and not the structural analysis for the case of indistinguishable
events).

- Assumption AS − 6 . A unique firing of a transition on all transitions occurs at
each time.

Remark. Assumption AS−3 implies that partially observable Petri nets, where
the transitions are partially observable and the places are unobservable, are only
considered in the paper. The structural analysis of partially observable places and
transitions is a perspective.

Remark. Assumption AS − 6 is a facility to express the sequences under a form
without concurrency. A close notion is the single server semantics clearly presented in
[24]: if a transition indicates an operation capable of executing by a single server in
T-time Petri nets, a transition may only fire once at a time, regardless of its enabling
degree. In Assumption AS−6 , a transition may only fire once at a time and moreover,
the firings of two transitions cannot be simultaneous.

The assumption of boundedness of the marking and the hypothesis of acyclicity are
not considered in this article contrary to many papers in this topic: the Petri nets in the
examples can present circuits and self-loops. To facilitate the presentation, we consider
that a software (Matlab, GNU Octave,...) making a permutation of the rows and
columns of the induced unobservable Petri net has built the canonical decomposition
given in the different tables. The algorithms of maximum matching as the classical
”Hungarian method” (developed by H. Kuhn) and the algorithm of permutation of the
rows and columns of a matrix [26] [28] leading to its DM decomposition are out the
scope of the paper. As the paper focuses on the sequence length, the state estimation
studied in many references is out the scope of this paper [16] [2] [23] [9] [3] [10].

The paper is organized as follows. Section 2 gives the preliminary notations while
Section 3 describes the principle of the computation of guaranteed horizons and focuses
on receding horizons. This principle is exploited and developed under a structural
point of view in Section 4, which considers the determination of the substructures of
the unobservable induced Petri Net. Generalizing the applicability of this technique,
Section 5 is based on the construction of an associated Petri net close to the initial one,
which can be decomposed with the DM decomposition. The on-line sequential resolu-
tion based on the substructures is discussed in Section 6. In the context of continuous
systems, Appendix 1 in Section 9 illustrates the DM resolution and the relevant res-
olution with a simple electrical system. The efficiency of the off-line decomposition is
discussed in Section 5.4 while Section 7 analyzes the limitations of the approach.

4



2 Preliminary notations

2.1 Notations for Petri nets

The entry in the i − th row and j − th column of a matrix A is denoted A(i, j).
The notation A(i, .) represents the row i of A while A(., j) expresses the column j.
The notation |Z| is the cardinality of set Z and the notation AT corresponds to the
transpose of matrix A. Symbol \ is the set difference, that is, U \ V is the set formed
by the elements of set U that are not in set V. The 1-norm of vector u is equal to the
sum of the absolute values of the vector elements and is denoted ‖ u ‖1 . The notation
bxc represents the greatest integer less than or equal to x. A Place/Transition (P/TR)
net is the structure N = (P, TR,W+,W−), where P is a set of |P | places and TR is
a set of |TR| transitions. The matrices W+ and W− are respectively the |P | × |TR|
post and pre-incidence matrices over N, where each row l ∈ {1, ..., |P |} specifies the
weight of the incoming and outgoing arcs of the place pl ∈ P . The incidence matrix is
W = W+ −W−. The preset and postset of the node v ∈ P

⋃
TR are denoted by •v

and v•, respectively. A source transition tri ∈ TR satisfies •tri = ∅. The notation Ω∗

represents the set of firing sequences, denoted σ, consisting of transitions of the set
Ω ⊂ TR. The vector σ of dimension |TR| expresses the firing vector or count vector
of the sequence σ ∈ TR∗, where the i -th component σi is the firing number of the
transition tri ∈ TR, which is fired σi times in the sequence σ. A source transition
tri ∈ TR satisfies •tri = ∅ and its firing count can be infinite.

The marking of the set of places P is a vector M ∈ N|P | that assigns to each place
pi ∈ P a non-negative integer number of tokens Mi, represented by black dots. The
i -th component Mi is also written M(pi). The marking M reached from the initial
marking M init (which replaces the usual notation M0) by firing the sequence σ can be
calculated by the fundamental relation: M = M init+W.σ. The transition tr is enabled
at M if M ≥W−(., tr) and may be fired yielding the marking M ′ = M +W (., tr). We
write M [σ � to denote that the sequence of transitions σ is enabled at M , and we write
M [σ � M ′ to denote that the firing of σ yields M ′. To easily describe the Petri net
with incidence matrices, we assume that there is at most a unique arc between a place
pl and each input (resp. output) transition xi of this place: each weight (W )

+
l,i 6= 0 (

respectively, (W )
−
l,i 6= 0) corresponds to a unique arc. Otherwise a simple modification

of the Petri net yields the desired form.

2.2 Notations for estimation

Remember that only transitions are partially observable: a labeling function L : TR→
AL ∪ {ε} assigns to each transition tr ∈ TR either a symbol from a given alphabet
AL or the empty string ε. In a partially observed Petri net, we assume that the set
of transitions TR can be partitioned as TR = TRobs

⋃
TRun, where the set TRobs

(respectively, TRun) is the set of observable transitions associated with a label of AL
(the empty string ε). In this paper, we assume that the same label of AL cannot be
associated with more than one transition of TRobs (Assumption AS − 5 ).

The TRun−induced subnet of the Petri net N is defined as the new net Nun =
(P, TRun,W

+
un,W

−
un), where W+

un and W−un (respectively, W+
obs and W−obs) are the
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restrictions of W+ and W− to P × TRun (respectively, P × TRobs). This unobserv-
able subnet of the Petri net is also named Unobservable Induced Petri Net (UIPN).
Therefore, Wun = W+

un−W−un (respectively, Wobs = W+
obs−W

−
obs). A reorganization of

the columns with respect to TRun and TRobs yields W =
(
Wun Wobs

)
. The follow-

ing notion of Forward Conflict Free (FCF) is adapted to the UIPN: the UIPN is FCF,
i.e., any two distinct unobservable transitions have no common input place (formally,
|(p•l ∩ TRun)| ≤ 1 for any place pl).

Notation xi expresses an unobservable transition, belonging to TRun while an
observable transition belonging to TRobs is denoted yi. The notation of the count vec-
tors is taken for x of dimension |TRun| and y of dimension |TRobs|. The reorganization

of the components of σ yields σ =
(
xT yT

)T
.

Starting from the marking M<1>, which is the initial marking M init at time zero,
the estimation of the current unobservable sequence is based on the treatment of the
data produced by the observed transitions successively in an on-line procedure. Nota-
tion x<k> represents the count vector for the unobservable transitions TRun for step
< k > separating two successive observations for k ≥ 2. From M<k>, the transition
firings relevant to x<k> and y<k> allow the establishment of marking M<k+1> : for-

mally, M<k>[σ<k> � M<k+1> such that σ<k> =
(

(x<k>)T (y<k>)T
)T

. As M<1>

is the initial marking, we assume that x<k> = 0 and y<k> = 0 for k ≤ 0. So, the esti-
mation limited to one step must consider M<1>[x<1>y<1> � M<2> for step < 1 >,
then M<2>[x<2>y<2> � M<3> for step < 2 > and so on. The generalization to a
horizon composed of several steps is immediate. Note that these notations are not
cumulative as we can have x<3> = 0 but x<1> 6= 0 and x<2> 6= 0 : the condition
x<1> ≤ x<2> ≤ x<3> does not hold. The notations x<0>→<k> =

∑
k′=0,...,k

x<k′> and

y<0>→<k> =
∑

k′=0,...,k

y<k′> allow to write shorter expressions.

