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Cycle Time of a P-time Event Graph with

Affine-Interdependent Residence Durations

Philippe Declerck

Abstract

In this paper, we widen the class of P-time Event graphs by introducing affine-interdependent

residence durations. This new class is studied through a general algebraic model. Considering a periodic

behavior, we provide conditions of existence of a trajectory and propose a technique allowing the

determination of extremal solutions. We show that the cycle time is intrinsic to this new model: it

depends on the circuits of an associated graph but also on more complex structures.

Index Terms

P-time Petri nets, cycle time, linear programming

I. INTRODUCTION

In discrete event systems, Petri nets allow the modeling of transportation networks, multi-

processor systems, and manufacturing systems. An interesting model is the P-time Event Graph

[12], whose evolution can undergo token deaths which express the loss of resources or parts and
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failures to meet time specifications. Contrary to Time Petri nets where a temporal interval of

firing is associated with each transition enabled by the marking, P-time Event Graphs depend on

the time evolution of the tokens which leads to the firing of the transitions: a temporal interval of

availability is associated with each token which enters a place in P-Time Petri nets. Applications

of P-time Event Graphs can be found in production systems [12], the food industry [6] and

transportation systems [9].

In this paper, we propose a generalization of P-time Event Graphs by introducing links

among residence durations. Indeed, in some practical examples, some tasks must compensate

for the undesirable effects of other operations such as the warming of a part or an incomplete

achievement. This new Petri net needs an algebraic model which describes the trajectories of the

dates of transition firings that will allow its treatment. In this paper, we will present the model

and show that the relevant matrices generalize the incidence matrices obtained in previous works

[5] and [6]. To the best of our knowledge, the considered Petri net is original: a first description

can be found in [8].

As we cannot say a priori that this new model can follow a periodic behavior, the second

objective is the analysis of the cycle time (production rate) of the general algebraic model (1).

Classically, the cycle time is based on the consideration of the circuits and is determined by

the calculation of the maximum of the ratios defined by the sum of temporizations to the sum

of the number of the initial tokens, for each elementary circuit [16]. However, this technique,

which can be applied to Timed Event Graphs, cannot be applied to our new model since the

considered matrices are not incidence matrices and so cannot be associated with a simple graph.

The well-known theorem [16] based on the elementary circuits of the associated graph and

Karp’s algorithm [11] in the digraphs, cannot be applied. In fact, the cycle time depends on

October 4, 2013 DRAFT



3

more complex structures. As graph theory in its classical form cannot be applied, we propose

to use linear programming with two objectives: 1) A first goal is the analysis of the consistency

of the problem 2) A second goal is the determination of the extremal cycle times.

Considering Timed Event Graphs and using the concept of circuits, different papers [13]

[2] [4] [10] [14] also apply linear programming in performance evaluation. To the best of our

knowledge, these studies do not use the theorems and lemmas of Farkas which allow an analysis

of solution existence of linear systems.

The paper is organized as follows: Section III generalizes the P-time Event Graph described

in [5] [6] and gives its algebraic model. A first version of this model can be found in Chapter

3 in [8]. Using a variant of Farkas’ Lemma, Section IV gives conditions of the existence of an

arbitrary 1-periodic behavior. Assuming that these conditions are fulfilled, we finally propose a

technique of linear programming allowing the determination of the bounds on the cycle time

(Section V). Two pedagogical examples illustrate the different concepts. The reader can find in

the Appendix the technique allowing the reduction of the horizon associated with the model.

II. PRELIMINARY

The notation |E| stands for the cardinality of the set E and the notation Ai,. corresponds to

the row i of matrix A.

A Petri net is a pair (GR, M0), where GR = (V, AR) is a bipartite graph defined as follows:

the set V is a finite number of nodes which are partitioned into the disjoint sets of places P

and transitions TR; the set AR consists of pairs of the form (pi,xj) or (xj ,pi) with pi ∈ P

and xj ∈ TR. The initial marking M0 is a vector of dimension |P | whose elements denote the

number of initial tokens in their respective places. The set •pl (respectively, p•l ) is the set of
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input (respectively, output) transitions of the place pl ∈ P . The set •xi (respectively, x•i ) is the

set of the input (respectively, output) places of the transition xi ∈ TR.

For a Petri net with |P | places and |TR| transitions, the incidence matrix W = [Wij] is a

|P | × |TR| matrix of integers and its entry is given by Wij = W+
ij − W−

ij where W+
ij is the

weight of the arc from the transition j to the place i, and W−
ij is the weight of the arc from the

place i to the transition j [15]. In this paper, we consider that the weight of each arc is is equal

to 1 which implies that Wij ∈ {−1, 0, 1}.

