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Abstract . The parity space approach gives a means to generate static
Coherence models for fault detection , when the system is eguipped with
a number of sensors large enough . When few sensors are implemented ,
the generalized parity space approach has to be used and gives dynamic
coherence models . Both approaches are based on an analytical expression
of the knowledge we have about the system , under the form of linear

state and measurement equations .

However, such a representation is not often available for large scale
complex industrial systems . Those systems are characterized by the
great number of variables which are necessary for their description ,
and by the great variety of the types of relationships which link these
variables : gualitative or gquantitative , statical or dynamical , linear

or non linear

The paper presents an approach based on structural analysis in order to
exhibit coherence models for fault detection of large scale systems

The initial knowledge upon the normal operation of the system is given
by its representation under the form of a network of elementary
activities , issued from its functicnnal analysis .
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INTRODUCTION

The basic principle of fault detection is
the comparison of the actual behaviour of
the system to a reference behaviour
describing its normal operation . The
reference behaviour is issued from the
knowledge which is available upon the
system , this knowledge being expressed
under more or less precise terms , and
under formalisms which may be very
different ( knowledge base , analytical
models , ... ). One of the most
frequently used approach is based on the
use of Analytical Redundancy
Relationships (ARR) : the knowledge
available upon the system leads to
express its normal operation by a set of
invariants : the residuals of the ARR
(coherence model ) . The fault detection
resumes thus to a decision problem : is
the variance of the residuals the effect
of noise , of normal deviations and
errors or the effect of a failure .

The implementation of a physical
redundancy of sensors is an immediate
means to generate redundancy
relationships . This method allows the
detection of sensors’failures but it is
rather costly and moreover , sensible to
common mode failures . The parity space
approach ( Potter 1977 ) based on the
measurement equation , allows to use
different sensors in order to generate
ARR . However , the number of available
sensors has to be larger than the order

of the system . When few sensors are
available , a fictitious redundancy has
to be generated by observing the system
on a larger time interval . One has then
to use the measurement and the state
equations , and obtains dynamical ARR
whose residuals will be considered by the
decision procedure ( generalized parity
space ( Chow 1980 ; Chow 1984 ) )

Both the parity space and the generalized
parity space approaches are based on an
analytical expression of the knowledge we
have about the system : state and
measurement equations . Moreover , these
equations have to be linear in fack ,
the residuals are obtained using a
projection operator in the state space

However , it is the most frequent case
that such a representation is not
available for large scale complex
industrial systems . Those systems are
characterized by the great number of
variables which are necessary for their
description , and by the great variety of
the types of relationships which link
these variables : gqualitative or
quantitative , statical or dynamical ,
linear or non linear . The functional
analysis of such complex processes leads
to represent their operation by means of
a number of elementary activities , which
are interconnected by product , energy or

information flows . In that network ,
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each of the elementary activities gives
rise to a relationship linking two or
more variables of the process . Among the
set of all the variables , only some of
them are known ( computed by elementary
activities ) or measured ( a sensor
performs also an elementary activity )

The present work uses such a
representation in order to generate ARR
for fault detection . The ARR are the
result of a systematic approach which can
be decomposed into two steps :

* Qualitative step . The structural
analysis of the process ( Richetin 1975 ;
Harary 1962 ) gives subsets of non
independant known or measured variables
It gives also subsets of elementary
activities ( or process functions ) which
link these variables . Each of those

subsets will give rise to one or more ARR.

* Quantitative step . This step consists
in the computation of the ARR
corresponding to each of the previously
mentionned subsets . This computation is
made possible by the ordering of the
process functions which is performed ,
within each subset , by the structural
analysis .

The obtained ARR are the result of the
overdetermination , within the system ,
of one or more variables .

We present an algorithm which
systematically exhibits all the
overdeterminations . The approach is
based on the introduction of real or
fictitious wvariables the pretext for
resolution variables ( PRV ) . Structural
analysis is used to compute the values of
the PRV ( which are known on another
hand ) For each of them , it gives the
subset of process functions as well as
the ordering of the computations which
allow its evaluation . Each PRV is thus
overdetermined , and provides an ARR ,
whose residual will be used by the
decision procedure for fault detection .

