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Abstract— This paper presents a modelling and an analysis of of matrices [7] and the extremal trajectories obeying to an

P-time Event Graphs in the field of (max, +) algebra. Under the jnitial condition defined on an interval, are deduced. Lastly,
hypothesis of the logical liveness of the event graph, temporal a simple example illustrates the approach.

liveness is defined by the existence of a trajectory. Based on a In thi hvoothesis is tak the struct
particular serie of matrices, the extremal trajectories starting n this paper, no ypo €SIS IS taken on the sfructure
from an initial interval are deduced. The liveness of the static Of the Event Graph which can be non-strongly connected.

part and dynamic part are analysed. The initial marking must only satisfy the classical liveness

Keywords: P-time Petri Nets, Timed Event Graph, (max,+gondition and the usual hypothesis that places must be First
algebra, token death, Kleene'star, control synthesis, fixelah First Out (FIFO) is taken.
point.

[I. PRELIMINARIES

. INTRODUCTION A monoid is a couple(S,®) where the operatior® is

In an algebraic point of view, P-time Event Graphs can bassociative and presents a neutral element. A semi-ing
modelled by a new class of systems called interval descriptt® a triplet (S, &, ®) where (S, @) and (S, ®) are monoids,
systems [9] for which the time evolution is not strictly ® is commutative is distributive relatively top and the
deterministic but belongs to intervals. For interval descriptozero element of @ is the absorbing element of (c®a =
systems, lower and upper bounds of the intervals depends?® ¢ = ¢). A dioid D is an idempotent semi-ring (the
on the maximization, minimization and addition operationspperationd is idempotent, that ia ©a = a ). Let us notice
simultaneously in the general case. The algebraic model tfat contrary to the structures of group and ring, monoid and
P-time Event Graphs corresponds to the semantic "And* gfemi-ring do not have a property of symmetry $inThe unit
Time Stream Event Graph [6] where the lower and uppeR U {—occ} provided with the maximum operation denoted
bound constraints of P-time Event Graphs are respectively and the addition denoted is an example of dioid. We
(max,+) and (min,+) functions. Also, it includes P-Tithe have:R,,., = (RU{—oc}, ®,®)The neutral elements @b
Event Graphs (which is different of P-taEvent Graphs). and® are represented by = —oo ande = 0 respectively.

An important characteristic of P-time Event Graphs is thdhe absorbing element of is €. Isomorphic to the previous
possible deaths of tokens if a synchronization is not fulfilledone by the bijectionz — —z, another dioid isR U {+oo}
In this case, the initial algebraic model in the topical algebrarovided with the minimum operation denoted and the
cannot be used. Some authors apply performance evaluat@dition denoted>. The neutral elements of and © are
to determine the set of constraints guaranteeing the livenegpresented byl" = +oc and e = 0 respectively. The
of tokens in the strongly connected case [1]. Analysis cibsorbing element of is . The following convention is
token liveness can be realized through the spectral vect@ken:T @ e = ¢ andT © e = T. The expression @ b
[9] in the general case. and e © b are identical if at least eithet or b is a finite

Let us assume that the initial state belongs to an intervaicalar. The partial order denoted is defined as follows:
The aim of this paper is the determination of acceptable <y <= 1Dy =y <= Ay = v <= x; < y;, fori from
trajectories satisfying this initial condition. In other words,1 to » in R”. Notationz < y means that: < y andx # y.
the problem is the determination if there is an acceptabi dioid D is complete if it is closed for infinite sums and
trajectory starting from a given interval and the calculatiorthe distributivity of the multiplication with respect to addition
of the corresponding extremal trajectories. This problerapplies to infinite sums¥c e D) (V A C D) e®( @ASﬂ) =
has been already considered but in the particular case — _ z€ .
Timed Event Graphs [12]. It has been shown that the initiaﬁg‘ c®a. For exampleRpa, = (RU{—oco}U{+oo}, &, ®) is
condition must verify a condition such as the trajectory isomplete. The set ai.n matrices with entries in a complete
nondecreasing in the counting representation. dioid D provided with the two operation® and ® is also