In a Petri net, a firing sequence from a marking M , implies a string of successive markings. The

characteristic vector s of a firing sequence S is such that each component of s is a natural number

corresponding to the number of firings of the corresponding transition. A marking M reached

from initial marking M0 by the firing of a sequence S can be calculated by the fundamental

relation: M = M0 + W × s.

Definition 1: A Petri net is called an Event Graph if each place has exactly one input transition

and exactly one output transition.

P-time Petri nets allow the modeling of discrete event systems with time constraints for tokens

to remain in place. We associate a temporal interval defined in R+ × (R+ ∪ {+∞}) with each

place: each place pl ∈ P is associated with an interval [T−
l , T+

l ], where T−
l is the lower bound

and T+
l is the upper bound. Its initial marking is denoted (M0)l.

Definition 2: A P-time Event Graph is a triple (GR,M0, f) where GR is an Event Graph,

M0 is the initial marking and the mapping f is defined by pl 7→ [T−
l , T+

l ] with 0 ≤ T−
l ≤ T+

l

from P to R+ × (R+ ∪ {+∞}) .

The interval [T−
l , T+

l ] is the time interval of a token in place pl. The token must stay in this

place during the minimum residence duration T−
l . Before this duration, the token is in a state
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of unavailability for firing the output transition. The value T+
l is a maximum residence duration

after which the token must leave place pl (and can contribute to the enabling of the output

transition). If not, the system finds itself in a token-dead state. The token is therefore available

to fire the output transition in the time interval [T−
l , T+

l ].

III. ALGEBRAIC MODEL

We consider the “dater” representation well-known in the (max, +) algebra [1]: each variable

xi(k) over R represents the date of the kth firing of transition xi ∈ TR. Let m ∈ N be the

maximum number of initial tokens: m = max{(M0)l | l ∈ [1, |P |]}. In this paper, we consider

the following algebraic model defined over R

(
G−

G+

)
×




x(k −m)

x(k −m + 1)

...

x(k − 1)

x(k)




≤



−T−

T+


 , (1)

where: the dimension of x(k) is equal to |TR|; the dimension of vectors T−, T+ is equal to

|P |; the dimension of G− and G+ is equal to |P | × (m + 1).|TR|. In general, vectors T−, T+

describe durations as temporizations of place and matrices G−and G+ express time connections

inside the time Petri net. We can easily add the constraints x(k−i) ≥ x(k−i−1) for i ∈ [0, m−1]

in the model so that the trajectory is non-decreasing. We assume the consistency of the model,

that is, the existence of a state trajectory over R on an infinite horizon.

We will show below that a P-time Event Graph, but also a P-time Event Graph with affine-

interdependent residence durations, can be expressed with the previous form (1). In Sections IV
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and V, the algebraic model (1) is used directly.

A. Matrix expression of a P-time Event Graph

Let us express the firing interval for each transition of P-time Event Graphs, guaranteeing

the absence of token deaths. If we assume a FIFO functioning of the places which guarantees

that the tokens do not overtake one another, a correct numbering of the events can be carried

out. Since an Event Graph is composed of places where each place pl links one input transition

{xj} =•pl and one output transition {xi} = p•l , we can write the following system for each

place pl using the lower bound T−
l and the upper bound T+

l :





xj(k − (M0)l)− xi(k) ≤ −T−
l

−xj(k − (M0)l) + xi(k) ≤ T+
l

. (2)

• The unitary weight of the arc going from xj to place pl leads to the coefficient 1 of

xj(k− (M0)l) in the first inequality and the coefficient −1 of xj(k− (M0)l) in the second

inequality.

• The unitary weight of the arc going from place pl to transition xi yields the coefficient −1

of xi(k) in the first inequality and the coefficient 1 of xi(k) in the second inequality.

Example 1.

Let us consider the P-time Event Graph of Fig. 1. The inequalities relevant to place p1 are

x1(k − 2) + 3 ≤ x2(k) ≤ x1(k − 2) + 5 which are rewritten as x1(k − 2) − x2(k) ≤ −3 and

−x1(k− 2)+x2(k) ≤ +5. We have l = 1 (place p1), j = 1 (transition x1), i = 2 (transition x2),

(M0)l=1 = 2, T−
l=1 = 3 and T+

l=1 = 5. ¥

The set of the previous inequalities which describes a P-time Event Graph, can be expressed

with the previous symmetrical form (1): column-vectors −T− and T+ are vectors of temporiza-
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Fig. 1. Example 1: An elementary P-time Event graph.

tion where [T−
l , T+

l ] is the time interval of place pl. Naturally, we have 0 ≤ T− ≤ T+.