3 Guaranteed horizons

3.1 Guaranteed horizon for a sliding horizon

In this section, the objective is to determine a guaranteed horizon (in other words, a
majorant of the sequence lengths) such that any possible sequence x<k>y<k> of the
Petri net can be expressed for step < k > when the sequence of the observed firing
events of the transitions of TRobs is known. So, the sliding horizon is limited to a
unique step in this section. With that aim, we consider the greatest possible length of
any unobservable sequence x<k> which is the worst case in terms of number of firings
for the unobservable transitions when Assumption AS − 6 is taken. Consequently, a
guaranteed horizon denoted h<k>

g for step < k > and its relevant sequence x<k>y<k>,

is given by h<k>
g = max ‖ x<k> ‖1 +1, where 1 corresponds to the unique obser-

vation expressed in y<k> (Assumption AS − 6 ). Consequently, the modelling of the
estimation problem on a sliding horizon reduced to < k > can exploit this parameter
to characterize all the unobservable sequences and to treat the estimation problem for
any criterion [9]. Note that the determination of the guaranteed horizon takes a pes-
simistic point of view: if Assumption AS − 6 is removed, concurrency is possible and
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Table 1 Main notations

Notation Description
P Set of places pi ∈ P
TR Set of transitions trj ∈ TR

TRobs Set of observable transitions yi ∈ TRobs

TRun Set of unobservable transitions xi ∈ TRun

W Incidence matrix
W+ (resp. W−) Post-incidence matrix (resp. pre-incidence matrix)

Wun Incidence matrix of the unobservable induced subnet
W (i, .) Row i of W

W (., j) (resp. W (., trj)) Column j of W (resp. column of transition trj)
Mi Marking of place pi with i ∈ {1 ,. . . ,|P |} (Mi = M(pi))

M init Initial marking (M init
3 : initial marking of place p3)

< k > Step k of the estimation
M<k> Marking at step < k > (M<1>= M init)

x<k> (resp. y<k>)
Subsequence relevant to the unobservable transitions

at step < k >(resp. observable transitions)
x<k> (resp. y<k>) Count vectors of x<k> (resp. y<k>)

x<0>→<k> (resp. y<0>→<k>) Sum of x<k> (resp. y<k>) on horizon {0, 1, . . . , k}
‖ x<k> ‖1 Length of sequence x<k>

C Matching in the bipartite graph
S>, S=, S< Canonical subtructures

sequences having smaller lengths can be obtained. The following relations (1) and (2)
are simplified descriptions of the estimation problem as the firing conditions of the
unobservable transitions are neglected. The advantage is the fixed dimensions of the
matrices, which only depend on the numbers of places and transitions of the Petri net.
Relations (1) and (2) are deduced from the firing of an observable transition occurring
at the end of step < 1 > and < k > respectively.

For step < k = 1 >, the optimization max(c.x<1>) = max ‖ x<1> ‖1 with
c1x|TRun| unitary for the system [9]

−Wun.x
<1> ≤ b<1> (1)

with x<1> ≥ 0 and b<1> = M<1> −W−obs.y
<1> gives a majorant relevant to the

unobservable transitions, and so a guaranteed horizon max ‖ x<1> ‖1 +1 for the
sequence x<k>y<k>.

For the following steps k ≥ 2, a possible simplified system [9] is(
−Wun 0
−Wun −Wun

)
.

(
x<0>→<k−1>

x<k>

)
≤(

M<1> +Wobs · y<0>→<k−1>

b<k>

) (2)

with x<0>→<k> ≥ 0 and b<k> = M<1> +Wobs · y<0>→<k−1> −W−obs.y
<k>.

Theorem 1. [9] The following optimization

∇<k>
max = max ‖ x<k> ‖1
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for constraints (1) or (2), where x<k> represents the unobservable sequence of the
untimed Petri net for step < k >, defines a guaranteed time horizon

h<k>
g = ∇<k>

max + 1 (3)

for any sequence if ∇<k>
max is finite.

Example 1

y1 y2x1

p1 p3

p2

Fig. 1 Elementary Petri net 1 (example 1)

Let us consider the elementary Petri net 1 of Fig. 1. We have: P = {p1, p2, p3};

TR = TRobs

⋃
TRun with TRobs = {y1, y2} and TRun = {x1}. So, Wobs =

 1 0
0 0
0 −1


and Wun =

−1
0
1

 . For the observation sequence y1y2, the resolution of (1) directly

gives x<1>
1 = 0 for step < k = 1 > (no firing of x1 before observation y1) and

∇<1>
max = 0. The resolution of (2) yields x<1>

1 + x<2>
1 = 1 for step < k = 2 > (firing of

x1 at step < 1 > or < 2 > before observation y2) and ∇<2>
max = 1. As this example is

elementary, we can immediately deduce that the system follows the unique sequence
y1x1y2. These results are obtained despite that the self-loop is not represented in the
incidence matrix Wun contrary to W+

un and W−un. Now, the consideration of all the
relations describing the Petri net for step horizons {< 0 >,< 1 >} and {< 0 >,<
1 >,< 2 >} (the firing conditions of x1 are also considered) confirms the obtained
majorants ∇<1>

max and ∇<2>
max . �

3.2 Guaranteed horizon for a receding horizon

In this section, we consider the receding horizon going from < 0 > to < k > where
the Integer Linear Programming problem (ILP problem) is

max(c.x<0>→<k>) such that (4)

−Wun.x
<0>→<k> ≤ b<k> (5)

with x<0>→<k> ≥ 0 over Z and b<k> = M<1> +Wobs · y<0>→<k−1>−W−obs.y
<k>

for the succession of steps going from < 0 > to < k > .
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Note that (5) corresponds to the second line of (2) and inequality (1) as for k =
1, x<0>→<1> = x<0> + x<1> = x<1> and b<1> = M<1> + Wobs · y<0>→<0> −
W−obs.y

<1> = M<1> −W−obs.y
<1> since y<0>→<0> = y<0> = 0.

Assuming the convergence of the optimization [9], we introduce the following result
where the ILP problem (4-5) is relaxed over R. Symbol h<0>→<k>

g represents a guar-
anteed receding horizon relevant to the succession of steps going from < 0 > to
< k > .
Theorem 2. Let us assume that the space defined by (5) over R is non-empty. For the
succession of steps going from < 0 > to < k >, a guaranteed horizon is h<0>→<k>

g =

bc.x<0>→<k>
opt c + k, where x<0>→<k>

opt is the result of the optimization (4-5) relaxed
over R.

Proof.
If max

R
(c.x<0>→<k>) in the relaxed problem is finite, the same conclusion holds

for the ILP problem, which is more restrictive. Formally, max
N

(c.x<0>→<k>) ≤

max
R

(c.x<0>→<k>). So, bc.x<0>→<k>
opt c gives a majorant of c.x<0>→<k> over N for (5).

Variable k in the expressions corresponds to the k observations y<k> for the succession
of steps going from < 0 > to < k > under Assumption AS − 6 . �

Considering the computed horizon in a state estimation, we can build a system
using the firing conditions of the transitions and the marking equation such as [16]
[1] and make an optimization [2] [9]. However, the guaranteed horizon h<0>→<k>

g

increases with k, which is a drawback as an excessively large horizon can prevent
the computation of a consistent sequence satisfying the firing conditions of the Petri
net. But, this numerical limitation is not about bc.x<0>→<k>

opt c, which can always be
computed (under a condition presented in [9]). Moreover, this difficulty disappears
if the estimation on a receding horizon {< 0 >,< 1 >, . . . , < k >} is replaced by
an estimation on a sliding horizon {< k − K >,< k − K + 1 >, . . . , < k >}, where
K is the step horizon (K + 1 is the number of considered steps). In that case, the
guaranteed horizon h<k>

g = max(c.x<k>) + 1 for each step < k > must be computed
with Theorem 1.

