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ABSTRACT

In this paper, we apply the embedding procedure to
quantitative models based on state equations or block
diagram representation. The result is a unique formulation
which contains the generation of ARR and the least square
estimate of the state vector. Particularly, the three classical
relations which define the parity space are generalized to
partially observable processes.
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L- INTRODUCTION

The basic principle of fault detection is the comparison of
the actual behaviour of the system to a reference behaviour
describing its normal operation. The reference behaviour is
issued from the knowledge which is available upon the
system, this knowledge being expressed under more or less
precise terms, and under formalisms which may be very
different (knowledge base, analytical models,...). One of the
most frequently used approach is based on the use of
Analytical Redundancy Relationships (ARR) : the knowledge
available upon the system leads to express its normal
operation by a set of invariants : the residuals of the ARR
(coherence model). The fault detection resumes thus to a
decision problem : is the variance of the residuals the effect
of noise, of normal deviations and errors or the effect of a
failure.

However, it is the most frequent case that such an analytical
representation is not directly available for large scale
complex industrial systems. Those systems are characterized
by the great number of variables which are necessary for their
description, and by the great variety of the types of
relationships which link these variables : qualitative or
quantitative, statical or dynamical, linear or non linear.
Moreover, in practical situations, some models are not
known precisely (class of the model, values of its
parameters,...) although their structure , i.e the different
relationships and the variables which intervene, is known.
The system may thus be represented by a network of
elementary activities, each of them processing a subset of

variables. Among the set of all the variables, only some of
them are known (computed by elementary activities) or
measured (a sensor performs also an elementary activity).

So, an approach is to use such a representation in order to
identify a possible candidate ARR for fault detection, based
on the overdetermination, within the system of one or more
variables [12]. We define extended graphs which include the
initial structures by an embedding procedure to analyze the
system [3] [4]. The new graphs contain more vertices and
arcs than the original ones.

However, this approach is not limited to qualitative models.
The embedding procedure may also be applied to the
following quantitative representations of the process :

1) An interconnection ol transfer functions (block diagram
representation)

The large scale system under consideration is represented by
a network of elementary activities. This description, as
shown in [13] [14], can be directly used to generate a set of
ARR.

2) The state and measurement equations

The most commonly used approaches are based on
identification [7] or estimation procedures. The more
practical technique is probably the parity space which is a
special observer (dead beat observer [9]). The early
contributions to the parity space approach were made by [10]
[5] and the group around Willsky [1] [8].

The key idea is to check the parity (consistency) of the
mathematical equations of the system by using the actual
measurements. A fault is declared to have occured once
preassigned error bounds are surpassed. The analytical
redundancy relations can be static or dynamic.

For these different representations, we propose to apply the

embedding procedure to partially observable complex
system.
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II-ST SPACE AND MEASUREMENT EQUATT

Linear dicrete time processes can be described by a set of
equations called state-space and measurement equations :

x(k+1) = A x(k) + B u(k) + E e(k) + F f(k) + w(k) (1)
y(k) = C x(k) + G g(k) + Hh(k) +v(k) (2)

where :
x(k), u(k), y(k) are respectively the state, control and output
vectors at time k.

E is the distribution matrix of the modelization errors e(k).

F is the distribution matrix of the compoenents and actuators
faults f(k).

G is the distribution matrix of the modelization errors g(k).
H is the distribution matrix of the sensors faults h(k).

wi(k) and v(k) are respectively the process and measurement
noises.

For any time k, these equations can be re-written as

y (kp) = 6(k,p) x(k) + C(k,p) u(k,p) + E(k,p) e(k,p) + F(k,p)
f(k,p) + W(k,p) w(k.,p) + G g(k,p) + Hh(k,p) + v(k,p) (3)

where :

2(k;p) = (2'K), 2'(c+1), ... 2 (k)
ze (y,u e f,w, g h v}
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We can wrile :
y (k.p) = 0(k,p) x(k) + C(k,p) u(k.p) + &(k.p)
with e(k,p) = E(k,p) e(k,p) + F(k.p) {tk,p) + W(k,p) w(k,p) +
G g(k,p) + H h(k,p) + v(k,p)
So,
d(k,p) x(k) = z(k,p) - e(k,p) (4)
with z(k,p) = y(k.p) - C(k,p) u(k,p)
Note than e(k,p) contains all the informations on the

deviations between the actual behaviour of the system and
the expected one on the time interval [k, k+p] (model errors,

process and measurement noises, process and sensors or

actuators faults).

For simplicity, we wrile :
0.x=z-¢

11 - THE EMBEDDING PROCEDURE

Since the value of x(k) in equation (4) is unknown, two
approaches are classicaly encountered :
- eliminate x(k) by projecting equation (4) on a space
orthogonal to the space spanned by the columns of
O (k,p) : this is the Parity Space approach,

- estimate x(k) through an estimation procedure. A least
square estimale may for instance be used (since the

system (x = z has generally no solution in real cases).

