From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Université d'Angers - LISA http://www.istia.univ-angers.fr/LISA

8 juillet 2009

A 3 >

-<∃>

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardizatior

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

- Motivations and Objectives
- 2 Timed Event Graphs
- Problem of standardization
- Technique 1 using linear programming
- Oual technique 2
- Properties
- Conclusion

イロト イポト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Ever Graphs

Problem of standardizatio

Technique 1 using linear programmin

Dual technique 2

Properties

Conclusion

Motivations and Objectives

- **Timed Event Graphs**
- Problem of standardization
- Technique 1 using linear programming
- 5 Dual technique 2
- 6 Properties
- Conclusion

Motivations and Objectives

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

• Description of Timed Event Graphs with the form $Ax \leq b$.

 \rightarrow analogeous to the state equation of automatic control in continuous systems.

 Development of a path theory but completely defined in the standard algebra.

 \rightarrow Possible application of polyvalent algorithms of linear programming like the simplex

 Objective : Standardization of the Algebraic Model of Timed Event Graphs

 \rightarrow Avoid the useless calculations in the calculation of the state trajectory

イロト イロト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardizatio

Technique 1 using linear programmin

Dual technique 2

Properties

Conclusion

Motivations and Objectives

2 Timed Event Graphs

Problem of standardization

- Technique 1 using linear programming
- 5 Dual technique 2
- 6 Properties
- Conclusion

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

● A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.

イロト イポト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

- A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.
- ② Each place $p_l ∈ P$: a temporisation $T_l ∈ R^+$ and an initial marking m_l .

イロト イロト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

- A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.
- ② Each place $p_l ∈ P$: a temporisation $T_l ∈ R^+$ and an initial marking m_l .

Inequations

Dater : each variable x_i(k) is the k^{ème} firing date of transition x_i.

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

- A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.
- ② Each place $p_l ∈ P$: a temporisation $T_l ∈ R^+$ and an initial marking m_l .

Inequations

- Dater : each variable x_i(k) is the k^{ème} firing date of transition x_i.
- IFIO behavior of places.

イロト イポト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

- A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.
- ② Each place $p_l ∈ P$: a temporisation $T_l ∈ R^+$ and an initial marking m_l .

Inequations

- Dater : each variable x_i(k) is the k^{ème} firing date of transition x_i.
- IFIFO behavior of places.

イロト イポト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Model

- A Timed Event Graph is a Petri Net such that each place p ∈ P has an upstream transition and a downstream transition.
- ② Each place $p_l ∈ P$: a temporisation $T_l ∈ R^+$ and an initial marking m_l .

Inequations

- Dater : each variable x_i(k) is the k^{ème} firing date of transition x_i.
- IFIFO behavior of places.

イロト イポト イヨト イヨト

Example of Timed Event Graph

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

FIGURE: Timed Event Graph

Initial model

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Internal inequalities.

$$\left(\begin{array}{cc} A_{.,1} & A_{.,0} \end{array}\right) \left(\begin{array}{c} x(k-1) \\ x(k) \end{array}\right) \leq -T^A$$
 (1)

Input inequalities.

$$\begin{pmatrix} B_1 & B_0 \end{pmatrix} \begin{pmatrix} u(k) \\ x(k) \end{pmatrix} \leq -T^B$$
 (2)

Output inequalities.

$$\begin{pmatrix} C_1 & C_0 \end{pmatrix} \begin{pmatrix} x(k) \\ y(k) \end{pmatrix} \leq -T^C$$
 (3)

Each row of matrices $A = \begin{pmatrix} A_{.,1} & A_{.,0} \end{pmatrix}$, $B = \begin{pmatrix} B_1 & B_0 \end{pmatrix}$ and $C = \begin{pmatrix} C_1 & C_0 \end{pmatrix}$, is null except two coefficients 1 and -1.

 We assumes that the set of input and output places presents a null initial marking.
 Image: Comparison of the Alternative Standardization of the Alterna

Example of Timed Event Graph.