The paper is structured as follows: notations and some pra-complete dioid which is denoteB™". The elements of
vious results are first given. We then introduce the modellinthe matrices in the (max,+) expressions (respectively (min,+)
of P-time Event Graphs in the (max,+) algebra in the "dateréxpressions) are either finite ar ((respectivelyT). We
form. We study its behavior with the help of a special seriean deal with nonsquare matrices if we complete by rows

or columns with entries equal to ( respectivelyT’). The
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f is said residuated if for alj € D, the least upper bound of the tokens between them and the correct numbering of
of the subset{z € D | f(z) < y} exists and lies in this the events. So, the evolution is described by the following

subset. The mapping € (R,,..)" — A ® = defined over inequalities which expresses relations between the dates of
R,.qiS residuated (see [2]) and the left-residuation ofB  firing of transitions:

by A is denoted by:A\B = max{z € (Ryq.)" such that  (Vt; € t; ) z4(k) > x;(k —mqi;) + ai;

A®z < B}. with a;; the lower bound of an upstream placetpfand
Kleene's star is defined byd* = @5 A’ . Denoted as m;; the corresponding number of tokens present initially.

G(A), an induced graph of a square mateixis deduced  Respectively(V t; € ;) z;(k) < x;(k —my;) + by

from this matrix by associating: a nodewith the columni with b;; the upper bound of an upstream place:gfwhich

and the linei ; an arc from the nodg towards the nodeé is equivalent ta(V t; € t;7) x;(k +mj;) — bj; < z;(k)

with A;; # . The weight of a pattp, | p |, is the sum of ~ Consequently, the model can be described by the following
the labels on the edges in the path. The length of a path expression in the (max,+) dioid.

| p |; is the number of edges in the path. A circuit is a path (k) Zt gBt zi(k —mij) ® ai;

which starts and ends at the same node. icl

Theorem 2.1(Theorem 4.75 part 1 in [2]) Giver and zi(k) Zt_@axj(k +myi) @ (=bji) or

B in a complete dioidD, A*B is the least solution of the ’

equationz = A® 2 & B, and the inequalityy > Az ® B xi(k) > P a;; @x;(k—mij) ® @ af; @ z;(k+my;)

Theorem 2.2(Theorem 4.73 part 1 in [2]) Giverd and ti€—t; ety
B in a complete dioidD, A*\B is the greatest solution of . - . (1)
the equation: = A\z A B, and the inequality: < A\z A B with a;; = a;; anda;; =—bji, a;; € R, aj; € R™
Let us notice the above set is also, equivalent to the
I1l. DEFINITION AND MODELLING OF P-TIME EVENT fo”owing "interval descriptor System” : @ a;j ®I](k _
GRAPHS tie—t;
The P-time Petri nets makes it possible to model thgbj) < zilk) < tje/ltibj © @;j(k = mj) with m; the

discrete event dynamic systems with time constraints of stayimber of the present tokens in each plagat the instant
of the tokens inside the places. Consistent with the dioitl= 0 (initial marking). The lower bound (respectively upper

R4z, We associate for each place a temporal interval defindmund) is a (max, +) function (respectively (min, +) function)

in RT x (RT U {+00}) . and this model is an example fmax, +), (min, +)) type
Definition 3.1 (p-time Petri nets) A P-time Petri net is a of interval descriptor system. This form can be used but need
pair < R, IS > where R is a marked Petri nets the use of two dioids which complicates its treatment.
IS: P — R" x (Rt U{+o0}) Some transitions can be considered as inputs. They are
pi — IS; = [a;, b;] with 0 < a; <b; usually associated to transitiorissuch that—¢; = () and

1S, is the static interval of residence time or durationdescribe for instance the input of a part. Similarly, some
of a token in placep; belonging to the set of placeB. transitions can be considered as outputs. They are usually
The token must stay in the plage during the minimum associated to transitionssuch that;” = () and describe for
residence duratiom;. Before this duration, the token is in instance the departure of a finished product.
state of unavailability to firing the transitioty. The value The output places of each input transition denaiedre
b; is a maximum residence duration after which the tokewithout token otherwise a place witout token is added.
must thus leave the plage. If not, the system is found in  Fort; € t;77 , x;(k) > u;(k) + a4
a token-dead state. So, the token is available to firing the andz;(k) < u;(k)+b;;
transitiont; in the interval timefa;, b;]. or u;(k) >z;(k) —bj;

For Event Graphs, we will express the interval of shooting Similarly, the input places of each output transition de-
of each transition from the system which will guarantee anotedy, are without token otherwise a place witout token is
functioning without token-dead state. The gets the set of added.