Each place corresponds to a row of G− which contains the weights of its incoming and

outgoing arcs which are usually expressed by W+ and W−. Remember that the weight of each

arc is equal to 1. Let G− = [ G−
m G−

m−1 G−
m−2 · · · G−

1 G−
0

] and

G+ = [ G+
m G+

m−1 G+
m−2 · · · G+

1 G+
0

] where the dimension of G−
i and G+

i is equal to

|P | × |TR| for i ∈ {0, . . . , m}. These matrices are built as follows.

• The entries of the matrices are initially null.

• The weight of an arc going from transition xj to place pl with an initial marking (M0)l =

r ∈ [0, m] is added to the entry (l, j) of matrix G−
r .

• Finally, the weight of the arc going from place pl to transition xi for any initial marking

(M0)l ∈ [0,m] is subtracted from the entry (l, j) of the matrix G−
0 .

So, G−
r ≥ 0 for r ∈ [1,m] and a coefficient of the matrix G−

0 can be null, negative or positive:

G−
0 ≥ −W−. The interpretation of matrix G+ is similar to G− but with a change of sign of

coefficients G+ = −G−.
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Example 1 continued. We have m = 2, |P | = 2 , |TR| = 3 and system (1) yields


+1 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1 1

−1 0 0 0 0 0 0 +1 0

0 0 0 0 0 0 0 +1 −1




×




x(k − 2)

x(k − 1)

x(k)



≤




−3

−4

+5

+8




. We have G−
2 =




+1 0 0

0 0 0


,

G−
1 =




0 0 0

0 0 0


 , G−

0 =




0 −1 0

0 −1 1


, T− =




3

4


 and T+ =




5

8


 . We can also

verify that G−
2 = −G+

2 , G−
1 = −G+

1 and G−
0 = −G+

0 . ¥

From the above description on the weight of the arcs, we can deduce the following relation

expressing the incidence matrix W :

Wl,. =
m∑

r=0

(G−
r )l,. = −

m∑
r=0

(G+
r )l,. (3)

for each place l of the P-time event graph.

Remark 1: Let us consider that the initial marking of each place pl is unitary, i.e., (M0)l = 1.

We have m = 1, G−
1 = W+ and G−

0 = −W−.

Remark 2: Let us consider that the initial marking is null, i.e., M0 = 0. We have m = 0,

G−
0 = W and there is no G−

i with i ≥ 1.

B. Matrix expression of a P-time Event Graphs with affine-interdependent residence durations.

We can also consider the case of residence duration of a token in place pl which determines

the temporization of another place. For instance, a product which has been cooked cannot be

put immediately in a package and needs to cool down. In the food industry, specific cooling

systems are used. We can suppose the temporization of the cooling of a part is an affine relation
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depending on its cooking time. These residence durations are called affine-interdependent and

are now described.

Using lower bound T−
l we can write the following inequality for a place pl where (xj, xi) =

(•pl, p
•
l ): T−

l + xj(k − (M0)l) ≤ xi(k). We assume that place pl has no finite upper bound:

T+
l = +∞.

Let us consider another place ph where (xj′ , xi′) = (•ph, p
•
h): the residence duration of a token

is xi′(k)− xj′(k − (M0)h) ≥ 0.

Now, we say that place pl is affinely-dependant on place ph with an affine function if we can

write

T−
l = α.(xi′(k)− xj′(k − (M0)h)) + β , (4)

where α and β ∈ R. Note that β is coherent with a time and we have α > 0 in a cooling system.

Therefore, the obtained inequality for place pl is

α.(xi′(k)− xj′(k − (M0)h)) + xj(k − (M0)l)− xi(k) ≤ −β , (5)

which is a relation among four variables.

If we only consider the term +xj(k− (M0)l)− xi(k) in (5), the entries of the row (G−)l,. of

a place pl, which is affinely-dependant on a place ph, are defined in the same way as in the case

of a place of a P-time Event Graph with respect to place pl (see previous section). Moreover, the

affine-dependence between places pl and ph leads to the following additions and subtractions to

the row (G−)l,.:

• The arc going from transition xj′ to place ph with an initial marking (M0)h = r ∈ [0,m]

leads to the substraction of the α value from the entry (l, j′) of the matrix G−
r .
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• The arc going from place ph to transition xi′ for any initial marking (M0)h ∈ [0,m] leads

to the addition of the α value to the entry (l, i′) of the matrix G−
0 .

The relevant entry in −T−
l is −β and we have (G+)l,. = 0 and T+

l = +∞.