Conclusion

• • = • • = •

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Motivations and Objectives

Problem of standardization

Timed Event Graphs

3

5 Dual technique 2

6 Properties

7 Conclusion

Initial model

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Internal inequalities.

$$\left(\begin{array}{cc} A_{.,1} & A_{.,0} \end{array}\right) \left(\begin{array}{c} x(k-1) \\ x(k) \end{array}\right) \leq -T^A$$
(4)

Input inequalities.

$$\begin{pmatrix} B_1 & B_0 \end{pmatrix} \begin{pmatrix} u(k) \\ x(k) \end{pmatrix} \leq -T^B$$
 (5)

Output inequalities.

$$\begin{pmatrix} C_1 & C_0 \end{pmatrix} \begin{pmatrix} x(k) \\ y(k) \end{pmatrix} \leq -T^C$$
 (6)

Each row of matrices $A = (A_{.,1} A_{.,0})$, $B = (B_1 B_0)$ and $C = (C_1 C_0)$, is null except two coefficients 1 and -1.

A. Guezzi, Ph. Declerck From Linear Programming to Graph Theory: Standardization of the Alc 8 iuillet 2009 11/32

Objective : Final model using incidence matrices

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming Dual techniqu 2

Properties

Conclusion

$$W_{x \to x}^{+} \quad -W_{x \to x}^{-} \) \left(\begin{array}{c} x(k-1) \\ x(k) \end{array} \right) \leq -T_{x \to x}$$
(7)

$$\begin{pmatrix} W_{u \to x}^+ & -W_{u \to x}^- \end{pmatrix} \begin{pmatrix} u(k) \\ x(k) \end{pmatrix} \leq -T_{u \to x}$$
 (8)

$$\begin{pmatrix} W_{x \to y}^+ & -W_{x \to y}^- \end{pmatrix} \begin{pmatrix} x(k) \\ y(k) \end{pmatrix} \leq -T_{x \to y}$$
 (9)

The matrices of this new model are well-known ingoing/outgoing incidence matrices used in the fundamental relation of marking. A Petri net can directly be deduced from this model.

• 3 >

Initial model

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

FIGURE: Timed Event Graph (initial)

Final model

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual techniqu 2

Properties

Conclusion

イロト イポト イヨト イヨト

Advantages

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Event Graphs

Problem of standardization

Technique 1 using linear programming Dual techniqu

Properties

Conclusion

Connections with the incidence matrices of fundamental equation of marking

$$W^{+} = \begin{pmatrix} W_{u \to x}^{+} & 0 & 0 \\ 0 & W_{x \to x}^{+} & 0 \\ 0 & W_{x \to y}^{+} & 0 \end{pmatrix} \text{ and } W^{-} = \begin{pmatrix} 0 & W_{u \to x}^{-} & 0 \\ 0 & W_{x \to x}^{-} & 0 \\ 0 & 0 & W_{x \to y}^{-} \end{pmatrix}$$
, for a vector of transitions $\begin{pmatrix} u^{t} & x^{t} & y^{t} \end{pmatrix}^{t}$.
The temporisations are $T_{u \to x}$, $T_{x \to x}$ and $T_{x \to y}$.
Each internal place \rightarrow initial marking equal to one
Each input/output place \rightarrow initial marking equal to zero.

< ∃ >

Advantages

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual techni 2

Properties

Conclusion

Connections with the incidence matrices of fundamental equation of marking

$$W^{+} = \begin{pmatrix} W_{u \to x}^{+} & 0 & 0 \\ 0 & W_{x \to x}^{+} & 0 \\ 0 & W_{x \to y}^{+} & 0 \end{pmatrix} \text{ and } W^{-} = \begin{pmatrix} 0 & W_{u \to x}^{-} & 0 \\ 0 & W_{x \to x}^{-} & 0 \\ 0 & 0 & W_{x \to y}^{-} \end{pmatrix}$$
, for a vector of transitions ($u^{t} \quad x^{t} \quad y^{t}$)^t.
The temporisations are $T_{u \to x}$, $T_{x \to x}$ and $T_{x \to y}$.
Each internal place \rightarrow initial marking equal to one
Each input/output place \rightarrow initial marking equal to zero.

Each input/output place \rightarrow initial marking equal to zero.

Calculations

This model allows an efficient calculation of the state (knowing the past state and the control) \rightarrow it avoids the repetition of the useless calculations in the iterative calculation of the state.

