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ABSTRACT

The aim of this paper is the standardization of the algebraic model of Timed Event Graphs defined in the conventional
algebra. The result of the proposed technique is an auto-regressive model similar to the sampled state equations of the
automatic control. Based on standard incidence matrices, this new model is a set of inequalities defined on a reduced horizon
which allows an efficient calculation of the state trajectory knowing the initial state and the control. The starting point of the
approach is the algebraic model deduced from the initial Timed Event Graph [6]. Using linear programming, we give two
dual techniques which allow the building of the standardized model and the corresponding Timed Event Graph. This study
improves our understanding of the connections between linear programming and graph theory.
Keywords: Discrete Event Systems, Timed Event Graphs, Algebraic Model, Linear Programming, Control Systems.

1. Introduction

In the literature, different papers [3] [4] [6] propose the
modeling of Timed Event Graphs and P-time Event Graphs
in the conventional algebra. The result is a dynamical
model defined by a polyhedron A.x ≤ b. The applica-
tion of a classical algorithm of linear programming allows
the determination of the earliest trajectories and this model
can also be used in model predictive control [6]. Another
application is the calculation of the production rate [3] [4].
Like the (max, +) algebra, the main characteristic of this
approach is that the concepts of lattice theory can be used.

Deduced from the initial Timed Event Graph [6], this
dynamical model uses special incidence matrices. How-
ever, they are different from the incidence matrices of the
fundamental relation of marking. The aim of this paper is
to improve this dynamical model: we desire to deduce a
new form of the model defined on a reduced horizon with
the following characteristics:

- The matrices of this new model are well-known ingo-
ing/outgoing incidence matrices used in the fundamental
relation of marking; A Petri net can directly be deduced
from this model.
- Therefore, this model allows an efficient calculation of
the state knowing the past state and the control: it avoids
the repetition of the same calculations in the iterative cal-
culation of the state.
This objective is well-known in (max, +) algebra. The ob-
jective is that the calculation time is similar to the determi-
nation time of the state using the following state equation
[1] in (max, +) algebra

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

where maximization and addition operations are re-
spectively denoted ⊕ and ⊗. Depending on the size of
matrices, the calculation time of a state trajectory x is
polynomial and small sizes can be considered without
computer. Each variable xi(k) represents the date of the
kth firing of internal transition xi. Vector u corresponds
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to input transitions denoted u (a supervisory or an external
process can fix the events of transition u ) while vector y
corresponds to output transitions denoted y (the process
defined by the considered event graph determines the
relevant events). Let us note that the above equality (1)
cannot immediately be deduced from the event graph and
needs an intermediate step.

In the context of discrete event systems, a more general aim
is also the development of a graph theory but completely
defined in the standard algebra. Even if the determination
of the maximal paths is well-known since the sixties, we
propose a different point of view which is algebraic. The
main advantage is to bring connections between automatic
control of continuous systems and control of discrete
event systems. A consequence is a better understanding
of these theories. The proposed technique can be used
by non-specialist of graph theory which can only learn
a limited number of concepts. Another advantage is the
possible application of polyvalent algorithms of linear
programming like the simplex: they can be applied in clas-
sical automatic control but also in discrete event systems.
A perspective is the analysis of the calculation time of
the different algorithms. Let us recall that, although some
artificial examples show exponential running time, the
simplex is very efficient in practice and on the average [7].

In the following part, we define the problem by describ-
ing the initial algebraic model and the desired model of the
Timed Event Graph. We then propose two dual approaches
which solve the problem in linear programming. A graphi-
cal interpretation of the second approach is also given. Fi-
nally, we discuss the duality of the two approaches. In part
3.1, we also generalize the technique of Roy (see [5]) to
the modeling of an Event Graph: recall that, contrary to the
PERT approach where each task is associated with an arc,
this technique considers the initial dates of the events and
the following events.