input transitions ofP, p is the set of output transitions &f. Fort; €= t;, yi(k) > zj(k) + aj;

The sett; (respectively;) is the set of the input (respectively andy; (k) < (k) + b

output) places of the transitian. Let us consider the variable  or z;(k) >y;(k) — bj;

z;(k) as the date of the kth firing of transitioh). For Naturally, for each input transition;, |~ ¢; |= 0 and
each placep,, we associate an intervad;;, b;;] with a;; | t;” |= 1 and for each output transition, |~ ¢; |=1 and
the lower bound and;; the upper bound witht; € p |t |=0. In the (max,+) algebra, an equivalent inequality
andt; € p. As |p| = |[p| = 1, the set of upstream set is:

(respectively downstream) transitions ©fis noted —t; = (tj € t;7) wi(k) > by; @ uj(k), ui(k) >b; @ 2;(k)

(t; ) (respectivelyt;” = ( £;)). (t; € 1) yak) > e @ (k) , 2i(k) > cf;@y; (k)

We consider the "dater” type in (max,+) algebra: each with b;; = a;j, bjj = —bji, ¢;; = a;j , cjj =-b
variablez;(k) represents the date of theh firing of tran- Additional input and output places
sition z;. The usual assumption of functioning FIFO of the In relation to the input and output transitions, the following
places is taken: it guarantees the condition of nonovertakiragiditions to the initial Event Graph do not modify its

ji-




behavior and make it possible to alleviate the notations If the Event Graph is live, there is no circuit without token
and expressions without reduction of generality. Now, thand consequently the matrixd, )* (respectively,(AJ)* )
previous transitions denotedandy are considered as simple converges because they are no circuits.
transitions and are denoted If we directly transpose the approach used for Timed Event
To each input transition, an input place and its inpuGraph, an inequation set is
transition denoted. are added such that the place is without
token and has an intervé, 0]. x >(Ag)* [DA; @'z @ B~ @
For tj € t? , l‘j(k) > ’U/I(k — mij) + Qij with Qi = 0 1<Z<M S A= (4)
andxj(k) < ’U,l(k — mij)—i—bij with bij =0 T 2fy O
or u;(k) >xz;(k+m;;) — by Respectively,
Similarly, to each output transition, an output place and . .
its corresponding output transition denotgdre added such r Z(?QLJ@BA: ©y e ®CT @y 5)
that the place is without token and has an intefoa0). T >AT @
For tj €7 t;, yl(k) > l‘j(k - mjz-) + aj; with aj; = 0 -
andyi(k:) < .%‘j(k — m]‘i) +bj; with bji =0

or z;(k) >yi(k +mj;) — bji Therefore, we can a priori deduce the following expression
Naturally, for each input transition;, |~ ¢; |= 0 and for a P-time Event Graph.

| t;> |=1 and for each output transitioh, |~ ¢; |=1 and

Léit—‘is!: 0. In the (max,+) algebra, an equivalent inequality x> (Ao_)i[@lgigzu A7 %V% @13_ ® u] ©

(tj c tl—») l‘l(k) > b— ®U]( ) ( ) > -; ij(k‘) D (AO) [@1§i§]v1 Az &y 1’]

(tj € t;) vi(k) = ¢;; ® xJ( ) s xi(k) > ¢ @y;(k) However, this right hand term does not represent the least
W|th b, = ai; = 0, b —b;i=0, ¢;; = a;; = 0, solution of the two initial inequalities which must be taken
= bﬂ =0 together. It can be formulated with the following equivalent

inequality.
IV. MODELS IN (MAX,+) ALGEBRA 2> @ A- ®~iz BB~ ®u &

One can represent the date sequeng@e € R,,,, with 0<i<M . _ .

k € Z by the following formal power series in one variable 0<§|2MAZ- @'z ®CT ®y

v and coefficients iNR,,q.: ©(v) = @ x(k)y*. Variable =
keZ

€z ) _ + _ i
~ may be regarded as the backward shift operator in event(4o ® 4g) @« 1635%1 Af @'z @
domain (formally,yz(k) = z(k — 1)) and ~-transform of AT i +