Example : the initial Timed Event Graph.

Conclusion

▶ < E > < E > .

Example : the final Timed Event Graph.

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $W_{u\to x}^{+} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, -W_{u\to x}^{-} = \begin{pmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1 \end{pmatrix}$ $T_{u \to x} = \left(\begin{array}{c} 0\\ 10\\ 10 \end{array}\right)$ $W_{x \to x}^{+} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - W_{x \to x}^{-} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}$ $(T_{x \to x})^{t} = \begin{pmatrix} 10 & 20 & 28 & 8 & 16 & 3 \end{pmatrix}$

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Earliest state trajectory.

k	0	1	2	3
x	0	10	20	35
	0	20	30	45
	0	28	38	53
и	-	0	0	35
y	3	31	41	56

イロト イポト イヨト イヨト

Technical point

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

$$\begin{pmatrix} A_{.,1} & A_{.,0} \end{pmatrix} \begin{pmatrix} x(k-1) \\ x(k) \end{pmatrix} \le -T^A$$
(10)

$$\begin{pmatrix} 0 & A_{0,0} \\ A_{1,1} & A_{1,0} \end{pmatrix} \cdot \begin{pmatrix} x(k-1) \\ x(k) \end{pmatrix} \leq \begin{pmatrix} -T_0^A \\ -T_1^A \end{pmatrix}$$
(11)

Elimination of the relations connected the entries of state vector x(k) for given k

$$A_{0,0}.x(k) \le -T_0^A \tag{12}$$

イロト イポト イヨト イヨト

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardizatior

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Timed Event Graphs

Problem of standardization

- Technique 1 using linear programming
- Dual technique 2
- 6 Properties
- Conclusion

• • = •

< ∃ >

Technique 1 using linear programming.

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Duai technique 2

Properties

Conclusion

The possible effects on date $x_i(k)$ are produced by :

- the firing dates of a control transition $u_j(k)$ (case a) and also, produced by
- the firing dates of the upstream transitions of places whose initial marking is one $x_j(k-1)$ (case b).

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Ever Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

rioperties

Conclusion

 Case a) The minimal effect is the minimal difference x_i(k) - u_j(k) or min(c'x) for the following constraints

$$\begin{pmatrix} 0 & A_{0,0} \\ B_1 & B_0 \end{pmatrix} \begin{pmatrix} u(k) \\ x(k) \end{pmatrix} \leq \begin{pmatrix} -T_0^A \\ -T^B \end{pmatrix}$$

where c' is a null row-vector except $c'_i = 1$ et $c'_i = -1$

For each pair (x_i, u_j) , the resolution of this problem gives the minimal difference ΔT

$$x_i(k) - u_j(k) \ge \Delta T$$
 or $x_i(k) \ge u_j(k) + \Delta T$.

A 3 >

Image: A matrix and a matrix

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Ever Graphs

Problem of standardization

Technique 1 using linear programming

Dual techi 2

Properties

Conclusion

 Case b) The minimal effect is the minimal difference x_i(k) - x_j(k - 1) or min(c'x) for the following constraints

$$\begin{pmatrix} 0 & A_{0,0} \\ A_{1,1} & A_{1,0} \end{pmatrix} \cdot \begin{pmatrix} x(k-1) \\ x(k) \end{pmatrix} \leq \begin{pmatrix} -T_0^A \\ -T_1^A \end{pmatrix}$$
(13)

where c^\prime is a null row-vector except $c^\prime_i=1$ and $c^\prime_j=-1$

For each pair (x_i, x_j) , the resolution of this problem gives the minimal difference $\Delta T x_i(k) - x_j(k-1) \ge \Delta T$ or $x_i(k) \ge x_j(k-1) + \Delta T$

Example

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Ever Graphs

Problem of standardization

Technique 1 using linear programming

Dual techniqu 2

Properties

Conclusion

a) The minimal difference
$$x_i(k) - u_j(k)$$
 is $\begin{pmatrix} 0\\10\\18 \end{pmatrix}$. So,
 $W_{u \to x}^+ = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $-W_{u \to x}^- = \begin{pmatrix} -1 & 0 & 0\\0 & -1 & 0\\0 & 0 & -1 \end{pmatrix}$ and
 $-T_{u \to x} = \begin{pmatrix} 0\\-10\\-18 \end{pmatrix}$