A slight simplification of relation (5) is possible in the following case: when the output

transition xi′ of the place ph is the input transition xj of the place pl, we have xi′ = xj . With

the condition (M0)h = (M0)l = 0, relation (5) becomes (1 + α).xi′(k)−α.xj′(k)− xi(k) ≤ −β

which is a relation among three variables.

Therefore, the inequalities (5) can contain three or four variables contrary to the bi-variable

inequalities (2) of the P-time Event Graphs. Moreover, these new relations are more complex as

the coefficients depend not only on the entries of the incidence matrix but also on the coefficients

of the affine function.

Example 2

:[T ,T ]

x1

x2

x3

333
p

:T
44

p

x4

6
:[T ,T ]p

6 6

5
:[T ,     ]p

5 +∞

1
:[ ,T ]Tp

1 1 :[T ,T ]
22

p
2

-

-

-

-

- +

+

+

+

Fig. 2. Example 2: P-time Event graph with interdependent residence durations (dotted line).
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The state is x(k) =

(
x1(k) x2(k) x3(k) x4(k)

)t

. The temporal intervals are: [T−
1 , T+

1 ] =

[3, 10], [T−
2 , T+

2 ] = [3, 20], [T−
3 , T+

3 ] = [1, 2], [T−
5 , +∞] = [11.5, +∞] and [T−

6 , T+
6 ] = [1, 5].

Place p4 describes the cooling down of the product which has been cooked in an oven (place

p2): T4 = α.(x3(k)−x2(k− 1))+β with α = 5 and β = 3. The matrices of the algebraic model

are as follows:

T−=
(

3 3 1 β 11.5 1

)t

, T+=
(

10 20 2 +∞ +∞ 5

)t

,

G−
1 =




1 0 0 0

0 1 0 0

1 0 0 0

0 −α 1 0

0 0 1 0

0 1 0 0




, G−
0 =




0 −1 0 0

0 0 −1 0

0 0 −1 0

−1 0 α 0

0 0 0 −1

0 0 0 −1




,

G+
1 =




−1 0 0 0

0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

0 −1 0 0




and G+
0 =




0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1




. ¥

IV. ANALYSIS OF A 1-PERIODIC BEHAVIOR

The previous part shows that the algebraic model (1) can describe the class of the P-time

Event Graphs with affine-interdependent residence durations. The objective is now the analysis

of the algebraic model (1) following a 1-periodic trajectory defined by x(k + 1) = λ× u + x(k)

for k ≥ 1 where λ is the cycle time and u = (1, 1, ..., 1)t . Vector x(1) expresses the first firing
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date of the transitions.

In Section IV-A, we rewrite the problem under a simple form and we analyze the existence

of the cycle time in Section IV-B.

A. A simple form

Without loss of generality, we suppose in the rest of the paper that m = 1 (see Appendix).

System (1) for a 1-periodic trajectory can be rewritten as follows:




G−
1 G−

0

G+
1 G+

0


×

(
x(k)

λ× u + x(k)

)
≤



−T−

T+


 ,

or




(G−
1 + G−

0 )

(G+
1 + G+

0 )


× x(k) +




G−
0

G+
0


× λ× u ≤



−T−

T+


 . (6)

If we simplify the writing with x(k) = x, we obtain the following system which presents the

general form A× x ≤ b,




A11 A12

A21 A22


×




x

λ


 ≤



−T−

T+


 , (7)

where A11 = G−
1 + G−

0 , A12 = G−
0 × u, A21 = G+

1 + G+
0 and A22 = G+

0 × u.

Example 2 continued
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A11 =




1 −1 0 0

0 1 −1 0

1 0 −1 0

−1 −α 1 + α 0

0 0 1 −1

0 1 0 −1




, A12 =




−1

−1

−1

α− 1

−1

−1




, A21 =




−1 1 0 0

0 −1 1 0

−1 0 1 0

0 0 0 0

0 0 0 0

0 −1 0 1




and

A22 =




1

1

1

0

0

1




. ¥

Let us consider the important particular case of a P-time event graph. The following property

makes the connection with the incidence matrices.

Property 1: For a P-time Event Graph, we have A11 = W = −A21 , A12 = −M0 = −A22

and system (7) becomes



W −M0

−W M0


×




x

λ


 ≤



−T−

T+


 . (8)

Proof.

System (7) can be rewritten because we deduce from (3) that G−
1 +G−

0 = W and G+
1 +G+

0 =

−W . So, we can deduce that A11 = W , A21 = −W .

Let us note that G−
0 = −W− and G−

1 = W+ when the P-time Event Graph initially has

one token per place. Thus, G−
0 × u = −W− × u = −M0 which represents the initial marking.

