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Abstract— This paper presents a modelling and an analysis of
P-time Event Graphs in the field of (max, +) algebra. Under the
hypothesis of the logical liveness of the event graph, temporal
liveness is defined by the existence of a trajectory. Based on a
particular serie of matrices, the extremal trajectories starting
from an initial interval are deduced. The liveness of the static
part and dynamic part are analysed.
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I. I NTRODUCTION

In an algebraic point of view, P-time Event Graphs can be
modelled by a new class of systems called interval descriptor
systems [9] for which the time evolution is not strictly
deterministic but belongs to intervals. For interval descriptor
systems, lower and upper bounds of the intervals depends
on the maximization, minimization and addition operations,
simultaneously in the general case. The algebraic model of
P-time Event Graphs corresponds to the semantic ”And“ of
Time Stream Event Graph [6] where the lower and upper
bound constraints of P-time Event Graphs are respectively
(max,+) and (min,+) functions. Also, it includes P-Timed
Event Graphs (which is different of P-time Event Graphs).

An important characteristic of P-time Event Graphs is the
possible deaths of tokens if a synchronization is not fulfilled.
In this case, the initial algebraic model in the topical algebra,
cannot be used. Some authors apply performance evaluation
to determine the set of constraints guaranteeing the liveness
of tokens in the strongly connected case [1]. Analysis of
token liveness can be realized through the spectral vector
[9] in the general case.

Let us assume that the initial state belongs to an interval.
The aim of this paper is the determination of acceptable
trajectories satisfying this initial condition. In other words,
the problem is the determination if there is an acceptable
trajectory starting from a given interval and the calculation
of the corresponding extremal trajectories. This problem
has been already considered but in the particular case of
Timed Event Graphs [12]. It has been shown that the initial
condition must verify a condition such as the trajectory is
nondecreasing in the counting representation.

The paper is structured as follows: notations and some pre-
vious results are first given. We then introduce the modelling
of P-time Event Graphs in the (max,+) algebra in the ”dater”
form. We study its behavior with the help of a special serie
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of matrices [7] and the extremal trajectories obeying to an
initial condition defined on an interval, are deduced. Lastly,
a simple example illustrates the approach.

In this paper, no hypothesis is taken on the structure
of the Event Graph which can be non-strongly connected.
The initial marking must only satisfy the classical liveness
condition and the usual hypothesis that places must be First
In First Out (FIFO) is taken.

II. PRELIMINARIES

A monoid is a couple(S,⊕) where the operation⊕ is
associative and presents a neutral element. A semi-ringS
is a triplet (S,⊕,⊗) where(S,⊕) and (S,⊗) are monoids,
⊕ is commutative,⊗ is distributive relatively to⊕ and the
zero elementε of ⊕ is the absorbing element of⊗ (ε⊗a =
a ⊗ ε = ε). A dioid D is an idempotent semi-ring (the
operation⊕ is idempotent, that isa⊕ a = a ). Let us notice
that contrary to the structures of group and ring, monoid and
semi-ring do not have a property of symmetry onS. The unit
R ∪ {−∞} provided with the maximum operation denoted
⊕ and the addition denoted⊗ is an example of dioid. We
have:Rmax = (R∪ {−∞},⊕,⊗)Ṫhe neutral elements of⊕
and⊗ are represented byε = −∞ and e = 0 respectively.
The absorbing element of⊗ is ε. Isomorphic to the previous
one by the bijection:x 7−→ −x, another dioid isR∪{+∞}
provided with the minimum operation denoted∧ and the
addition denoted̄ . The neutral elements of∧ and¯ are
represented byT = +∞ and e = 0 respectively. The
absorbing element of̄ is ε. The following convention is
taken: T ⊗ ε = ε and T ¯ ε = T. The expressiona ⊗ b
and a ¯ b are identical if at least eithera or b is a finite
scalar. The partial order denoted6 is defined as follows:
x 6 y ⇐⇒ x⊕y = y ⇐⇒ x∧y = x ⇐⇒ xi 6 yi, for i from
1 to n in Rn. Notationx < y means thatx 6 y andx 6= y.
A dioid D is complete if it is closed for infinite sums and
the distributivity of the multiplication with respect to addition
applies to infinite sums: (∀ c ∈ D ) (∀ A ⊆ D) c⊗(

⊕
x∈A

x) =
⊕

x∈A

c⊗x. For example,Rmax = (R∪{−∞}∪{+∞},⊕,⊗) is

complete. The set ofn.n matrices with entries in a complete
dioid D provided with the two operations⊕ and⊗ is also
a complete dioid which is denotedDn.n. The elements of
the matrices in the (max,+) expressions (respectively (min,+)
expressions) are either finite orε ((respectivelyT ). We
can deal with nonsquare matrices if we complete by rows
or columns with entries equal toε ( respectivelyT ). The
different operations operate as in the usual algebra: The
notation¯ refers to the multiplication of two matrices in
which the∧−operation is used instead of⊕. The mapping



f is said residuated if for ally ∈ D, the least upper bound
of the subset{x ∈ D | f(x) ≤ y} exists and lies in this
subset. The mappingx ∈ (Rmax)n 7→ A ⊗ x defined over
Rmaxis residuated (see [2]) and the left⊗−residuation ofB
by A is denoted by:A\B = max{x ∈ (Rmax)n such that
A⊗ x 6 B}.