2. Problem of standardization

2.1. Initial model

The following general model composed of (2), (3) and ( 4)
can be deduced from any Timed Event Graph. The proce-
dure is given in Appendix 1. Let us firstly consider the in-
equations such as the values of control u(k) and past state
x(k − 1) can modify current state x(k). The internal in-
equalities are :

( A.,1 A.,0 )
(

x(k − 1)
x(k)

)
≤ −TA (2)

where notation A.,1 (respectively, A.,0 ) corresponds to the
columns relevant to the components of x(k − 1) (respec-
tively, x(k) ) without restriction on the rows, the input in-
equalities are :

( B1 B0 )
(

u(k)
x(k)

)
≤ −TB (3)

and the output inequalities which determine the output are
:

( C1 C0 )
(

x(k)
y(k)

)
≤ −TC (4)

Each row of matrices A = ( A.,1 A.,0 ), B =
( B1 B0 ) and C = ( C1 C0 ), is null except two co-
efficients 1 and −1.
Without reduction of generality, the following assumptions
are made. We suppose that inequations corresponding to
internal transitions and places with null initial marking are
only present in (2). In the contrary case, the possible re-
lations of this type which are in system (3) or ( 4) can be
moved in system (2): they correspond to rows of (3) such
as (B1)i,. = 0 for instance. With the aim of simplify the
presentation, we also assume that there is no direct rela-
tion between the inputs and the outputs, that is, inequality

( D1 D0 )
(

u(k)
y(k)

)
≤ −TD

As this case corresponds to the existence of a place be-
tween an input transition and an output transition, a sim-
ple introduction of an internal transition yields the desired
Event Graph and so, the above inequality can be rewritten
in forms (3) and ( 4). Let us note that the writing of rela-
tions (3) and ( 4) assumes that the set of input and output
places presents a null initial marking.
Below, we file relations of (2) in the numeric order of the
initial marking of places. Upper rows corresponds to null
initial marking. The first index in AM0,. corresponds to
the initial marking M0 while the second one in A.,∆ corre-
sponds to the shift of numbering ∆ relevant to x(k −∆).

(
A0,1 A0,0

A1,1 A1,0

)
.

(
x(k − 1)

x(k)

)
≤

( −TA
0

−TA
1

)
(5)

with A0,1 = 0

2.2. Final model using incidence matrices

The objective is now to obtain the following relation be-
tween x(k − 1) and x(k) whose form is :

(
W+

x→x −W−
x→x

) (
x(k − 1)

x(k)

)
≤ −Tx→x (6)

, relation between u(k) and x(k) whose form is

(
W+

u→x −W−
u→x

)(
u(k)
x(k)

)
≤ −Tu→x (7)

and relation between x(k) and y(k) whose form is

(
W+

x→y −W−
x→y

) (
x(k)
y(k)

)
≤ −Tx→y (8)

Inequation system (6) corresponds to initial marking equal
to one and, systems (7) and (8) to null initial marking. So,
the variables are connected by input and output incidence
matrices which allows a simple calculation. Finally, a cor-
responding Timed Event Graph defined as follows can be
built. The incidence matrices of fundamental equation of
marking are :

W+ =




W+
u→x 0 0

0 W+
x→x 0

0 W+
x→y 0


 and W− =




0 W−
u→x 0

0 W−
x→x 0

0 0 W−
x→y


 , for a vector of transitions

(
ut xt yt

)t. The temporisations are Tu→x , Tx→x

and Tx→y and each internal place (respectively, in-
put/output place) presents an initial marking equal to one
(respectively, equal to zero).

As the initial marking of the input/output place is null, the
determination of system (8) is immediate. As system (4)
expresses the places linking the internal transitions to the
output transitions, matrices C1 and C0 have a characteris-
tic structure of incidence matrix which allows the simple
calculation of y(k) because each row of C1 and C0 has
a unique non-null coefficient. We have C1 = W+

x→y ,

C0 = −W−
x→y and TC = Tx→y .

The establishment of system (6) is more difficult as the ini-
tial marking of each internal place of system (5) can be
equal to zero or one. Particularly, the iterative calculation
of x(k) must be made without considering the following re-
lations connected the entries of state vector x(k) for given
k

A0,0.x(k) ≤ −TA
0 (9)

Therefore, the algebraic determination of the incidence ma-
trices and the associated temporisations of system (6) is the
goal of the following part.

3. Technique 1 using linear programming

Let us consider transition xi and systems (3) and (5). Let
us analyze the possible effects on date xi(k) produced by:

- the firing dates of a control transition uj(k) (case a) and
also, produced by
- the firing dates of the upstream transitions of places whose
initial marking is one xj(k − 1) (case b). We focus on the
earliest behavior and so we want to calculate the minimal
effect.