. X o T RY e BT @ueCT®
functions is analogous to th&-transform used in discrete- 1§§2M P27 Y
time classical control theory. Denot&l,,...[[7]] , the set of So,

formal series iny constitutes a dioid which brings a synthetic

representation of trajectory(k) € R,,q. With k € Z. x> (Ay @ Aar)*[ P A @~ze

The state inequalities are deduced from 1. As the trajec- N 1<i<M ’
tory z is non-decreasing, condition > ~'x is introduced D Ay reB uadCtey) (7)
into A7 . 1sisM

x> (A @ AY) ©a
r> P A @4z
0<i<M )

> @ Aloyix As (Ay @ A)*>(Ag)* and (A & AJ)*>(Ag)" . we

0<i<M can deduce that the right hand term of the first inequality of 7
with: M = @m; ; for k = m((¢;)) , if t; €= ¢; which represents the least solution of the previous inequality,
B iepP _ is greater than the corresponding right hand term of 6.
Ay =e@ay itk =10 =jand W)y =a;  g>47040) O A ovee @ Afoy =
otherwise; fork = m((t;)") , (A} )ij = a ity et 1<i<M 1<i<M _
(A4 @A) [ @ Ay @v'a]e(4y @ AY) [DAT ©y~'a]
x> B - ®@uandu >BT®«x @) 1<i<M 1<i<M _
y>C-®@zandz>CT®y >(Ay) [DA; @'z @ B~ @u] ®(AF)* [EBA* ® v 'x]

1<i<M 1<i<
In this part, we will successively, consider the static parts A consequence is that 6 includes trajectorles which are

of the system based on the transitions denatethd on the not consistent with 7 and the p-time event graph.

transitions denoted andy. Example
The following system (figure 1) is not live.
We consider the forward part of 2. B c %. y ~ (fig c 8 N e —3
x> @ A7 ® v'r ®B~ © u (respectively, Ao = | , . T . 0= < - 5)
0<i<M

r> @ Afeqyiz) A = < €
0<i<M —10 ¢



Remark. This form generalizes the classical state equation
of the Timed Event Graphs: il™ = ¢, Bt = e andC" =¢
X>yV A X®eB ®u
y>C~ X

These expressions describe the "lower” constraintston
produced by the model which can maximize it. Symmetri-
cally, as(y!. A~ @~ 1. A") is residuated, the following form
expresses every "upper” constraint &rwhich can minimize
Fig. 1. p-time event graphs not live - X< (’Yl-Af ® '\/’{A*)\X
u< B™\X andX < BT\u

, the system becom

a 3 e 0 X <C\yandy < CT\X
(A4g)" ® Ay = ( -4 ) and (47)" ® A} = The two models show a dualism if we remark that
_ _ (VA ey LANXY =L A Xy L ATXY and(4 LA~ @
( _13 i ) but Ay ® Aj = ( Z ’ ) and (4, @ 4=1 A+)\X =(y L. ATN\X A (y1.A7)\X (property 3 in
N T T [2] part 4.4.4)
Ag)" = T T Symbols>, @ and®,correspond respectively t9, A and
Consequently, the following result can be deduced in & Symboly! is replaced by~ and reciprocally. Each lower
natural manner. (upper) matrix correspond respectively to upper (lower)

matrix with the same notation.

Proposition 4.1 A necessary condition of a state evolution
in Ry,ax is the convergence dfd; @ A7)* in Ryax o _
In other words, there is no strictly positive circuit in An acceptable functioning of a system can be defined by
Ay @ AY. any functioning which guarantees the liveness of tokens and

which does not lead to any deadlock situation, consequently.
As this behavior can be represented by a state trajectory
which verifies the algebraic model, an aim is to study the
existence of a state trajectory. The resolution of the following

V. EXTREMAL ACCEPTABLE TRAJECTORIES

In short, the model can be written as follows.
Dynamic part

>(Ay B AS)” @ A7 @4z @ @ Af @y '] problem will give an approach.
1<i<M 1<i<M
) (8) Let us assume that an initial condition is giveny0) €
Static part (X5, X,F] . Another aim is the determination of the lowest

(respectively, greatest) acceptable trajectofi®sw,y) sat-
isfying this initial condition. In other words, the problem is
the determination if there is an acceptable trajectory starting
from the intervallX; , X;'].