イロト イポト イヨト イヨト

э

From Linear b) The minimal difference $x_i(k) - x_j(k-1)$ is $\begin{pmatrix} 10 & -\infty & -\infty \\ 20 & 8 & -\infty \\ 28 & 16 & 3 \end{pmatrix}$ Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs $. \text{ So, } W_{x \to x}^{+} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - W_{x \to x}^{-} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ and $-T_{x \to x} = \begin{pmatrix} -10 \\ -20 \\ -28 \\ -8 \\ -16 \\ 2 \end{pmatrix}$ Technique 1 using linear programming < ∃ > A. Guezzi, Ph. Declerck From Linear Programming to Graph Theory: Standardization of the Alc 8 iuillet 2009 25/32

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardizatior

Technique 1 using linear programming

Dual technique 2

Properties

Motivations and Objectives

- Timed Event Graphs
- Problem of standardization
- Technique 1 using linear programming
- 5 Dual technique 2
 - Properties
- Conclusion

Dual technique 2

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Ever Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Theorem of duality. Primal problem (P) : min y.b with $y \in R^n_+$, y.A = c and y real positive.

and

Dual problem (D) : max c.x with $x \in \mathbb{R}^m$, $A.x \leq b$ and x real.

• Case b)
max y.
$$\begin{pmatrix} T_0^A \\ T_1^A \end{pmatrix}$$
 with $y \in R_+^m$ ($y \ge 0$) under constraints
y. $\begin{pmatrix} 0 & A_{0,0} \\ A_{1,1} & A_{1,0} \end{pmatrix} = -c'$ (14)

and $y \ge 0$ where c' is a null row-vector except $c'_i = 1$ and $c'_j = -1$.

i and *j* are respectively the indexes of outgoing transition x_i and ingoing transition x_j . From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

• Case a)

$$\max y. \begin{pmatrix} T_0^A \\ T^B \end{pmatrix} \text{ with } y \in R^m_+ \ (y \ge 0) \text{ under constraints}$$

$$y. \begin{pmatrix} 0 & A_{0,0} \\ B_1 & B_0 \end{pmatrix} = -c'$$
(15)

where c' is a null row-vector except $c'_i = 1$ et $c'_j = -1$.

i and *j* are respectively the index of internal transition x_i and input transition u_j .

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardizatior

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

Motivations and Objectives

- Timed Event Graphs
- Problem of standardization
- Technique 1 using linear programming
- Dual technique 2
- 6 Properties

Conclusion

Properties

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

A. Guezzi, Ph. Declerck

Motivations and Objectives

Timed Even Graphs

Problem of standardization

Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

- Approach 1. determination of the minimal time difference between the same vertices.
- Approach 2. determination of the greatest paths in graph theory. Integer vector *y* can only choose a unique path from transition *x_s* to transition *x_e* and its coefficients are zero or one.
- $y_{opt} \ge 0$
- Solution *y_{opt}* of the linear programming (P) is integer.

• 3 >

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

- A. Guezzi, Ph. Declerck
- Motivations and Objectives
- Timed Even Graphs
- Problem of standardizatio
- Technique 1 using linear programming
- Dual technique 2
- Properties
- Conclusion

- Motivations and Objectives
- Timed Event Graphs
- Problem of standardization
- Technique 1 using linear programming
- 5 Dual technique 2
- 6 Properties
- Conclusion

Conclusion

From Linear Programming to Graph Theory: Standardization of the Algebraic Model of Timed Event Graphs

- A. Guezzi, Ph. Declerck
- Motivations and Objectives
- Timed Even Graphs
- Problem of standardization
- Technique 1 using linear programming

Dual technique 2

Properties

Conclusion

- We generalize the technique of Roy (see book of Gondran and Minoux) to the modeling of Event Graphs
- Connections of our model using daters Ax ≤ b, with incidence matrices of equation of marking
- Two dual approaches which solve the problem of standardisation in linear programming.
- In (max, +) algebra, an equivalent technique exists (Kleene star-problem P)
- A perspective is the application to the model checking (Calculation of the polyhedrons in state classes)