• Case a) The minimal effect is the minimal difference
xi(k) − uj(k) or min(c′x) where c′ is a null row-
vector except c′i = 1 et c′j = −1 (i and j are re-
spectively the index of internal transition xi and input
transition uj ) for the following constraints

(
0 A0,0

B1 B0

) (
u(k)
x(k)

)
≤

( −TA
0

−TB

)
(10)

which is classical problem of linear programming.
For each pair (xi, uj), the resolution of this prob-
lem gives the minimal difference ∆T (precisely,
∆Txi(k),uj(k) ) and we can write relation xi(k) −
uj(k) ≥ ∆T or the more usual expression xi(k) ≥
uj(k) + ∆T . In the new graph, it corresponds to a
place between input transition uj and outgoing transi-
tion xi with temporisation ∆T and null initial mark-
ing.

• Case b) The minimal effect is the minimal difference
xi(k)−xj(k− 1) or min(c′x) where c′ is a null row-
vector except c′i = 1 and c′j = −1 (i and j are the
indexes of outgoing transition xi and ingoing transi-
tion xj) for the following constraints(

0 A0,0

A1,1 A1,0

)
.

(
x(k − 1)

x(k)

)
≤

( −TA
0

−TA
1

)

(11)
which is classical problem of linear programming.
For each pair (xi, xj), the resolution of this prob-
lem gives the minimal difference ∆T (precisely,
∆Txi(k),xj(k−1) ) and we can write relation xi(k) −
xj(k − 1) ≥ ∆T or the more usual expression
xi(k) ≥ xj(k − 1) + ∆T . In the new graph, it cor-
responds to a place between ingoing transition xj and
outgoing transition xi with temporisation ∆T and ini-
tial marking equal to one.

The two procedures allow the consideration of all effects
on each transition i produced by control u(k) and the past
evolution expressed by x(k−1). The existence of an effect
can be graphically explained by the existence of a path
between transitions. If the two procedures are repeated for
each transition xi, relations (2) and (3) can be replaced
by the new system (6) and (7). In particular, system (9)
A0,0.x(k) ≤ −TA

0 can now be disregarded as the relevant
possible effects on the firing dates of xi are considered in
(6) and (7).
To summarize, the approach generates a new Timed Event
Graph which does not contain internal places whose initial
marking is null. It contains a set of places whose number is
lower than card(x)(card(x) + card(u)) as the procedure
considers each pair of transitions defined above and their
possible connections.

3.1. Example

This example describes the processing manufacture of
sheets. Its processing can be described as follows: A sheet
is printed, folded and packed. The PERT approach starts
from the following table of tasks.

Label Description of the tasks Duration Previous tasks
A printing 10 -
B folding 8 A
C packaging 3 B

Another description based on the transitions is chosen in
the approach of Roy [5]. The firing of each transition
corresponds to the starting of a task. The relevant table is
as follows.

Label Description of the
events

Duration of the
started task

Following events

u Introduction of a
raw part in the
process

0 x1

x1 Beginning of A 10 x1(k + 1), x2

x2 Beginning of B 8 x2(k + 1), x3

x3 Beginning of C 3 x3(k + 1), y
y Made part - -

From the previous table describing the transition events,
we can generate the initial Timed Event Graph.

u Xx
1

Xx
2 Xx

3
Yy10 30 8

3810

Fig. 1: Initial Timed Event Graph

Let us note that the deduced Event Graph is smaller
than the event Graph deduced from the first table of
tasks. The relevant matrices are as follows: A0,1 =(

0 0 0
0 0 0

)
, A0,0 =

(
1 −1 0
0 1 −1

)
, A1,1 =

( 1 0 0
0 1 0
0 0 1

)
, A1,0 =

( −1 0 0
0 −1 0
0 0 −1

)
, B1 = 1,

B0 = ( −1 0 0 ) , C1 = ( 0 0 1 ) and C0 = −1.

TA
0 =

(
10
8

)
, TA

1 =

( 10
8
3

)
, TB = 0 and TC = 3.

Let us apply the approach.

a) The minimal difference xi(k) − uj(k) is




0
10
18


. So,

W+
u→x =




1
1
1


 , −W−

u→x =




−1 0 0
0 −1 0
0 0 −1


 and

−Tu→x =




0
−10
−18




b) The minimal difference xi(k) − xj(k − 1) is




10 −∞ −∞
20 8 −∞
28 16 3


 . So, W+

x→x =




1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1




−W−
x→x =




−1 0 0
0 −1 0
0 0 −1
0 −1 0
0 0 −1
0 0 −1




and −Tx→x =




−10
−20
−28
−8
−16
−3






As a consequence, input and internal inequalities can be re-
placed by the deduced relations. The output inequalities are
kept. Therefore, the new Timed Event Graph is completely
characterized.