This result is also true when m = 1, that is, each place initially has one token at most. Indeed,
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each place without a token is represented by a line of G−
0 which contains the weights 1 and -1

corresponding to its incoming and outgoing arcs. The similar reasoning holds for the lower part

of the system and hence we obtain G+
0 × u = W− × u = M0. ¥

B. Existence

After obtaining a linear inequalities system (7) having the form A × x ≤ b, we study the

existence of a 1-periodic behavior by applying a known result of linear programming. If this

trajectory exists, we can conclude that the model is consistent on an infinite horizon, in other

words, the model has a trajectory on an infinite horizon.

As vector b in A×x ≤ b is finite, we assume that each infinite bound T+
l = +∞ is replaced by

a finite but arbitrarily large number which neutralizes the constraint xi(k)−xj(k−ml) ≤ T+
l =

+∞. The following variables and matrices are over R and y is a row-vector of non-negative

real numbers.

Lemma 1: Farkas’ Lemma (variant), Corollary 7.1.e in [18]. Let A be a matrix and let b be

a vector. Then the system A × x ≤ b of linear inequalities has a solution x, if and only if,

y × b ≥ 0 for each row vector y ≥ 0 with y × A = 0. ¥

We consider below the set Y of row vectors y ≥ 0 such that

y ×




A11

A21


 = 0. (9)

The following partition of the set Y = Y − ∪ Y = ∪ Y + is used in Theorem 1.
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Y − = {y ∈ Y | y ×




A12

A22


 < 0}

Y = = {y ∈ Y | y ×




A12

A22


 = 0}

Y + = {y ∈ Y | y ×




A12

A22


 > 0}

(10)

Theorem 1: The system (1) with m = 1 can follow a 1-periodic behavior for some given

cycle time λ, if and only if the two following conditions are satisfied:

1)

(∀y ∈ Y =) y ×



−T−

T+


 ≥ 0 (11)

2)

(∀yi ∈ Y −) (∀yj ∈ Y +)

yi ×



−T−

T+




yi ×




A12

A22




≤

yj ×



−T−

T+




yj ×




A12

A22




. (12)

Proof.

System (7) can be rewritten as



A11

A21


× x ≤



−T−

T+


−




A12

A22


× λ. (13)

From Farkas’ Lemma, we can deduce that this system has a solution x, if and only if, y ×

(



−T−

T+


 −




A12

A22


 × λ) ≥ 0 for each row vector y ∈ Y . So, we deduce that y ×
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

−T−

T+


 ≥ y×




A12

A22


×λ = λ×y×




A12

A22


 and different cases arise from the analysis

of y×




A12

A22


 which can be null, negative or positive. Using the partition Y = Y −∪Y =∪Y +

defined above, we have the three following cases:

1) y ×



−T−

T+


 ≥ 0 if y ×




A12

A22


 = 0, that is y ∈ Y =;

2)

y×

0
BBBBB@

−T−

T+

1
CCCCCA

y×

0
BBBBB@

A12

A22

1
CCCCCA

≤ λ if y ×




A12

A22


 < 0 , that is y ∈ Y −;

3)

y×

0
BBBBB@

−T−

T+

1
CCCCCA

y×

0
BBBBB@

A12

A22

1
CCCCCA

≥ λ if y ×




A12

A22


 > 0 , that is y ∈ Y +.

Case 1) is directly the first condition of existence. Cases 2) and 3) define a set of lower and

upper bounds of λ which must satisfy the second condition since λ is defined by these bounds.

¥

Therefore, the theorem provides a way of checking the consistency of (7) and the existence

of a 1-periodic trajectory for the extended P-time Event Graphs. Moreover, the second condition

of existence can give an interval of the cycle time given by the maximum of the lower bounds

and the minimum of the upper bounds. Note that the first condition of existence (11) does not

define a bound of λ.

Remark 3: Row vector y is not a P-invariant (or P-semiflow) [15] even if the concepts are
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close. Indeed, the coherence of equality (9) where the number of rows of




A11

A21


 is 2× |P |

implies that the dimension of the row vector y is also 2× |P | . Moreover, y is not a vector of

integers but is a vector of real numbers. Indeed, it depends on the incidence matrix expressed

in A11 and A21 but also on the affine functions of the interdependent residence durations. The

determination of the set of vectors y ≥ 0 with y ∈ R2×|P | can be deduced from the techniques

used for calculation of the P-invariants ([3], [19], techniques applying Fourier-Motzkin, etc.) if

the restriction on the integers is relaxed: integer linear programming is not necessary in this

paper.

We now introduce a generalized associated graph which provides a graphical interpretation.

Associated graph of generalized P-time Event Graph.