4 DM decomposition for FCF UIPNs

4.1 Introduction

In this part, the analysis is based on the synthetic form (5) optimized with (4) pre-
sented in Section 3.2. Indeed, it presents the general form max(c.x) such that A.x ≤ b
where each component of the variable x and its relevant column in A corresponds to
an unobservable transition: this correspondence will facilitate the analysis. To allevi-
ate the notations, we replace x<0>→<k> by x in the sequel. As the resolution considers
the unknown variables, we separate the transitions of TR in two sets:

- The set of observable transitions TRobs, which correspond to the known variables
y.

- The set of unobservable transitions TRun, which are relevant to unknown
variables x.
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Let us present the objective of this part by introducing the following result and
Example 2.
Theorem 3. The problem (4-5) is upper-bounded, if and only if, all the components
xi are upper-bounded.

Proof. 1) If max(c.x) with c unitary in the problem (4-5) is upper-bounded,
necessary each component xi must also be upper-bounded. Indeed, we can consider
the converse of this original assertion. If a variable xi is not upper-bounded, that is,
max(ci.xi) = +∞ with ci = 1 > 0, then max(c.x) is also not upper-bounded: the
guaranteed horizon cannot be defined on the complete system for any criterion. 2)
Conversely, if all the components xi are upper-bounded, then max(c.x) with c unitary
is clearly upper-bounded. �

However, the analysis of some examples as Example 2 below shows that this opti-
mization can still be made on subsystems even if it is impossible for the complete
system. Therefore, the objective is to determine the subsystems of the large scale
system and to make a sequential resolution following these blocks.

Example 2.

XX4XX1

XX3

XX2

P2 P1

y2

y1
P5

P3

P4

PPPPPPP

Fig. 2 Elementary Petri net 2 (example 2)

Let us consider the elementary Petri net 2 of Fig. 2. We have: P = {p1, p2, . . . , p5};
TR = TRobs

⋃
TRun with TRobs = {y1, y2} and TRun = {x1, x2, x3, x4}. The source

transitions y1 and y2 are observable while the source transition x2 is unobservable.
The incidence matrix at the top of Table 2 does not suggest a clear resolution despite
that the Petri net is simple. However, a reorganization of the places and transitions
leads to the second matrix at the bottom of Table 2, where a resolution can easily be
established by following the new order of the transitions and places from the left upper
part to the right lower part. Indeed, the firing number x1 can be upper-bounded by two
ways: y1 through p5 and y2 through p3 ( x1 ≤M5+ y1 and x1 ≤M3+ y2). The firing
number x4 can be upper-bounded with only one way: x1 through p2 (x4 ≤M2+ x1);
the self-loop with p4 cannot be exploited as the relevant row is null. The firing number
x3 cannot be upper-bounded through p1 as x2 is unobservable (x3 ≤ M1+ x4 + x2).
These three cases of resolution lead to a partition of the unobservable transitions and
define three cases of substructures highlighted in grey. Finally, an upper bound can
be provided for x1 and x4 but not for x3 and x2. �
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Table 2 Two incidence matrices of the
same Petri net 2

y1 y2 x1 x2 x3 x4

p1 0 0 0 +1 -1 +1
p2 0 0 +1 0 0 -1
p3 0 +1 -1 0 0 0
p4 0 0 0 0 0 0
p5 +1 0 -1 0 0 0

y1 y2 x1 x4 x3 x2

p5 +1 0 -1 0 0 0
p3 0 +1 −1 0 0 0
p2 0 0 +1 −1 0 0
p1 0 0 0 +1 −1 +1
p4 0 0 0 0 0 0

With that aim in view, the two phases of the proposed approach are:
- The first phase is a structural analysis of the large scale Petri net based on the

canonical decomposition of A. L. Dulmage and N. S. Mendelsohn, which focuses on the
connections between the firing counts of the unobservable transitions. This structural
analysis of Wun allows to determine a set of sub-systems, which are the support of a
possible resolution. In the context of continuous systems, Appendix 1 9 illustrates the
DM resolution and the relevant resolution with is a simple electrical system.

- The second phase in Section 6 is a sequential resolution based on the block
triangular form proposed in the first phase.

We now analyze the incidence matrix Wun of the UIPNs represented by a bipartite
graph (P, TRun) connecting the places and the unobservable transitions in the non-
weighted case and perfect case. The mathematical notation of [17] [18] is adapted to
the context of Petri nets. Another presentation of the DM decomposition with different
examples in the non-weighted case can be found in the appendix of [11].

4.2 Maximum matching

Let us consider two simplified cases, which allow to present and apply the canonical
decomposition of bipartite graphs.

4.2.1 Non-weighted case

Let us consider the non-weighted case, which corresponds to a boolean point of view
and which has been analyzed by A. L. Dulmage and N. S. Mendelsohn [17] [18]: only
the existence of non-null components in the incidence matrix Wun, is considered. So,
the difference between positive and negative components in the incidence matrix Wun,
is not made and the orientation of the arcs in the UIPN is not considered.

We consider the matching between the relations P and the unobservable transitions
TRun defined as follows:
Definition 1. A matching C is a set of pairs (pi, xj) where:

11



• Each place pi is associated with a transition xj at the most.
• Each transition xj ∈ TRun is associated with a place pi at the most.

So, in a matching C, a unique transition is associated to each place and a unique
place is associated to each transition.

In the following parts, we focus on maximum matching, where the number of its
pairs is maximum. Different maximum matchings can be obtained but all of them
have the same cardinality. In the tables, each pair of the matching is expressed by a
symbol in bold as shown in the incidence matrix at the bottom of Table 2.

Note that a possible pair can be composed of a place and one of its input or output
transitions. This artificial case will be modified in the following sections.

4.2.2 Perfect case

Let us consider an interesting class of UIPNs which presents the following features
and defines the perfect case: this case will be the support of the following study and
corresponds mainly to FCF UIPN without unobservable source transition. Contrary
to the non-weighted case, the difference between positive and negative components
in the incidence matrix Wun, which corresponds to the orientation of the arcs in the
UIPN is now considered.

- Assumption F−1 : the relevant incidence matrix has no null rows (each place is
associated with an unobservable transition at least).

- Assumption F−2 : each place of the UIPN presents an output unobservable
transition at least.

- Assumption F−3 : the UIPN is FCF.
- Assumption F−4 : the UIPN is without unobservable source unobservable

transitions.
Clearly, the null rows of the unobservable incidence matrix (Assumption F−1)

and places without output unobservable transitions (Assumption F−2) cannot be
exploited to build a majorant of an unobservable transition. Treated in Section 4,
these features lead to specific buildings.

Under an algebraic point of view, the event numbers of all the output transitions
of a place are upper-bounded if the event numbers of all the input transitions of a
place are upper-bounded: in the Petri net 2, x4 ∈ p•2 is upper-bounded as x1 ∈• p2 is
upper-bounded. This principle based on the dependence between variables is exploited
in the structural analysis. If we desire that the matching (place, transition) expresses
the upper-boundedness, only the connections describing that a transition is an output
transition of a place are useful in the resolution. The following result analyzes the
maximum matching which is necessary in the DM decomposition.
Theorem 4. The cardinalities of the maximum matching C in the case of an FCF
UIPN without unobservable source transition and in the relevant non-weighted case
are equal. Moreover, |C| = |TRun|.