u Xx
1

Xx
2

Xx
3

Yy20 30 16

3810

10 28

18

Fig. 2: Final Timed Event Graph

Initial and final models give the same earliest state trajec-
tory.

k 0 1 2 3
x 0 10 20 35

0 20 30 45
0 28 38 53

u - 0 0 35
y 3 31 41 56

4. Dual technique 2

In this part, we propose a second algebraic resolution of
the problem based on duality. Before, let us recall the dual
problems connected by Theorem of duality.
Primal problem (P): min y.b with y ∈ Rn

+, y.A = c and
y real positive.
and
Dual problem (D): max c.x with x ∈ Rm, A.x ≤ b and x
real. ¥

• In case b) of the previous part, we search the minimal
difference xi(k) − xj(k − 1) or more formally, we
solve the problem defined as follows: min(c′x) where
c′ is a null row-vector except c′i = 1 and c′j = −1 with
the constraints(

0 A0,0

A1,1 A1,0

)
.

(
x(k − 1)

x(k)

)
≤

( −TA
0

−TA
1

)

(12)
As the minimisation of c′.x corresponds to the

maximisation of −c′.x , this problem corresponds to

(D) where A =
(

0 A0,0

A1,1 A1,0

)
, b =

( −TA
0

−TA
1

)
et

c = −c′.
Therefore, the primal problem is as follows.

min y.

( −TA
0

−TA
1

)
with y ∈ Rn

+,

y.

(
0 A0,0

A1,1 A1,0

)
= −c′ and y real positive.

So, this problem is the maximisation of the non-
negative product of y by a vector of temporisations(

TA
0

TA
1

)
under constraints

y.

(
0 A0,0

A1,1 A1,0

)
= −c′ (13)

and y ≥ 0 where c′ is a null row-vector except c′i = 1
and c′j = −1 and, i and j are respectively the indexes
of outgoing transition xi and ingoing transition xj .

• Symmetrically, the primal problem of case a) is as fol-
lows.

max y.

(
TA

0

TB

)
with y ∈ Rm

+ and constraints

y.

(
0 A0,0

B1 B0

)
= −c′ (14)

and y ≥ 0 where c′ is a null row-vector except c′i =
1 et c′j = −1 (i and j are respectively the index of
internal transition xi and input transition uj )

Analysis of the solution The following theorem on inci-
dence matrix allows the analysis of the optimal solution
yopt.

Theorem (Chapter 1 in [5])

An incidence matrix is totally unimodular, that is every
square sub-matrix extracted from this matrix has a deter-
minant equal to -1, 0 or 1.

Proof
This theorem can directly be deduced from Theorem of
Heller-Tompkins 1956 (Annex 2 in [5]). ¥

Corollary Incidence matrix
(

0 A0,0

A1,1 A1,0

)
is totally

unimodular. ¥ We can now analyse solution yopt.

Theorem of Hoffman-Kruskal 1956 (Annex 2 in [5])

The optimal solution of the linear programming (P) is inte-
ger for any vector c with integer entries and any cost vector
b if and only if matrix A is totally unimodular. ¥

Corollary

Optimal solution yopt of the linear programming (P) is in-
teger. ¥

Moreover, let us recall that the coefficients of yopt are non-
negative: yopt ≥ 0.

Connection with graph theory We now show that ap-
proach 2 corresponds to the determination of the great-
est paths in graph theory. We have y.AW = −c′ with

AW =
(

0 A0,0

A1,1 A1,0

)

where c’is a null row-vector except ce = 1 (e: end) and
cs = −1 (s: start) and, e and s are respectively the indexes
of outgoing transition xe and ingoing transition xs.



We now consider the existence of a path going from s to
e. For each product y.AW , each yi 6= 0 selects a row
i of AW and the relevant place. We now know that y is
integer. Let us consider column of xs. Product y.AW.,s =
−cs = 1 shows that there is place i1 such that AWi1,s = 1:
it corresponds to a positive weighting (yi1 ≥ 1 as y is an
integer) in y. Graphically, it corresponds to place i1 (with
upstream (entering) transition xs) which is the first place of
the path.

Let consider the outgoing transition j1 of place i1 and the
relevant column xj1 . This transition exists as the graph is
a Timed Event Graph. So, AWi1,j1 = −1. If product
y.AW.,j1 = 0 , then there is at least a positive coefficient
in column j1 and a downstream (outgoing) place i2 of tran-
sition j1. In this step, a pair of coefficients negative and
positive of this column are selected. Graphically, this step
corresponds to transition j1 with upstream place i1 and a
downstream (outgoing) place i2 . As yi1 ≥ 1 , there is
yi2 ≥ 1.