The embedding procedure, which includes the actual system
in a larger one (over-sysiem), will be used in order to present
both approaches simultancously. Moreover, we will
generalize our presentation to partially observable systems.
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For such systems, the matrix ¢, of dimensions m.n, is of
rank r with <m and r<n. We generate an over-matrix in the
following manner :

Let R (row) be an n-r.n matrix such that :
R.0'=0
R.R =1

L . :
So, (0 , R) spans a space of dimension n.

Symetrically, let K (column) be an m. m-r matrix such
that :

K'.o=0
K .K=I
So, (K, ¢) spans a space of dimension m.

The over-matrix and the over-system are defined by :

with
ol Tt t.t + t Lt
X =(v,x') andz =(z,d)
v (respectively d) is a new m-r (resp. n-r) vector of variables

(data).

% and x' have the same dimension.

The equations which represent the system and the over-
system are thus respectively :

Ox=2z-¢ (equation 4)

Kv + 0x" =z
(5)
Rx'=d

Note that the over-system is more general than the original
one since the latter is a special case of the former, obtained
for Kv = €. In that sense, it can be seen that v introduces m-r
degrees of freedom in the over-system. Symetrically, as
Rx'=d doesn't introduce new constraints, d constitutes a
vector of n-r degrees of freedom.

The observability matrix ¢ is included in a "overmatrix"
which has special characteristics: it contains more columns
and more rows and the system of equations contains more
variables and data. The aim of the construction of the
overmatrix is in the following properties.

Property 1 :

® is invertible and its inverse is given by :

K" 0

Wt 6)
©'o + R'R) 1ot (0% + R'R) R

Property 2 :

L L o g o i
® o+ R R as well as its inverse, have n-1 unit eigenvalues,

. . t
and the corresponding eigenvectors are the columns of R,

Proof: (©'0+R'R)R'=0'oR'+R'RR'
The right-hand member is equal to Rt, since t]JRt

=0and RR' =1 by the definition of R. The result
concerning the inverse is obtained by

premultiplying both members by (cpt o+ R R)-l.

Taking into account the property 2, the inverse of ¢+
becomes :

L
+,-1 K 0

@ = o 7
@'o +R'R) ol R

T, T e Rl el weobulnfie
following relations.

KK +o@ o+R' R o1

(8-a)
R R o R R o gi=1 (8-b)
©'o+R'R) o' K =0 (8-¢)
R o+R'R) o' =0 (8-d)

The first relation defines usually the parity space however it
is only a consequence of the orthonormalization. This result
is generally not very well explained in the litterature.

Property 3 :

The solutions of the over system are :
v : the parity vector of the system (4)
x' : a least square estimate of x in (4)

Proof : Using the form of (¢+)“1, the solution is given by :
v=K'z 9)
L o L
X=(@0 0+RR) ¢ z+Rd (10)

From (9) and (4) one has :
3 L
v=K (px+g)=K &
which shows that v is the parity vector.

L
On another hand, let us premultiply (10) by ¢ ¢ (a square
matrix, of dimensions nxn and of rank r). We obtain :

dox=0'00'0+R'R) o'z o' oR'd 3/
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Using (8-a) and the fact that OR = 0, this gives :
t t t

oox'=¢0 (I-KK)z
and finally

t
o' ox =0" 2 (since ' K =0)
which shows that x' satisfies the stationarity condition

. e e e e t
required by the minimization of £ &.

IV - BLOCK DIAGRAM REPRESENTATION

To keep close to the physical structure of the system we can
use a graphical description based on the interconnexion of
sub-systems. The graph contains variables and functions and
so is bipartite. The sub-models can be transfer functions or z-
ransforms in the linear case. For a single-input single-
output block, the equation can be:

5(z) D(z) - e(z) N(z) = 0
with s and e the ouput and input variables.
If ¢(z) and x(z) are respectively the known and unknown
variables, the system can be described by:

I(z) c(z) + K(z) x(z) =0
where J(z) and K(z) are polynomial matrices in z.
As above, we can define an over-matrix K+(z) and use the

same approach, with the only difference that the
computations are carried out on polynomial matrices.

V - CONCLUSION

The generation of ARR and the least squares estimate of
vector space are simultaneous made in an unique formulation.
Moreover , this approach permits to deduce easily many
results, as a new expression of the pseudo-inverse. The three
classical relations which define the parity space are
generalized to partially observable processes. So, the
embedding procedure is not limited to structural models but is
also an efficient tool for the handling of quantitative
representations in fault detection.
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