Proof.
By definition, if the UIPN is without unobservable source transition (Assumption

F−4), each unobservable transition has an input place at least. Symmetrically, each
place of the UIPN presents an output unobservable transition at least (Assumption
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F−2). Let us analyze the relevant bipartite graph connecting the places and the out-
put unobservable transitions. For Assumption F−3, any two distinct unobservable
transitions have no common input place and we are sure that each unobservable tran-
sition has an input place at least (Assumption F−4). Consequently, each unobservable
transition can be matched with one of its input place and this matching does not mod-
ify the possibilities to match any other transition as they cannot be matched with the
same place. Consequently, we can always define a matching C such that each unobserv-
able transition is matched with one of its input places and C satisfies |C| = |TRun| .
Moreover, this matching is maximum since there is no greater matching than |TRun|
even if we remove the orientation of the arcs as in the non-weighted case. �

Each transition expressing a synchronization (that is, a transition having two input
places at least) can be matched with one of its input places. In an FCF UIPN, different
choices are possible for these transitions contrary to the places, which have a unique
output transition. So, the number of maximum matchings is

∏
xi∈TRun

|•xi|, where
∏

describes the product. Particularly, a unique maximum matching is obtained when no
transition of the UIPN describes a synchronization.

4.3 Canonical DM decomposition

4.3.1 Non-weighted case

Under the condition that the matching is maximum, the canonical DM decomposition
[17] [18] which is now presented can be applied in the non-weighted case. The structural
decomposition of the table leads to a diagonal of specific block substructures based on
three distinct canonical structures named Just-, Over- and Under-structures. When
the matching C is maximum, the studies [17] [18] prove that there is a unique partition
of rows of P and columns of TRun denoted X such that P = P> ∪ P= ∪ P< and
X = X> ∪X= ∪X< with empty intersections, which highlights three important sub-
structures: the Over-structure S> = (P>, X>), the Just-structure S= = (P=, X=)
and the Under-structure S< = (P<, X<). Moreover, we have |C| = |C>|+ |C=|+ |C<|
(expression |.| denotes the number of pairs in the matching), where C>, C= and C<

satisfy the following points.

• For the Over-structure, the maximum matching C> satisfies |C>| = |X>| < |P>| .
All elements of X> are matched but there is at least a non-matched element in P>.

• For the Just-structure, the maximum matching C= satisfies |C=| = |P=| = |X=| .
All elements of P= and X= are matched in the case of a Just-structure, which can
be decomposed in irreducible blocks.

• For the Under-structure, the maximum matching C< satisfies |C<| = |P<| < |X<|.
All elements of P< are matched but there is at least a non-matched element in X<.

Note that |C| = |X>|+ |X=|+ |P<| .
Given a matching, an alternating path in a UIPN is a path, in which the arcs belong

alternatively to the matching and not to the matching. The maximum matching in the
non-weighted case allows to determine the different substructures with the following
theorem transposed from [17] [18] [12] [13]. To facilitate the presentation of the results,
a direction is added to the edges of the non-oriented bipartite graph. Each pair (pi, xj)
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of the maximum matching C is oriented from pi to xj (graphically, pi
C−→ xj) and in

the opposite direction when (pi, xj) /∈ C (graphically, pi ← xj ).
Theorem 5. Let us assume that the matching is maximum in the non-weighted case.

• The places and transitions of an alternating path belong to the Over-structure
S> = (P>, X>) when this path starts from a matched place and finishes in a
non-matched place.

• The places and transitions of an alternating path belong to the Under-structure
S< = (P<, X<) when this path starts from a non-matched transition and finishes
in a matched transition.

• The Just-structure is defined by P= = P\(P> ∪P<) and X= = TRun\(X>∪X<).
�

Example 2 continued.
In Table 2, the null row of Wun cannot be exploited by the analysis which focuses

on the remaining rows: we take P = {p1, p2, p3, p5}. The maximum matching C with
|C| = 3, is C = {(p3, x1), (p2, x4), (p1, x3)} and is represented in bold. As the matching
is maximum, Theorem 5 can be applied. It gives the DM decomposition highlighted
in grey and defined as follows.

• As there is an alternating path from a matched place p3 to a non-matched place p5

which is p3
C−→ x1 → p5, the Over-structure is S> = P> ×X> with P> = {p5, p3}

and X> = {x1}.
• As there is an alternating path from non-matched transition x2 to a matched tran-

sition x3 which is x2 → p1
C−→ x3, the Under-structure is S< = P< × X< with

P< = { p1} and X< = {x3, x2}.
• The Just-structure is S= = P= ×X= with P= = { p2} and X= = {x4}. �

Moreover, the DM decomposition is not limited to the three main canonical struc-
tures as the Just-structure S= presents a specific block-diagonal structure where the
blocks are square. Each block is composed of transitions, where each transition is
connected to any transition of the substructure with a circuit composed of places. Illus-
trated in Example 3 below, these substructures are usually named strongly connected
substructure in the UIPN and, irreducible substructure for the corresponding repre-
sentation in the incidence matrix Wun. Formally, the substructure contains a directed
path from to xi to xj and a directed path from xj to xi for every pair of vertices xi,
xj . To treat the case of substructures composed of a single vertex, a fictitious self-loop
of null length connecting xi to xi is assumed to be added to each vertex xi ∈ X=.

4.3.2 Perfect case

This section analyzes the DM decomposition in the perfect case.
Theorem 6. • The FCF UIPN without unobservable source transition presents a

canonical DM decomposition of the structure (P, TRun) limited to S> and S=: P< =
φ and X< = φ.

• Moreover, this canonical DM decomposition is limited to S= with P> = ∅ and
X> = ∅ when |Cmax| = |P | .
Proof
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Fig. 3 Petri net 3 of example 3; The initial marking is not represented.

For an FCF UIPN, Theorem 4 shows that the matching is maximum, which implies
that the canonical DM decomposition can be applied to the considered table. As
|Cmax| = |TRun|, no Under-structure, which needs that at least an unobservable
transition is not matched is present in the structure. The canonical decomposition of
place set P is P = P> ∪ P= and the transition set X is given by X = X> ∪X=.

Moreover, if |Cmax| = |P | , no Over-structure, which needs that at least a place is
not matched is present in the structure. The structure is limited to a Just-structure,
which presents a block-triangular structure of irreducible substructures. If |Cmax| <
|P | , then P> 6= ∅ and X> 6= ∅ and the structure contains an over-structure. �

Example 3.
Let us consider the Petri net 3 of Fig. 3 with an arbitrary initial marking guar-

anteeing the liveness. For clarity, the labels of the places and transitions have been
chosen such that they follow the classification of the DM decomposition. We have:
P = {p1, p2, . . . , p10} with |P | = 10; TR = TRobs

⋃
TRun with TRobs = {y1, y2, y3}

and TRun = {x1, x2 . . . , x8, x9}. All the weights of the arcs are unitary except
(Wun)

−
3,2 = 3, (Wun)

+
2,2 = 3, (Wun)

−
5,4 = 2 and (Wun)

−
8,7 = 4.

The table 3 gives the connections between places and unknown variables. The max-
imum matching C with |C| = 9 is C = {(p2, x1), (p3, x2), (p4, x3), (p5, x4), (p6, x5), (
p7, x6), ( p9, x7), ( p8, x8), ( p10, x9)} and is represented in bold. As the matching is
maximum, we can apply Theorem 5. So, P = P> ∪ P= and X = X> ∪X= with:
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Table 3 Canonical decomposition of the structure of the incidence matrix of the
UIPN 3 in Fig. 3 (example 3)

y1 y2 y3 x1 x2 x3 x4 x5 x6 x7 x8 x9

p1 0 0 +1 -1 +1 0 0 0 0 0 0 0
p2 0 0 0 −1 +3 0 0 0 0 0 0 0
p3 0 0 0 +1 −3 0 0 0 0 0 0 0
p4 0 0 0 0 0 −1 +1 0 0 0 0 0
p5 0 0 0 0 +1 +1 −2 0 0 0 0 0
p6 +1 0 0 0 0 +1 0 −1 0 0 0 0
p7 0 0 0 +1 0 +1 0 0 −1 +1 0 0
p8 0 0 0 +1 0 +1 0 0 0 +1 −1 0
p9 0 +1 0 0 0 0 0 0 +1 −4 0 0
p10 0 0 0 0 0 0 0 +1 0 0 0 −1

• The Over-structure is P> = {p1, p2, p3} and X> = {x1, x2}.
• The Just-structure is P= = { p4, p5, p6, p7, p8, p9, p10} and X= =
{x3, x4, x5, x6, x7, x8, x9}.