As above, place i2 has an outgoing transition j2 and we
can consider the relevant column and repeat the procedure
which generates a new place if product y.AW.,j2 is null.
This last one stops when product y.W.,e = −1 which cor-
respond to the last transition xe. So, the coefficients of y
are positive or null, and describe a path going from s to e.

We now show that the path is unique. Vector y can choose
a set of places which includes the places of the path. How-
ever, other places can be chosen. Let us consider a column
of transition x1 where y.AW.,1 = 0. Suppose that y se-
lects a downstream place of transition x1 denoted by k1

and different from i1which does not belong to the path de-
scribed above. Condition y.AW.,1 = 0 cannot be satisfied
as yi1 ≥ 1 and yk1 ≥ 1 . The only possibility is the exis-
tence of an upstream place of transition x1 . The structure
of Timed Event Graphs entails that an ingoing transition
is necessary. As the relevant product must be null, new
places are necessary and the procedure can only create a
circuit but it is not possible as the primal problem search
the maximal weight.

Consequently, integer vector y can only choose a unique
path from transition xs to transition xe and its coefficients
are zero or one. To summarize, the algorithm of linear pro-
gramming chooses a greatest path among the possible paths
from s to e.

5. Primal/Dual connection

Let us introduce notation Xad = {x ∈ Rm|A.x ≤ b}
which expresses the set of admissible x in the dual prob-
lem. Also, Y ad = {y ∈ Rn

+|y.A = c}
Theorem (Chapter 4 in [2]) :

1. If y ∈ Y ad et x ∈ Xad, then y.b ≥ c.x

2. If ȳ ∈ Y ad, x̄ ∈ Xad and y.b = c.x then ȳ and x̄ are
respectively optimal for (P) and (D);

3. If (P) or (D) has a finite optimal solution, then the
same conclusion holds for the other problem and the
associated optimal values are equal;

4. If (P) or (D) has an infinite optimal solution, then the

other one has no solution. ¥

Let us note that approach 1 is based on the dates while
approach 2 is based on the weights of the paths between
the considered vertices. Using points 1 and 2, the follow-
ing theorem makes the connections between the two ap-
proaches.

Theorem

For problems 1 and 2, we have

y.T ≤ xi(k) − xj(k − 1) and yopt.T = (xi(k) − xj(k −
1))opt where T =

(
TA

0

TA
1

)
.

Proof

Point 1 of theorem of duality says that y.b ≥ c.x or
y.(−T ) ≥ −c′.x . Therefore, y.T ≤ xi(k) − xj(k − 1) .
Moreover, the associated optimal values are equal (point 2)
if the two problems have a finite optimal solution. ¥

In other words, the maximal weight of the paths between
vertices j and i is equal to the minimal time difference be-
tween the same vertices.

6. Appendix 1: Matrix expression of a Timed Event
Graph

A Petri net is a pair (GR,M0), where GR = (R, V ) is a
bipartite graph with a finite number of nodes (the set V )
which are partitioned into the disjoint sets of places P and
transitions TR (transitions are denoted t while temporisa-
tions are denoted T ); R consists of pairs of the form (pi,ti)
and (ti,pi) with pi ∈ P and ti ∈ TR . Initial marking M0 is
a vector of dimension | P | for which each element (M0 )i

is the number of initial tokens in the corresponding place
pi ∈ P . Set •p is the set of input transitions of p and p•
is the set of output transitions of place p ∈ P . Set •ti (re-
spectively, t•i ) is the set of the input (respectively, output)
places of transition ti ∈ TR.

For a Petri net with | P | places and | TR | transitions, the
incidence matrix W = [Wij ] is an | P | × | TR |matrix of
integers and its entry is given by Wij = W+

ij −W−
ij where

W+
ij is the weight of the arc from transition j to an output

place i and W−
ij is the weight of the arc to transition j from

an input place i.

A Petri net is called an Event Graph if each place has ex-
actly one upstream and one downstream transition. Timed
Petri nets allow the modelling of discrete event systems
with sojourn time constraints of the tokens inside the
places. Consistent with dioid Rmax (see [1]), a tempo-
rization defined in R+ is associated with each place. Each
place pl ∈ P is associated with a temporization Tl, and, an
initial marking denoted ml.