In the case of a P-time Event Graph, equation (9) becomes y ×




W

−W


 = 0 and an

associated graph can be associated with matrix




W

−W


. As W is the incidence matrix of an

event graph where each row contains the two entries Wlj = 1 and Wli = −1, each row l of this

matrix can be associated with an arc coming from vertex j to vertex i. The lower matrix −W

leads to the same arcs but in the opposite direction. It is well known that each vector y defines

a circuit (or a set of circuits) which determines the minimal and maximal bounds of the cycle

time [12] [5] [6].

However, this graphical interpretation does not hold for a P-time Event Graph with affine-

interdependent residence durations: we have A11 6= W and A21 6= −W, and a row cannot be

associated with an arc as it can contain more than two entries. Moreover, the entries of vector

y cannot be normalized to 1 in general, which implies that the selection of the rows by the
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non-null entries of vector y, and the relevant selected subgraph, presents a weighting in R. In

fact, each vector y expresses a general dependance among the rows of the relevant submatrix.

We can define a more general associated graph expressing the connections between the rows

and the columns of matrix A.,1 =




A11

A21


as follows: each row l ∈ 2× |P | is associated with

a specific element (a black dot in Fig. 3) linked to the different vertices corresponding to the

|TR| columns (a vertical line like a transition). Each positive entry (A.,1)l,i is associated with an

incoming arc from the vertical line xi to the black dot l and each negative entry is associated

with an outgoing arc from the black dot l to the vertical line xi. Following the relation (7), we

can associate the pair (−T−
l , (A12)l )∈ (R×R) with the black dot relevant to the row l of the

upper matrix A11 and the pair (T+
l , (A22)l)∈ (R× R) with the black dot relevant to the row l

of the lower matrix A21. Showing that only a subset of vectors y ∈ Y corresponds to a subset

of circuits in the associated graph of generalized P-time Event Graph (see Fig. 3), the following

example highlights original structures.

Example 2 continued

More general than the matrices obtained in the studies [5] [6], the matrices G−
1 and G−

0 are

almost (but are not) the incidence matrices W+ and W− of an event graph, since the fourth row

contains two non-null entries (see III-B). We also have A11 6= W and A21 6= −W (see IV-A).

The analysis of the independent row-vectors y


1 6 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 1

0 2.5 0.5 0.5 0 0 0 0 0 0 0 0

0 0 2 0.33 0 0 1.66 0 0 0 0 0




(remember that α = 5) highlights the following relevant structures (see Fig. 4)
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x1

x2

x3

x4

a

( ,4)b

1+a
1

1(-T ,-1)
- 2(-T ,-1)

-
(-T ,-1)

-

3(-T ,-1)
-

(-T ,-1)
-

-
(-T ,-1)

5
(-T ,-1)

6

-
1

(T , 1)
+

(T , 1)
+
2

+
(T , 1)

3

(T , 1)
+

6

Fig. 3. Graph associated with Example 2 given in Fig. 2: Each row corresponds to a black dot and each column is expressed

by a vertical line. The structure of the Event Graph can easily be recognized, but the dot (β, 4) is connected to three vertices

x1, x2 and x3.

y structure bound

y1 ∈ Y − −T−
1 ,−T−

2 and β lower bound: 8

y2 ∈ Y − −T−
2 ,−T−

5 and T+
6 lower bound: 9.5

y3 ∈ Y − −T−
2 ,−T−

3 and β lower bound: 9.5

y4 ∈ Y + −T−
3 , β and T+

1 upper bound: 13.66

if we neglect this weighting of row-vectors y. The substructure selected by y2 corresponds to

a circuit ( −T−
2 ,−T−

5 and T+
6 ) in the associated graph and the proposed technique calculates the

ratio −T−2 −T−5 +T+
6

−1−1+1
which can also be given by the classical theorem [16] generalized to P-time

Event Graphs [12]. Contrary to this substructure relevant to y2, the substructures selected by y1,

y3 and y4 present non-disjointed circuits (see Fig. 4). As a direct analysis of the submatrices of

A11 and A21 selected by y1, y3 and y4 can show that they cannot be decomposed in elementary

circuits corresponding to vectors y ∈ Y , the procedure has select, original basic substructures.
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( ,4)b

x1

x2

x3

a

( ,4)b

1+a
1

1(-T ,-1)
- 2(-T ,-1)

-
(-T ,-1)

-

y1

x2

x3

x4

2(-T ,-1)
-

(-T ,-1)
-

-
(-T ,-1)