Highlighted in grey, the Over-structure is S>
1 = {p1, p2, p3} × {x1, x2} and the

irreducible substructures of the Just-structure are S=
2 = {p4, p5} × {x3, x4}, S=

3 =
{p6} × {x5}, S=

4 = { p7, p8, p9, p10} × {x6, x7, x8} and S=
5 = {p10} × {x9}.

�

5 DM decomposition for general UIPNs

The objective of this part is to generalize the analysis of Section 4 to any Petri net by
building an associated Petri net presenting the assumptions from F−1 to F−4. We
below show that the following main treatments can always be made:

• Preliminary simplification (Assumptions F−1,F−2 and building 1)
• The building of an FCF UIPN (Assumption F−3 and building 2).
• The building of a Petri net without unobservable source transitions (Assumption
F−4 and building 3).

5.1 Preliminary simplification (Building 1)

In the analysis of the UIPN, the null rows of the unobservable incidence matrix cannot
be exploited and can be removed: (Wun)l,.. 6= 0 for any place pl (Assumption F−1).
In Example 2, the null row relevant to p4 in Table 2 illustrates this point.

Moreover, even if the UIPN is FCF, a possible case is that a place pl does not
have an output unobservable transition (formally, |p•l ∩ TRun| = 0 or (Wun)

−
l,.. = 0).

Consequently, this place cannot be exploited to build a majorant of an unobservable
transition. The relevant unnecessary row in Wun must be removed. In other words, all
the rows of Wun relevant to a place pl with |p•l ∩ TRun| 6= 0 (so, Wun)

−
l,.i 6= 0) must

be kept. As the withdraw of a place can create a null column in Wun, the relevant
unobservable transition are not upper-bounded and the column can be removed from
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the table. A consequence is that that each place in the simplified Petri net presents
an output unobservable transition at least (Assumption F−2).

Example 3 continued.
Let us consider the Petri net 3 in Fig. 3 (example 3) but we add a place p0,

which presents two entering unobservable transitions x1, x2 and an entering observable
transition y2. This place p0 cannot be exploited to build a majorant and can be
removed. �

To limit the analysis to the useful part of the UIPN, Assumptions F−1 and F−2
are taken below. To facilitate the writing and alleviate the notation, we below keep
the same notation for the reduced set of places (P ), the reduced set of unobservable
transitions (TRun) and the different incidence matrices W, Wobs and Wun as they are
defined by the context. This abuse of notation is made at each modification of the
Petri net below.

5.2 Generalization to non-FCF UIPN (building 2)

The following theorem shows that we can generalize the previous approach to UIPNs,
which are not FCF. The technique is to build an FCF UIPN with a simplification of
the valuations.
Theorem 7. The propagation of the upper-boundedness of the firing numbers of the
unobservable transitions is solely forward with respect to the arc direction of the Petri
net. Moreover, for a place pl with |p•l ∩ TRun| 6= 0 (equivalently, (Wun)

−
l,. 6= 0), the

analysis of the upper-boundedness of the firing numbers for (5) relaxed over R and the
following system

xi ≤ b<k> + (Wun)
+
l,. .x for any xi ∈ p•l ∩ TRun, (6)

where x is over R are equivalent.
Proof.
Let us analyze a place pl with |p•l ∩ TRun| 6= 1 and the different relations.
- Relation (5) ( −Wun.x

<0>→<k> ≤ b<k>) relaxed over R is rewritten under
the more convenient form (Wun)

−
l,. .x ≤ b<k> + (Wun)

+
l,. .x with b<k> = M<1> +

Wobs · y<0>→<k−1> − W−obs.y
<k>. We assume that all xj for xj ∈ •pl ∩ TRun are

upper-bounded in (5) and (6).
Consequently, b<k> + (Wun)

+
l,. .x in (5) is upper-bounded as (Wun)

+
l,. ≥ 0. The

same conclusion holds for b<k> + (Wun)
+
l,. .x as (Wun)

+
l,. ≥ 0.

- For (5), (Wun)
−
l,. .x for a given place pl is upper-bounded by a bound, which

implies that all terms xi for xi ∈ p•l ∩ TRun satisfying (Wun)
−
l,i > 0 are also upper-

bounded since (Wun)
−
l,i = 0 for xi /∈ p•l ∩TRun. Note that the converse cannot be said:

if all terms xi for xi ∈ p•l ∩ TRun are upper-bounded, we cannot conclude from the
analysis of this place pl that some xj for xj ∈ •pl∩TRun are upper-bounded by a finite
value. Consequently, the propagation of the upper-boundedness is uniquely forward.

- For (6), we can immediately deduce that each term xi for xi ∈ p•l ∩ TRun is

upper-bounded, which implies that (Wun)
−
l,. .x is also upper-bounded.
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Fig. 4 Place pa is replaced by p7 and p8 in Fig. 3

Therefore, the same conclusions for (5) and (6) for a place pl can be made. The
generalization to a system of relations relevant to a set of places, which only add con-
straints cannot limit the above reasoning and the analysis of the upper-boundedness
are equivalent. �

Note that if there are some xj ∈ •pl ∩ TRun, which are not upper-bounded, we

cannot conclude from the analysis of this place pl that (Wun)
−
l,. .x is upper-bounded

by a finite bound and that all terms xi for i ∈ p•l ∩ TRun are upper-bounded for (5)
and the set of |p•l ∩ TRun| relations (6). This case is considered in Section 5.3.

Another remark is that the two systems (5) relaxed over R and (6) are not alge-
braically equivalent (as we focus on the analysis of the upper-boundedness of the firing
numbers). Particularly, the valuations of the outgoing arcs become unitary in (6) and
the deduced Petri net.

Therefore, the building of an FCF UIPN will facilitate the determination of the
maximum matching in the structural analysis. This construction replaces each place
with |p•l ∩ TRun| 6= 0 by a set of |p•l ∩ TRun| places.

Construction of an FCF UIPN and its new incidence matrix W ′(Building
2)

For each outgoing arc going from a place pl with |p•l ∩ TRun| ≥ 2 (so, Wun)
−
l,.i 6= 0)

to a transition xi ∈ p•l ∩ TRun, build a row l′ in W ′ such that

(W ′obs)
+
l′,. = (Wobs)

+
l,. , (W ′obs)

−
l′,. = (Wobs)

−
l,. (no modification) and

(W ′un)
+
l′,. = (Wun)

+
l,. , (W ′un)

−
l′,. = 0 except (W ′un)

−
l′,i = 1 (the UIPN is modified).

The relevant new places keep the initial marking of the initial place pl.
�
Example 3 continued.
Let us consider the Petri net 3 in Fig. 3 (example 3) but places p7 and p8 are

substituted by a place pa presenting the same input unobservable transitions x1, x3,
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x7 but the two output unobservable transitions x6, x8 (Fig. 4). The relevant Petri
net is denoted Petri net 4 and the substructure corresponding to S=

4 is represented in
table 4. This substructure is not square and not irreducible a fortiori.