Well-known in the (max, +) algebra, the “dater” type is
considered: each variable xi(k) represents the date of the
kth firing of transition ti. With a misuse of language, the
transition associated with variable xi(k) will be denoted xi.
If the places follow a FIFO functioning which guarantees



that the tokens do not overtake one another, a correct num-
bering of the events can be carried out. The evolution can
be described by the following inequalities expressing rela-
tions between the firing dates of transitions. Let us recall
that an Event Graph can be considered as a set of subgraphs
made up of a place pl ∈ P linked with one upstream transi-
tion {tj} =• pl and one downstream transition {ti} = p•l .

Using temporization Tl , the following inequality for each
place pl where (j, i) = (•p, p•) can be written:

Tl + xj(k − (M0 )l) ≤ xi(k) or equivalently, xj(k −
(M0 )l)− xi(k) ≤ −Tl.

In the above inequality, weight 1 of xj(k − (M0 )l) (re-
spectively,−1 of xi(k)) is the weight of the arc going from
tj to place pl (respectively, the arc going from place pl to
transition ti) which is equal to W+

lj (respectively, −W−
li ).

Let ∆ be the maximum number of initial tokens (M0 )l

for pl ∈ P . The set of the previous inequalities which
describes a Timed Event Graph, can be expressed with the
following form: Column-vector −T is a vector of tempori-
sations where Tl is the temporization of place pl.

( G )×




x(k −∆)
x(k −∆ + 1)

....
x(k − 1)

x(k)


 ≤ ( −T ) (15)

where matrix G = [G∆G∆−1G∆−2........... G1G0] has an
order of (| P | × (∆ + 1). | TR |).
Each place corresponds to a row of G which contains the
weights of its entering and outgoing arcs. Matrix Gi for
i ∈ [1, ∆] contains the weights of the arcs entering the
places with i tokens and matrix G0 contains:

1. the weights of arcs entering the places with no token;
2. the weights of the arc outgoing from each place with

negative sign (usually expressed by −W−).

From the above description on the weight of the arcs, the
following relation between matrices Gi and incidence ma-
trix W is deduced:

W =
∆∑

i=0

Gi

. As in classical automatic control, system inequalities (15)
can be rewritten on a reduced horizon by increasing the size
of the state vector. Such a form will simplify the calcula-
tions. Roughly speaking, as a place contains a maximum
number of ∆ tokens, the general idea is to split each place
containing i ≥ 2 tokens into i places, where each place
contains only one token. A systematic procedure is detailed
in [6]. Model (15) with ∆ = 1 is considered in this paper.

7. Appendix 2: Technique of standardization in (max,
+) algebra

In the (max, +) algebra, it is well-known that the earliest
trajectory of a Timed Event Graph can be completely de-

scribed with the following state equation [1]
x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (16)

where maximization and addition operations are respec-
tively denoted ⊕ and ⊗ . Each variable xi(k) represents
the date of the kth firing of transition xi. So, the knowl-
edge of the control and the state at the previous step allows
the determination of the state at the next step with a sim-
ple calculation. The technique of building is as follows.
The following model is first deduced from the Timed Event
Graph after a possible increase of the state vector

x(k) ≥ A1 ⊗ x(k − 1)⊕A0 ⊗ x(k)⊕B0 ⊗ u(k) (17)
and the application of Theorem 4.75 part 1 in [1] gives a
simpler form
x(k) ≥ (A0)∗⊗A1⊗x(k−1)⊕(A0)∗⊗B0⊗u(k) (18)

where the Kleene star of A is defined by: A∗ =
⊕+∞

i=0 Ai

. Therefore, the state equation of the automatic control is
rediscovered but in (max, +) algebra

x(k) ≥ A⊗ x(k − 1)⊕B ⊗ u(k) (19)
with A = (A0)∗ ⊗ A1 and B = (A0)∗ ⊗ B0. Let us re-
call that the Kleene star expresses the greatest paths of the
associated graph. If we only focus on a model expressing
the earliest trajectory, we can consider the corresponding
equality. Let us recall that a new Timed Event Graph can
be deduced from inequality (19) such that: Each relation
xi(k) ≥ Ai,j ⊗ xj(k − 1) corresponds to an internal place
whose initial marking is exactly equal to one (upstream
transition is xj , downstream transition is xi and tempo-
risation value is Ai,j); Each relation xi(k) ≥ Bi,j ⊗ uj(k)
corresponds to an external place whose initial marking is
null (upstream transition is uj , downstream transition is xi

and temporisation value is Bi,j).
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