We consider a finite horizon which introduces a new dif-
This set of inequations contains a lot of loops which caficulty on the initial and final values. A realistic assumption
produce inconsistency in the model. They arecir (A; ® is that the model, operates on the same horizon. Therefore,

A$)®x but more generally, in the static part, in the dynamidhe process starts &t = 0 and the constraints before zero

part and in their interconnexions. In the aim of reduction ofannot be considered. So, the only constraintio(k) for
the complexity of the problem, we assume that additiondl = 0 is X(0) > A" ® X (1) © &, . Symmetrically, as the
input and output places has been added. A consequencedigcess can stop aftér , the only constraint or¥’'(k) for
that the loops of the initial P-time Event Graph will only bek = h is X(h) > A~ ® X(h — 1). Let us notice that the
contained in the two first inequations and not in the inpufypothesis of an initial condition(—1) = ¢ is usually taken

and output inequations which correspond to null loops. in Timed Event Graphs and a final conditiah + 1) = T
ﬁ% usually taken for the corresponding classical "backward”

equations (part 5.6.2 in [2]) .

T>(A) dA]) @
z> B ®@uandz>CT®y 9)
y>C~ @z andu >BT ®x

The two forms 8 and 9 express the system completely a
can be simplified by increasing the vector state.

Dynamic part A. Lowest state trajectory
x> A ey AN (10) Theorem 5.1 If the process operates on the horizoand
Static part if the matricesw,, defined below have no positive circuit, the
lowest state trajectory checkiny(0) > X, is given by the
X>A" X following forward/backward algorithm.
X>B @uandX >CT®y (11) Forward/backward algorithm

y>C~®@X andu >BT @ X a) Coefficients by forward iteration



Initialization: wo = € and 55 = X model if we choose a finitet;” . In this case X' (0) > X

fork=1toh, wy=A" ® (wy_1)* ® AT and and each component is different franbecause the trajectory
B, =A" @ (wp—1)*" @B, , is non decreasing. [ ]
b) TrajectoryX* by backward iteration

_ X - VI. COMPUTATIONAL COMPLEXITY
X7 (h) = (wn)* @ By,

fork=h—11t00, X~ (k) = (wp)* @ AT ® The following curve gives indications on the possible
X(k+1) 6] CPU times needed to compute the different matriegs
) and the lowest and greatest trajectories on an ordinary
B. Greatest state trajectory Pentium 1.3 GHz for a horizon h= 1000. Computation

Theorem 5.2 If the process operates on the horizoand tests are made using maxplus toolboxes under Scilab. The
matrices A~ and A" are completely full: there is a place
containing a token between each couple of transitions. For
instance, ifn = 50, the relevant Petri net contains)
transitions and2500 places. The matrix4~ is generated

Coefficients by forward iteration randomly andAfr is deduced fro.m4— sugh that the system

a) Initialization: wy = ¢ and 3§ = X;" is temp_orally live on the desired honzon:_the_ complete

fork=1t0h, wy=A"® (we1) @A+ ands;} = calculations are made, therefore. In that objective, we also

(wp_1)* ®«4+)\ﬂ;j ) take A= = ¢ which do nqt effect significantly _thg time.

b) Trajectory X+ By backward iteration At thef moment, the code is not completely optimized and

X (h) = (wn)"\ 3 contains redundant operations.
h —

for k£ = 1 to 0, Xt(k) =
(wi) \[AT\X (k + 1)AB]

if the matricesw,, defined below have no positive circuit, the
greatest state trajectory checkiag0) < X, is given by the
following forward/backward algorithm.

Forward/backward algorithm

In short, the two algorithms allow us to determine low-
est (greatest, respectively) acceptable trajectories verifying
X(0) > X, (respectively,X(0) < X,). They make it
possible to check the existence of a trajectory verifying ]
X(0) € [&;,X;] if the constraintsX'(0) < A" and =
X(0) > X, are respectively added in the corresponding ol

algorithms. N
Remark o rm e
Defined on an intervalX, , X,"], the initial condition
is less restrictive that the more usual(0) = A, and Fig. 2. CPU time for different dimensions from 3 to 200 and h=1000

generalizes it. In a natural manner, the checking of this last

case is realized as follows. The determination of the lowest The algorithms use elementary operations on matrices as

trajectory such ast (0) € [&p, X, ] , makes it possible to ®, @, \, A and the more complex operation Klenne Star

check the admissibility ofty or in other words, ifX(0) =  * The last one determines the computational complexity