Table 4 Structure of S=
4 for Petri net 4 in Fig. 4

y1 y2 y3 x1 x2 x3 x4 x5 x6 x7 x8 x9

pa 0 0 0 +1 0 +1 0 0 -3 +1 -2 0
p9 0 +1 0 0 0 0 0 0 +1 -4 0 0

So, the UIPN is not FCF. Place pa is described by relation pa : 3.x6 + 2.x8 ≤
M init

a + x1 + x3 + x7
The previous theorem shows that the analysis of the upper-boundedness can be

made with the Petri net in Fig. 3, where pa is replaced by places p7 and p8.
p7 : x6 ≤M init

a + x1 + x3 + x7
p8 : x8 ≤M init

a + x1 + x3 + x7 �
Assumptions F−1, F−2 and F−3, which are obtained with the buildings 1 and 2

for any Petri net, are assumed in the sequel.

5.3 FCF UIPNs with unobservable source transitions
(building 3)

By definition, an unobservable source transition is not the output transition of a place.
It cannot be upper-bounded and be used to limit other transitions. Consequently, if a
unobservable source transition is the input of a place (even if other input transitions
exist), the relevant relation does not bring an upper bound on the output transitions
and this place (and the relevant arcs) must be removed. This manipulation can cre-
ate some unobservable source transitions and the same reasoning must be repeated
until the UIPN has no unobservable source transition. A direct consequence of the
elimination is the application of Theorem 6 : the FCF UIPN after elimination of the
unobservable source transitions presents a canonical DM decomposition.

Elimination of the substructure connected to the unobservable source
transitions (Building 3)

While there is a column j of the incidence matrix (Wun) containing only non-
negative components ((Wun).,,j ≥ 0) (this column corresponds to a source transition
xj),

- For each i such that (Wun)i,j > 0, remove the row i of the incidence matrix
(Wun) : the output places of the source transition xj with their upstream and
downstream arcs are removed.

- Remove column j.
End-while
Remove all the remaining null columns j of (Wun) ((Wun).,j = 0). �
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Example 4. Let Wun =

 1 1 −1 0
0 0 1 −1
0 −1 0 0

 describing an FCF UIPN. As x1 is a

unobservable source transition, the first column and the row of p1 are removed. This
implies that x3 is a new unobservable source transition: the third column of Wun and
the row of p2 are removed. The unique useful row of p3 is kept. The last column, which
is null is removed. �

Example 5.

Let Wun =

(
0 −1 1 1
1 1 −1 0

)
describing the UIPN of the Petri net 5 of Fig. 5, which

is FCF. The rows of Wun correspond to places p11 and p12. The columns correspond
respectively to transitions x8, x10, x11, x12. As x12 is a unobservable source transition,
the last column and the row of p1 are removed. This implies that x10 is a new unob-
servable source transition: the second column of Wun and the row of p2 are removed.
�

Therefore, the algorithm allows to build an FCF UIPN without unobservable source
transitions and guarantees that the canonical DM decomposition of the structure
limited to S> and S= can always be obtained.
Theorem 8. Let consider a UIPN satisfying Assumptions F−1, F−2 and F−3.
The maximum matching satisfies |C| = |TRun\UST | , where UST is the set of
unobservable source transitions.

Proof.
As the unobservable source transitions cannot be used in the matching as they

are not output transitions of the places, they can be disregarded without affecting the
matching. Let UST be the set of unobservable source transitions. So, the matching
can be made between the set of places P and the remaining unobservable transitions
TRun\UST . In some way, Assumption F−4 is satisfied and this situation corresponds
to the features of Theorem 4, which can be applied: the maximum matching satisfies
|C| = |TRun\UST | .

�
Let us note that if a fictive place is associated with each unobservable source

transition, this source transition disappears. In that case, Theorems 4 and 6 can be
applied and a DM decomposition without under-structure is obtained. Particularly,
a matching between this fictive place and the source transition is obtained. Now, if
we analyze the elimination technique, the building 3 corresponds to the construction
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of alternating paths starting from each unobservable source transition, which is non-
matched. Therefore, the building 3 is now interpret not as a technique to eliminate an
undesirable part, but to determine a specific substructure. In other words, the building
3 is not used to modify the Petri net but to analyze its internal structure.
Theorem 9. Let consider a UIPN satisfying Assumptions F−1, F−2 and F−3.

• The cardinalities of the maximum matching C in the case of an FCF UIPNs with
unobservable source transition and in the relevant non-weighted case are equal.

• The places and transitions of an alternating path belong to the Over-structure
S> = (P>, X>) when this path starts from a matched place and finishes in a
non-matched place.

• The places and transitions of an alternating path belong to the Under-structure
S< = (P<, X<) when this path starts from a unobservable source transition and
finishes in a matched transition.

• The Just-structure is defined by P= = P\(P> ∪P<) and X= = TRun\(X>∪X<).
�

Proof.
The previous theorem 8 says that the maximum matching satisfies |C| =

|TRun\UST | and that all the transitions of TRun\UST are matched. We can consider
the alternating paths based on this matching. Particularly, the analysis of building 3
shows that the elimination technique corresponds to the construction of alternating
paths starting from each unobservable source transition, which is non-matched. So,
these alternating paths define the Under-structure S< = (P<, X<) with |C<| = |P<| ,
which can be removed: consequently, the relevant UIPN is without unobservable source
transition (Assumption F−4) and the assumptions of Theorems 4 and 6 are ful-
filled: the cardinalities of the maximum matching C ′ in the case of an FCF UIPN
defined by (P\P<, TRun\X<) and in the relevant non-weighted case are equal. Also,
|C ′| = |TRun\X<|, the DM decomposition of the structure is limited to S> and S=

and |C ′| = |X>| + |X=|. Finally, |C| = |C ′| + |C<| = |X>| + |X=| + |P<| , which
corresponds to the non-weighted case.

�
Example 3 continued.
We now desire analyze a Petri net denoted as Petri net 6, which is the concatenation

of the Petri net 4 (this variant of the Petri net 3 is presented in Section 5.2) and the
Petri net 5 of Fig. 5. In Petri net 6, places p7 and p8 are substituted by a place pa (
Section 5.2 and Fig. 4). Moreover, the following modification of notation is made: now
the places p1 and p2 of Fig. 5 are denoted p11 and p12 and transitions x1, x2, x3, x4
are denoted x8, x11, x10, x12. For simplicity sake, the other notations are kept. The
table describing p11 and p12 is table 5.

Therefore, the Petri net 6, which represents the general case does not satisfy
Assumption F−3 as the UIPN is not FCF (place pa). Moreover, Assumption F−4 is
not satisfied as the Petri net 6 presents a unobservable source transition x12.

As the Petri net 6 cannot directly be treated, an associated Petri net denoted Petri
net 7 must be established. To obtain an FCF UIPN, we can apply the building 2, that
is, the development of place pa with provides the places p7 and p8 as explained in

21



Table 5 Table deduced from the Petri net 5 of Fig. 5 with new notations

y1 y2 y3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

p11 0 0 0 0 0 0 0 0 0 0 0 0 −1 +1 +1
p12 0 0 0 0 0 0 0 0 0 0 +1 0 +1 −1 0

Section 5.2 (see Fig. 4). The table of the associated UIPN is the concatenation of table
3 (Petri net 3 of Fig. 3) and table 5 relevant to the Petri net 5 of Fig. 5 with the new
places and unobservable transitions. The DM decomposition is deduced from theorem
9. The same substructures already obtained in Section 4.2.2 and presented in table
3 are kept while the under-structure S< denoted as the substructure S6 is deduced
with Building 3 (example 5 and Fig. 5) and is added. Therefore, the substructures of
the UIPN of Petri net 7 are S>