MODEL OF A COMPLEX SYSTEM

The functional analysis of large scale
complex industrial systems is a means for
creating a comprehensive model of their
operation , in a given operating mode .
Structured analysis methods such as SADT
( Lissandre 1982 ) have become quite
popular and lead to such meodels The
basic representation of a process
function is given by the diagram on fig.
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The hierarchical decomposition of process
* functions gives descriptions of the
process at different levels . The lowest
level is composed of process , actuators
, sensors and regulators functions ,
which form an interconnected net since
the outputs of some functions are the
inputs of others ... Such a
representation forms the structural model
of the system , at a given level

( Staroswiecki 1988 )
Let us now suppose that , for each
functional block of the structure , is

operating instructions

inputs———%) ——;>outputs

function

operating mechanism

basic representation
of a process function

Eig. o€ %

known the comportmental model which
describes the input/output relation of

the block . Such a model may be static or
dynamic , linear or non linear The fig.
2 gives an example of such a

representation , for a two inputs ,
single output system :

ul ] x1 | x2 x3 x4
uz2 5 X6
| h2
x7
h3 <

static linear model

£ static non linear model

dynamic linear model

dynamic non linear model

fig. 2 Model of a complex system

STRUCTURAL REPRESENTATION OF THE MODEL

The model of the process is viewed as a

_collection of boxes ( process functions )

relating a collection of variables

Let F be the set of functions which are
used for the description of the system ,
and Z the set of the variables . This set
will be decomposed into three subsets : ¥
, U and X , with

¥ the measured variables , issued
from sensors
U the control variables , issued

from operators or control computers
X the remaining variables

Let us note that the variables in Y and U
are known ( possibly through noisy or
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faulty instruments ) , while the
variables in X are unknown ( but could
eventally be computed or estimated using
Y and U ) .

The stucture of the process is
represented by the following binary
relation ( Richetin 1975 ) .

S :Fx¢g _— {0,1}
(£, 2) % 8 (5 , 2 )
whith 8 ( £ , 2z ) = 1 iff the
variable z appears in the relation £
s ( f, z) = 0 otherwise .

So , the structure of the system can be
represented by a table whose rows are the
process functions and whose columns are
the process variables . Such a table can
be partitioned in the following way :

Let 2 = C U X be a partition of the
columns ( C represents the set of known
 variables ) and F.U E = F such that E is

'the subset of those process functions
which relate only known variables . The
structural table of the system can be
presented under the following form ( fig.
3) .

fi. 3 Structural representation of
the system

Let us now consider the subsets of rows F_
and F, , having in mind that we want to
generate Analytical Redundancy Relations

, in order to compute the residuals which
will be used for fault detection (Gertler
1988 )

Obviously , each row in F, can be used as
an ARR since it represents a relation in
which appear only known variables

The rows in F, are relations in which
known as well as unknown variables appear
. Creating ARR is equivalent to associate
together some of these rows , so that the
unknown variables are eliminated . This
is a classification problem on the set F,
, each class being characterized by the
overdetermination of a given subset of
the unknown variables

OVERDETERMINATION OF A SUBSET OF UNKNOWN
VARIABLES .

Let X'c X and F ( X' )C F; be two
subsets satisfying :

Vxe X' 3fe F ( X') (s
such that s ( £,x ) =1
¥ feF (X' ) Vxeg X (1-2) (1)
| s ( £,x) =0
F ( X’ ) is the maximal (1-3)
subset satisfying (1-1)
and (1-2)

In other words , the class F ( X’ )
contains those process functions which
relate only the variables C and X' , are
insensitive with respect to the other
variables , and such that no other
process function has this property .
Taking the process functions in F ( X’ )
, a set of eguations of the following
form can be written :

fex,cr=o (2)

Let us now introduce the independancy
concepts associated with such a set of N
process functions with Q unknown process
variables . Those concepts are precisely
formulated in ( Murota 1987 ) , we only
present under a simple form those which
will be used .

Structural Independance of Variables .

Let M,s, M. be the sets of the possible
values taken by the variables X’ and C ,

let 77 be a given set of functions

Let y «~ C ,x1< X' and x2C X' be
subsets of variables The subsets x1 and
x2 are said to be structurally
independant on ¥ iff :

L rd
Aee s.t. £ (y,x1,x2) =0 almost
everywhere on M X Mi,

When j: is the set of linear forms

on M X M,% , structural independance is
equivalent teo linear independance

When 7% is a set of non trivial
polynomials on a ring K , structural
independance is named algebraic
independance ( Rech 1988 ) In the
structural representation of the subset
F(x") , we take J¥ as the set of all
functions which are compatible with the
physical laws governing the system and
which are independant of the process
functions in F(X’) .

Structural Independance of Process
Functions .