X, is possible. The determination of the greatest trajectoi§f each step and the complexities of the different known

such as¥(0) € [X;, Xy] gives the same result. algorithms are polynomial. Therefore, the complexity of
The following theorem gathers the results of this paper. calculation of the greatest trajectory is ab@l(t.n?) with h
Theorem 5.3 the horizon and: the dimension of the matrices. The space
A necessary and sufficient condition of existenc&if needed for the matrices), is I.n* with [ the minimum of

a state trajectory on an infinite horizon starting from a finitéhe horizon. and the length of the transient period. In short,
initial condition is: the algorithm can consider important sizes of Event Graphs

- logical liveness : no circuit is without token and horizon of calculation. Future papers will also consider

- temporal liveness : the following matrices have onlysParse matrices.
negative or null circuits: the matri¥, @ A7 (static case);
the matricesw, (dynamic case)

Proof: The following example allows us to illustrate and apply the

Representing the logical point of view, the first condition igesults about liveness and extremal trajectories. The horizon
well known. The introduction of time introduces new condi-of calculation considered here is= 9. Computation tests
tions and the propositions 4.1 and 5.1 relatively to the statefe made using max-plus toolbox under Scilab.
and dynamic cases gives conditions of existenc&®in,.. The stateX (k) is defined by:
Therefore, the components of a possible state trajectofyzy(k) wx2(k) wz3(k) w4(k) )t (t transposed)
belongs toR U {¢}. The Forward/backward algorithm shows The modelling of the event graph of figure 3 enabled us
that we can express a least finite trajectory verifying théo deduce the following matrices :

VIlI. EXAMPLE



Fig. 3. Example of a live p-time event graph
e —6 € ¢
_ 2 e e =7 _
+ _ _
Ay @ 4] = c - & 9 Aj =
e 2 2 ¢
e € ¢ 1 € € e €
e € ¢ 3 At — € € e €
e € € 3 1 € € e €
E € € € -5 —-11 -8 ¢
0O -6 -11 -13
_ 2 0 -5 =7
+yx - —
(AO D AO ) - -5 -7 0 -9 "4 -
4 2 2 0
e € ¢ 1 —18 —-24 21 ¢
e € € 3 At — —-12 —-18 —-15 ¢
e € € 3 —-14 -20 -—-17 ¢
e € € b -5 —-11 -8 ¢

with ¢ = —oo in the usual algebra.
The calculation of the matrices;, shows that they are
constant wj, = wq for w > 2.

-4 —-10 -7 =
Wy = -2 -8 =5 =
-2 -8 =5 ¢
0 -6 -3 ¢

This convergence implies the existence of an acceptable

trajectory on the horizorh = 9. Given the following
initial conditions, X~ (0) = (1, 3, 3, 5)" and X*(0) =

(5, 11, 8, 17)", we obtain the following tables which give

respectively the lowest and greatest state trajectories :

k 172 |3 |4 |5 |6 |7 |8 |9
zy |16 | 11|16 |21 |26 |31 |36 |41
zq |38 | 13|18 23|28 33| 38|43
T3 |38 | 131823 |28 |33 |38 |43
x, [510] 15|20 | 25|30 | 35|40 |45

k |1 [2 [3 [4 ][5 [6 [7 [8 ]9
zf |5 [ 223956 73[90 [ 107 [ 124 ] 141
xy |11 [ 28|45 [ 62 [ 79|96 | 113 | 130 [ 147
as [8 |25 [ 4259|7693 [ 110 | 127 | 144
xy [ 17 [ 38|55 | 72 [ 89 | 106 | 123 | 140 [ 157

VIII. CONCLUSION

model which uses a "noncausal” matrix (exponents can be
negative. See definition 5.35 in [2]). This fact entails that the
trajectories cannot easily be deduced by a simple forward
iteration like in the state equation in Timed Event Graphs
but must be expressed by a forward/backward iteration.
In reality, a p-time Event Graph naturally contains many
circuits in the dynamic part but also in the static part which
increases the complexity of the resolution. The introduction
of a nondecreasing serie of matrices makes it possible to
determine the extremal state trajectories satisfying an initial
condition defined on an interval. It is important to notice
that each extremal trajectory depends on the lower and upper
bounds of the model and not only, one limit. Its convergence
determines the existence of a trajectory without deaths of
tokens and introduces natural conditions of existence for
the static and dynamic parts. As the size of the matrices
corresponds to the size of the forward/backward model which
depends on the number of transitions and the initial marking,
this serie gives an efficient way to calculate the circuit
weights of the dynamic induced graph and to solve the
temporal liveness problem.
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