1 = {p1, p2, p3} × {x1, x2}, S=
2 = {p4, p5} × {x3, x4},

S=
3 = {p6} × {x5}, S=

4 = { p7, p8, p9} × {x6, x7, x8}, S=
5 = { p10} × {x9} and

S< = S<
6 = {p11, p12}× {x10, x11, x12}. The substructures of the UIPN of Petri net 6

are similar but S=
4 is replaced by { pa, p9} × {x6, x7, x8}. �

5.4 Numerical analysis of the off-line decomposition

In Sections 4 and 5, the structural analysis has shown that the DM decomposition can
be applied to the UIPNs satisfying Assumptions F−1, F−2 and F−3, which can be
obtained with the buildings 1 and 2 for any Petri net (the building 3 is not necessary
as said above). As these buildings are simple transformations (elimination of null
rows, construction of FCF places,...), the relevant execution time is negligible with
respect to the DM decomposition which must be added. This last one can be obtained
with the function dmperm() of the software Matlab and GNU Octave which also
determines the maximum matching (function matchpairs()). The function dmperm()
is really efficient as the execution time is less than 0.1 seconds for a (1000×1000)
matrix which corresponds to a Petri net with 1000 places and 1000 unobservable
transitions. As the time complexity of the DM decomposition is dominated by the
cost of computing an initial maximum matching [27], the global time complexity of
the structural analysis is the complexity of the maximum cardinality matching which
presents a polynomial time: the global time complexity in the worst case is O(n3) if an
improvement of the Hungarian method made by Edmonds and Karp is taken (O(n2.5)
for the Hopcroft-Karp algorithm). To summarize, the execution time of the structural
analysis is negligible and cannot represent a limitation of this phase, which moreover,
is made off-line.

6 On-line sequential resolution based on the block
triangular form

The result of the off-line decomposition of Section 5 based on Section 4 is a block
triangular structure, where the top right corner contains null elements only. For each
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block, a rank can be numbered from the upper left corner (which can be the over-
structure if it exists) to the lower right corner of the table (which can be the under-
structure if it exists). Showing the practical interest of the approach, the following
theorem analyzes the propagation of the resolution, as in Theorem 7, but for the
blocks.
Theorem 10. The propagation of the upper-boundedness through the blocks is forward
with respect to the rank of the blocks of the DM decomposition. The block resolution
starts from the first block.

Proof.
As we consider an FCF UIPN, each row contains a unique negative component (−1

in the examples) which belongs to a block S>, or an irreducible block of S=, or a block
S<. Consequently, all other elements of each row are nonnegative (0 or a a positive
value). Particularly, the part outside the blocks in the bottom left corner of the table
contains only nonnegative values and each positive value represents an (oriented) arc
from a variable to a place, which gives the orientation of the resolution: this positive
component expresses a direct dependence from the block, where the unobservable
transition is an output (deduced from the column of the positive component, this
block is upstream in the DM decomposition) to the block, where this place has the
relevant input transition (deduced from the row of the positive component). So, the
propagation of the block resolution is uniquely forward from the upstream blocks to
the downstream blocks. This dependence between the blocks, which is represented by
an acyclic dependence graph in Fig. 6 is consistent with the increasing order of the
rank and suggests the order of resolution, which is sequential. For each block, the
resolution must only consider the relevant places and transitions of all the upstream
blocks and the treatment of a set of blocks is not necessary. As the first block has no
dependence with another block (no component at the left of this block), the resolution
is autonomous and can be made. Knowing the values relevant to the first block, the
resolution of the second block, which becomes autonomous can be made. The reasoning
is similar for the other blocks. �

6.1 Example 3 continued

The concatenation of table 3 (Petri net 3 of Fig. 3) and table 5 (Petri net 5 of Fig. 5)
is relevant to Petri net 7 which is the associated UIPN of Petri net 6. The incidence
matrix of this UIPN presents a block-triangular form obtained with the DM decom-
position which suggests a potential resolution, where a series of subsystems presented
below are solved in the increasing order as shown in Fig. 6. Now, we consider the
structure of the Petri net 6 which has almost the same block-triangular form except
the fourth structure S=

4 .

Wun,1 =

−1 1
−1 3

1 −3

 for S1, Wun,2 =

(
−1 1

1 −2

)
for S2, Wun,3 = (−1) for S3,

Wun,4 =

(
−3 1 −2

1 −4 0

)
for S4 (described in Section 5.2 with table 4), Wun,5 = (−1)
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Fig. 6 Dependences in the DM decomposition of the associated UIPN of Petri net 6.

for S5, and Wun,6 =

(
−1 1 1

1 −1 0

)
for the last substructure (described in Section 5.3

with table 5).
For simplicity, we consider the two first substructures. A possible simulation is
M init

1

M init
2

M init
3

M init
4

M init
5

 =


3
3
0
1
0

 x3→


3
3
0
0
1

 x1x1x1→


0
0
3
0
1

 x2→


1
3
0
0
2

 x1→


0
2
0
0
2

 x4→


0
2
0
1
0

 y3→


1
2
0
1
0

 .

So, the sequence of simulation is σ = x3x1x1x1x2x1x4y3. Assuming that the
sequence is unknown, we desire to estimate a relevant guaranteed horizon h<1>

g , know-
ing the initial marking and the firing count of y3. Let us show that a direct resolution
by hand of (5) relaxed over R can be made: the execution time is clearly negligible. For
the first substructure S1, the relations are x1 ≤ x2 +M init

1 +y3, x1 ≤ 3.x2 +M init
2 and

3.x2 ≤ x1 +M init
3 . We deduce 3.x2−M init

3 ≤ x1 ≤ min(x2 +M init
1 + y3, 3.x2 +M init

2 )
, 2.x2 ≤ M init

1 + M init
3 + y3 and 0 ≤ M init

2 + M init
3 . So, we can make a simple esti-

mation with x2 ≤ 3/2 and x1 ≤ 4 and the greatest estimate over R are x2 = 3/2
and x1 = 4. So, ∇<1>

max = b4 + 3/2c = 5 for S1 : the number of firings of transi-
tions x1 and x2 is lower than or equal to 5, which is consistent with σ. If we remove
Assumption AS − 6 , a shorter sequence, where the three first firings of x1 in σ
are simultaneous is also possible. For the second substructure S2, the relations are
x3 ≤ x4 +M init

4 and 2.x4 ≤ x2 + x3 +M init
5 , which gives x3 ≤ x2 + 2.M init

4 +M init
5

and x4 ≤ x2 + M init
4 + M init

5 : the relevant greatest estimates can be deduced from
the greatest estimate of x2 = 3/2 computed with the first substructure. We obtain
x3 ≤ 7/2 and x4 ≤ 5/2. So, ∇<1>

max = b7/2 + 5/2c = 6 for S2: the number of firings
of transitions x3 and x4 is lower than or equal to 6, which is consistent with σ. So, a
guaranteed horizon is h<1>

g = b4 + 3/2 + 7/2 + 5/2c+ 1 = b25/2c = 12 for S1 and S2,
which is coherent with the sequence of simulation σ, which represents 8 firings. The
computation of the remaining unknown firing counts based on substructures S3, S4, . . .
follows the same reasoning. �
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6.2 Example 6.

Let us make a numerical analysis of the on-line resolution based on more complex
problems and show that the proposed approach can be applied to another estimation
problem described in [3] for a classical automated manufacturing system described in
Section VII.A of [25] and Section V of [11] (these papers are easily accessible). This
system is a large scale system recognized to be significant in the literature since slight
variations of it have already been considered by different authors. The relevant Petri
net has 38 places and 26 transitions which are composed of 12 observable transitions
and 14 unobservable transitions (Fig. 3 page 979 in [25], Fig. 2 in [11]). As the incidence
matrix of the unobservable induced subnet is large (38×14) but sparse, an application
of the DM decomposition gives a reorganization of the rows and columns providing a
clearer view under a block-triangular form presented in [11]. Let us apply the structural
approach to the estimation approach presented in [3] which is limited to a unique basis
marking and a maximization of an unitary criterion (as shown in [2] [3], the criterion
can be adapted to detect transition firings and to make fault detection).