5

(T , 1)
+

6

y2

x1

x2

x3

a

( ,4)b

1+a
1

2(-T ,-1)
-

(-T ,-1)
-

3(-T ,-1)
-

(-T ,-1)
-

y3

x1

x2

x3

a

1+a
1

3(-T ,-1)
-

(-T ,-1)
-

1
(T , 1)

+

y4

Fig. 4. Example 2: Substructures selected in the associated graph given in Fig. 3

We obtain max(8, 9.5, 9.5) ≤ λ ≤ min(13.66) and the interval of the possible values is [9.5,

13.66]. Note also that vectors y2 and y4, which define a lower and an upper bound respectively

of the cycle time, select a combination of lower and upper bounds of temporizations and not

only a set of lower (respectively, upper) bounds of temporizations. ¥

Now we consider a slight modification of Example 2 where the P-time Event Graphs with

affine-interdependent residence durations cannot follow a 1-periodic trajectory.

Example 2 modified

Now let us assume that the initial marking of place p5 is null. So, (M0)5 = 0 and the matrices

Gi are identical except (G−
1 )5,. =

(
0 0 0 0

)
(G−

0 )5,. =

(
0 0 1 −1

)
. The matrix

A11 = G−
1 + G−

0 is not modified but (A12)5 = (G−
0 )5.u = 0.
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Therefore, the determination of the row-vectors y satisfying (9) gives the same results. As

above, we have y1, y3 ∈ Y − and y4 ∈ Y + since these vectors do not select the row (A12)5 .

The condition (12) is satisfied: max(8, 9.5) ≤ λ ≤ min(13.66)

Let us consider y2 =

(
0 1 0 0 1 0 0 0 0 0 0 1

)
. Now, we have y2 ∈ Y = since

y2×




A12

A22


 = 0 but the condition (11) is not satisfied as y2×



−T−

T+


 = −3−11.5+5 =

−9.5 � 0. Therefore, the system (1) cannot follow a 1-periodic trajectory. In fact, the P-time

Event Graphs with affine-interdependent residence durations is not temporally live [7]: the sub-

structure highlighted by y2 leads to the following incoherent system





x2(k − 1) + T−
2 ≤ x3(k)

x3(k) + T−
5 ≤ x4(k)

x4(k) ≤ T+
6 + x2(k − 1)

since the condition T−
2 + T−

5 ≤ T+
6 is not satisfied. ¥

V. COMPUTATION OF EXTREMAL CYCLE TIMES

The objective of the previous Part IV-B is the analysis of the existence of a 1-periodic

trajectory. It also allows for the calculation of the bounds of the cycle time but it requires the

computation of all y vectors. For this second objective, we propose a more efficient technique

allowing the determination of the minimal/maximal cycle time. Deduced from the previous

Theorem 1, the optimization problem is as follows: the lower bound λmin is the maximum of

the expressions
y×

(−T−

T+

)

y×

0
BBBBB@

A12

A22

1
CCCCCA

(∀yi ∈ Y −) while the upper bound λmax is based on the minimum

of the same expressions (∀yi ∈ Y +). So,
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λmin = max
y∈R2×|P |

y ×



−T−

T+




y ×




A12

A22




(14)

such that 



y ≥ 0

y ×




A11

A21


 = 0

y ×




A12

A22


 < 0

. (15)

Vector y is defined for a positive scalar factor as we can replace y by µ × y with µ > 0

without modifying the ratio in (14) and the fulfilment of the three relations in (15). Therefore,

we can set y ×




A12

A22


 = −1 and the problem can be rewritten under the following simple

forms.
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Property 2:

λmin = max
y∈R2×|P |

− y ×



−T−

T+


 such that (16)





y ≥ 0

y ×




A11

A21


 = 0

y ×




A12

A22


 = γ

(17)

with γ = −1. (18)

Property 3: Symmetrically, λmax = min
y∈R2×|P |

y ×



−T−

T+


 such that γ = +1 in the above

constraints.

A standard linear programming form can easily be written:

Property 4:

λmin = max
y∈R2×|P |

− y ×



−T−

T+


 such that (19)

y.



−I|P |×|P | 0 A11 −A11 A12 −A12

0 −I|P |×|P | A21 −A21 A22 −A22


 ≤

(
0|P | 0|P | 0|TR| 0|TR| γ γ

)

with γ = −1.