Let Yﬁ and Té be two subsets of process
functions from (2) . ?ﬁ is said to be
structurally dependant of fﬁ : 1 i ol

fr(y.,x)=0 => f2(y,x)=0
almost everywhere on ﬂ: X an
Let %X’ ¢ B XK )? be a pair satisfying
conditions (1) and let us analyze the
kind of model provided by (2) for the
subset of variables X’ ( a subsystem of
the complex system ( Torc 1982 ) )

a) When all the variables in X’ and all
the functions in F(X’) are structurally
independant ( s.i ) , (2) gives a
complete and minimal model for the
subsystem X’ .
—
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- The model is complete :

C,x1,x2 ) =0 almost everywhere ,
< F(X’) such that :

¥xl , x2< X' , Y £ such that
f (
4F

g(c, X' ) =0a.e YgeF ==y
f ( ¢,x1,%x2 ) =0 almost everywhere

This is a consequence of the s.i of the
variables in X’.

- The model is minimal :

Veer (x') , ¥ FeF (¥ )\{f} such
that :

g(Cc, X )=0 a.e YgeF ==>
f ( C, X* ) =0 almost everywhere

This is a consequence of the s.i. of the
functions in F ( X’ ) .

Taking into account the fact that X’ is a
subsystem of a physical system , whose
' inputs are known ( in C ) , the operating
point ( or the trajectory , for some
initial conditions ) is unique . The
system EX’ : B (% 2} is thus just
determined , with N = Q .

b) Let now F ( X’ ) be a set of s.1i
functions , and X’ be a set of non s.i.
variables : (2) gives an incomplete model
of the subsystem X’ . In fact , other
physical relations than those in F ( X' )
( or deduced from them ) are existing
between the variables of Xf . The model
(2) is undetermined , since no unique
value of X’ satify it . ( N<Q )

c) Let X' be a set of s.i. variables and
F ( X' ) a set of non s.i. functions :
(2) gives a complete but non minimal
model of the subsystem X’ , which is then
overdetermined . In this case , the pair
Xty T OCCKE ) gives rise to N-Q
redundancy relationships which can be
used for residual generation .

So , the problem of generating ARR from
the model of a complei system described
by the interconnexion of static or
dynamic , linear or non linear blocks ,
can be split into two parts :

Qualitative step . Exhibit all the pairs
X', FO X )3

Quantitative step . For each pair , check
if it is overdetermined and compute the
redundancy relationships .

Such a procedure could be very long and
time consuming ; we propose an algorithm
for the direct computation of a set of
possible ARR ,using " pretext for
resolution variables " ( PRV ).

THE ALGORITHM .

It is based on a special case of
overdetermination : we create pairs

{x’ , F ( X’ 3} by the computation ,
via two different means , of variables
which are named PRV . Under the
hypothesis of structural independance ,
those PRV are introduced in order to
obtain a pair gx U §PRV} , F ? which is
just determined . The application of

structural analysis methods for the
resolution of systems of equations

( Harary 1962 ; Richetin 1975 ) , based
on the concept of coupling on a bigraph ,
gives a first means for their calculation
. Their second determination is very
simple as far as the PRV are taken among
the known variables or are given by
advance known values .
The fig. 4 shows the structure of the
coupling obtained in the first case :

PRV

< >

fig. 4 : coupljng structure obtained
with {pnvjcc .

The fig. 5 shows the structure of the
coupling obtained via the introduction of
PRV which are given by advance known
values .

c X PRV

fig. 5 : coupling structure obtained
with given PRV .

Those known values allow the introduction
of the PRV into the process equations
without any modification of those
equations , by the choice of adequate
values , for example

f (C, X ) =0 will be written as
£f(C, X) + PRV =0

the known value of PRV being 0 .
For each PRV , the structural analysis
approach gives :

- the subset of the process.functions
which are necessary for the computation
of that PRV , the associated subset of
the unknown variables which can be
determined , and the associated subset of
the known variables used for the
determination .

- the ordering of the computations
which allows its evaluation .
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Each PRV gives thus rise to one
redundancy relationship , whose regidual
will be tested by the fault detection
procedure The structure of the ]
redundancy relationship is characterized
by the associated process functions and
the associated known variables . The
knowledge of that structure will be used
by the fault isolation procedure

CONCLUSION

Model based failure detection and
isolation metheds rest on the use of
decision procedures which test the value
of residuals generated by ARR . The
extraction of those ARR from the system’s
model is relatively easy for linear
systems , but much more difficult in the
non linear case . The approach we propose
is based on the representation of complex
industrial process by means of a network
of interconnected blocks , each block
performs linear or non linear , static or
dynamic transformations The structural
analysis methods , together with the
introduction of PRV variables ( which are
double-determinated ) gives a means for
the systematic extraction of the ARR from
the model of the process ( supposed to be
complete )
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