Let us consider the simulation given in Table I of [25] and the case of 15 observa-
tions. The scripts build the necessary matrices which increase with the horizon fixed
by the number of observations. A system of 608 inequalities with 224 variables for
the complete system is obtained while the greatest subsystem given by the structural
approach only presents 128 inequalities with 64 variables: this reduction of size rep-
resents an improvement of the necessary memory. Using the software Scilab with the
library FOT, the computations using ILP are carried out on a PC Intel(R) Core(TM)
1.90GHz 2.11 GHz. The Integer Linear Programming problems are solved with the
function fot intlinprog(). The relevant CPU time (the function timer() provides this
datum) of the script execution is 0.601 seconds for the complete system and 0.148
seconds for the sequential resolution based on the structural approach (a mean value
is calculated on ten executions). The decrease of the execution time shows a second
improvement despite that the decomposition has only built five subsystems. Now, a
similar improvement is obtained if the problems are relaxed over the real numbers: the
CPU time averages are 0.605 seconds and 0.037 seconds respectively when fot linprog()
is used.

7 Efficiency of the on-line phase and limitations of
the approach

Generally speaking, this approach is well-adapted to large scale systems where the
induced unobservable incidence matrix is sparse and can be decomposed into a set of
blocks provided by the DM decomposition. However, the following analysis suggests
that the contribution can be reduced when the number of blocks is limited. Another
factor is the complexity of the chosen algorithm applied in the on-line estimation. To
analyze the effects of these factors, we consider that the DM decomposition of the
induced unobservable incidence matrix has lead to a simple bloc diagonal structure
composed of s square substructures which have the same size: even if this assumption
is rather strong, it allows to approximate the general effects. We also assume that the
complexity of the used algorithm is polynomial with O(nq) in the worst case where q is
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a natural number. So, the execution time presents the asymptotic form α.nq.∆ where
∆ is the execution time of an elementary operation and α is a constant when n is
sufficiently large. As the dimensions of each substructure is (n/sxn/s), the execution
time is asymptotically s.α.(n/s)q.∆ = (α.nq.∆)/sq−1 for the complete system, the
substitution coming from the connections between the blocks being negligible. So, the
asymptotic form of the execution time in the worst case is divided by sq−1 for n suffi-
ciently large and q ≥ 2. To sum up, this asymptotic form which provides a guaranteed
upper bound on the algorithm’s performance is improved even if the improvement of
this bound can be weak when the algorithm is efficient and the number of blocks lim-
ited as in Example 6 (assuming that the complexity of the used algorithm is O(n2),
the asymptotic ratio sq−1 is equal to 5 for s = 5 and q = 2). This analysis is coher-
ent with the papers [34] [35] [36] even if the considered structure is a variant of the
block triangular structure where the blocks are clans based on a relation of nearness:
an improvement is deduced for polynomial algorithms while solving a few systems
with lesser size under the condition of exponential complexity allows and exponential
speedup of computation.

8 Conclusion and perspectives

In this paper, we have considered the on-line estimation of maximum sequence length
in Partially Observable Petri Nets, which allows to consider any criterion. As continu-
ous models modelled by differential-algebraic equations, the class of Petri nets presents
a computational causal direction for each place: Theorem 7 shows that the propaga-
tion of the upper-boundedness of the firing numbers of the unobservable transitions is
solely forward through the UIPN with respect to the arc orientation of the Petri net.
This property allows to exploit the structural analysis based on the DM decomposi-
tion presented in Section 4, which is generalized in Section 5. As a condition of this
canonical decomposition is the maximum matching as in the non-weighted case, we
have shown that a treatment is possible after the building of a simplified FCF unob-
servable subnet. The dependence graph clearly describes the connections between the
blocks and suggests a sequential resolution, which allows to avoid the treatment of the
large scale system in one single stage.

The different algorithms of structural analysis in the off-line phase correspond to
efficient manipulations in classical path theory [28]. For the on-line phase, Section 7
suggests a performance improvement brought by the proposed approach which depends
on some factors as the number of blocks (which must be sufficient) and the efficiency
of the algorithms (which can minimize the improvement). A pertinent situation is the
case of combinatorics problems leading to exponential complexity: this situation can
appear when the estimation tries to provide all the solution set of the trajectories or
the markings; the verification of protocols is another application [34] [35] [36]. A per-
spective is the development of tests considering the different parameters defining the
Petri nets (density, number and dimension of the blocks,... ) and the used algorithms
[20]. Note that other types of decompositions as the clan decomposition or a variant
of the DM decomposition [11] can be tried and possibly exploited before the on-line
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stage. Other perspectives can be the adaptation of the Dulmage-Mendelsohn decom-
position to various complex problems of estimation and control for large scale systems.
The extension of the state estimation to models containing discrete event subsystems
but also continuous subsystems is a natural perspective.

9 Appendix 1 Continuous systems: a simple
electrical system

Let us illustrate the main concepts of the DM decomposition with a simple electrical
circuit model.

Example 7.
Four resistors are connected with a voltage source as shown in Fig. 7. Symbols V

R1 R2 R3

R4
Am

V

x2 x3

x6x1

x4

x5

Fig. 7 A simple electrical system (example 7)

and Am respectively correspond to a voltmeter and an ammeter, which provide the
relevant values U and In. The values of the resistors R1, R2, R3, R4 are known and
non-null. The variables x1, x4, x5 are tensions and x2, x3, x6 are currents. Deduced
from the figure, the relevant model is system A.x = b with

x =
(
x1 x2 x3 x4 x5 x6

)t
, b =

(
U 0 In 0 0 0 0

)t
and

A =



1 0 0 0 0 0
−1 R1 0 0 0 0

0 1 0 0 0 0
−1 0 R2 0 0 0
−1 0 0 1 1 0

0 0 0 −1 0 R3

0 0 0 0 −1 R4


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Obtained after a classification of the relations and variables described in Section
4.3.1, matrix A presents a specific triangular structure allowing three resolutions,
which are almost autonomous. Indeed, the resolution of x1,x2 needs only the three
first relations. Then, knowing x1, the value of x3 can be deduced with the fourth
relation. Similarly, x4, x5, x6 can be computed with the three last relations knowing
x1. Therefore, a sequential resolution considering subsystems and not the complete
system can be made.

- Another remark is that there are two ways to deduce x1,x2 in the first substruc-
ture: the resolution of x1,x2 is named over-determined. In fact, only two relations
are necessary: one of the three relations is redundant and can be removed. Moreover,
exploiting this redundancy, we can deduce the equality U = R1.In and another point
of view is to exploit this relation in fault detection. Indeed, if a sensor is faulty or the
resistor is degraded or burnt, then U 6= R1.In as U and In are known and we can
deduce that a fault has occurred in this part of the electrical system. This technique
is a well-known approach of fault detection [12] [13] for continuous systems.

- As there is a unique way to deduce x3,x4, x5, x6 in the second and third
substructures, the relevant resolution is named just-determined.

- Now, if we assume that R4 is unknown in the last substructure, then the last
relation cannot be used and x4, x5, x6 cannot be computed: this resolution is called
under-determined. �

In fact, this example, which highlights three main situations of resolution corre-
sponds to the three main substructures of the canonical decomposition of Dulmage-
Mendelsohn developed in graph theory [17] [18]. The structural approach can be
applied to continuous systems taken from different domains (electrical, mechanical,
hydraulic, acoustical, thermodynamic,...) or a mix of these domains.
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