Property 5: Symmetrically,

λmax = min
y∈R2×|P |

y ×



−T−

T+


 such that γ = +1 in the above constraints. (20)

Example 2 continued

The results are for λmin and λmax respectively:
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y =

(
0 2.5 0.5 0.5 0 0 0 0 0 0 0 0

)
and λmin = 9.5 ;

y =

(
0 0 2 0.33 0 0 1.66 0 0 0 0 0

)
and λmax = 13.66. These vectors re-

spectively correspond to y3 and y4, calculated in Section IV-B. Note that the relevant structures

are not simple circuits. The interval of the possible values for the cycle time is identical to

the interval obtained in Section IV-B (λ ∈ [9.5, 13.66]) where all y vectors and bounds are

considered. ¥

The application of classical algorithms of linear programming can efficiently give the optimal

solutions. Let us recall that, although some artificial examples show exponential running times,

the simplex is efficient in practice as it has polynomial-time average-case complexity in some

general cases [18]. The modern algorithms of linear programming are polynomial (the complex-

ities of the ellipsoid algorithm of Khashiyan and the interior point algorithm of Karmarkar are

respectively O(n4×L) and O(n3.5×L) where n is the number of variables and L is the number

of bits necessary in the storage of the data [18] [17]).

VI. CONCLUSION

In this paper, we consider a general algebraic model (1) which can describe the class of the

P-time Event Graphs with affine-interdependent residence durations. Such a class generalizes the

class of the P-time Event graphs [12]. Note that the results of this paper consider the general

algebraic model (1) and not the more specific algebraic model of the generalized P-time Event

Graphs. A perspective is the determination of the different classes of Time Petri nets which can

be described by the algebraic model (1).

Unlike the matrices of a P-time Graph where there is some correspondence between matrices

G−
0 , G−

1 , G+
0 and G+

1 and incidence matrices of the Petri net, the matrices G−
0 and G−

1 in example

2 have some entries which depend on time parameters and a row can contain more than one
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entry. As a consequence, the fourth row of matrix
(

A11 A12

)
in Example 2 of Section IV

presents four entries. Therefore, the system cannot be completely analyzed with a classical graph

theory as in the case of a Timed Event Graph or a P-time Event Graph: a natural approach is

the use of linear programming.

The application of Farkas’ Lemma gives conditions of consistency of the algebraic model (1)

for a 1-periodic behavior. It also gives an interval limiting the cycle time depending only on the

matrices of the system. Showing that the concept of cycle time is intrinsic to the new model,

this result widens the class of models where the cycle time can be defined. We show in Example

2 that the cycle time can be associated with specific structures (non-disjointed circuits) which

are more general than the classical circuits in the associated graph. We finally provide a simple

technique which allows the bounds on the cycle time to be determined in polynomial time.
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VII. APPENDIX

Let us express system inequalities (1) on a reduced horizon. Such a form will simplify the

calculations. The objective is to establish an equivalent model such that each place of the graph

initially contains only zero or one token.
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Roughly speaking, the general idea is to split each place containing i tokens into i places,

where each place contains only one token (a place can initially contain a maximum number of

m tokens). A systematic procedure is as follows.

Let us introduce new variable X , that is,

X(k) =

(
X t

0(k) X t
1(k) . . . X t

i (k) . . . X t
m−1(k)

)t

with Xi(k) = x(k−m+ i+1). By

construction, we have Xm−1(k) = x(k) and Xi(k) = Xi+1(k − 1) for i going from 0 to m− 2.

So, system (1) becomes



G
′−
1 G

′−
0

G
′+
1 G

′+
0


×

(
X(k − 1)

X(k)

)
≤



−T−

T+


 ,

where G
′−
1 =

(
G−

m 0 . . . . . . 0

)
, G

′−
0 =

(
G−

m−1 G−
m−2 . . . G−

1 G−
0

)
, G

′+
1 =

(
G+

m 0 . . . . . . 0

)
and G

′+
0 =

(
G+

m−1 G+
m−2 . . . G+

1 G+
0

)
.

This system is completed by Xi(k) = Xi+1(k − 1) for i going from 0 to m − 2 which is

equivalent to the following inequalities




Xi+1(k − 1)−Xi(k) ≤ 0

−Xi+1(k − 1) + Xi(k) ≤ 0

for i = 0 to m− 2. The relevant matrix form is as follows:


H−
01 H−

00

H+
01 H+

00


×

(
X(k − 1)

X(k)

)
≤

(
0

0

)
,

where the dimension of the matrices H−
01 = −H+

01 and H−
00 = −H+

00 is ((m−1).|TR|×m.|TR|).

The matrix H−
01 is a subdiagonal of identity matrices immediately above the main diagonal and

the matrix H−
00 is a main diagonal of negative identity matrices.

Finally, the concatenation of the two systems gives the algebraic form
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


G−

G+


×

(
X(k − 1)

X(k)

)
≤




−T−

0

T+

0




,

where G− =




G
′−
1 G

′−
0

H−
01 H−

00


 and G+ =




G
′+
1 G

′+
0

H+
01 H+

00


.
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