Kleene’s star is defined by:A∗ =
⊕+∞

i=0 Ai . Denoted as
G(A), an induced graph of a square matrixA is deduced
from this matrix by associating: a nodei with the columni
and the linei ; an arc from the nodej towards the nodei
with Aij 6= ε. The weight of a pathp, | p |w is the sum of
the labels on the edges in the path. The length of a pathp,
| p |l is the number of edges in the path. A circuit is a path
which starts and ends at the same node.

Theorem 2.1 (Theorem 4.75 part 1 in [2]) GivenA and
B in a complete dioidD, A∗B is the least solution of the
equationx = A⊗ x⊕B, and the inequalityx ≥ A⊗ x⊕B

Theorem 2.2 (Theorem 4.73 part 1 in [2]) GivenA and
B in a complete dioidD, A∗\B is the greatest solution of
the equationx = A\x∧B, and the inequalityx ≤ A\x∧B

III. D EFINITION AND MODELLING OF P-TIME EVENT

GRAPHS

The P-time Petri nets makes it possible to model the
discrete event dynamic systems with time constraints of stay
of the tokens inside the places. Consistent with the dioid
Rmax, we associate for each place a temporal interval defined
in R+ × (R+ ∪ {+∞}) .

Definition 3.1 (p-time Petri nets)A P-time Petri net is a
pair < R, IS > whereR is a marked Petri nets

IS : P −→ R+ × (R+ ∪ {+∞})
pi −→ ISi = [ai, bi] with 0 ≤ ai ≤ bi

ISi is the static interval of residence time or duration
of a token in placepi belonging to the set of placesP .
The token must stay in the placepi during the minimum
residence durationai. Before this duration, the token is in
state of unavailability to firing the transitiontj . The value
bi is a maximum residence duration after which the token
must thus leave the placepi. If not, the system is found in
a token-dead state. So, the token is available to firing the
transitiontj in the interval time[ai, bi].
For Event Graphs, we will express the interval of shooting
of each transition from the system which will guarantee an
functioning without token-dead state. The set·p is the set of
input transitions ofP , p· is the set of output transitions ofP .
The set·ti (respectivelyt·i) is the set of the input (respectively
output) places of the transitionti. Let us consider the variable
xi(k) as the date of the kth firing of transitionti. For
each placepk, we associate an interval[aij , bij ] with aij

the lower bound andbij the upper bound withti ∈· p
and tj ∈ p·. As |·p| = |p·| = 1, the set of upstream
(respectively downstream) transitions ofti is noted←ti =·

(·ti ) (respectivelyt→i = ( t·i)
·).

We consider the ”dater” type in (max,+) algebra: each
variablexi(k) represents the date of thekth firing of tran-
sition xi. The usual assumption of functioning FIFO of the
places is taken: it guarantees the condition of nonovertaking

of the tokens between them and the correct numbering of
the events. So, the evolution is described by the following
inequalities which expresses relations between the dates of
firing of transitions:

(∀ tj ∈← ti ) xi(k) ≥ xj(k −mij) + aij

with aij the lower bound of an upstream place ofti and
mij the corresponding number of tokens present initially.

Respectively,(∀ tj ∈← ti) xi(k) ≤ xj(k −mij) + bij

with bij the upper bound of an upstream place ofxi, which
is equivalent to(∀ tj ∈ t→i ) xj(k + mji)− bji ≤ xi(k)

Consequently, the model can be described by the following
expression in the (max,+) dioid.

xi(k) ≥ ⊕
tj∈←ti

xj(k −mij)⊗ aij

xi(k) ≥ ⊕
tj∈t→i

xj(k + mji)⊗ (−bji) or

xi(k) ≥
⊕

tj∈←ti

a−ij ⊗ xj(k −mij)⊕
⊕

tj∈t→i

a+
ij ⊗ xj(k + mji)

(1)
with a−ij = aij anda+

ij =−bji, a−ij ∈ R+, a+
ij ∈ R−

Let us notice the above set is also, equivalent to the
following ”interval descriptor system” :

⊕
tj∈←ti

aij ⊗ xj(k−
mj) ≤ xi(k) ≤ ∧

tj∈←ti

bij ¯ xj(k − mj) with mj the

number of the present tokens in each placepj at the instant
t = 0 (initial marking). The lower bound (respectively upper
bound) is a (max, +) function (respectively (min, +) function)
and this model is an example of((max, +), (min, +)) type
of interval descriptor system. This form can be used but need
the use of two dioids which complicates its treatment.

Some transitions can be considered as inputs. They are
usually associated to transitionsi such that←ti = ∅ and
describe for instance the input of a part. Similarly, some
transitions can be considered as outputs. They are usually
associated to transitionsi such thatt→i = ∅ and describe for
instance the departure of a finished product.

The output places of each input transition denotedu, are
without token otherwise a place witout token is added.

For tj ∈ t→i , xj(k) ≥ ui(k) + aij

andxj(k) ≤ ui(k)+bij

or ui(k) ≥xj(k)− bji

Similarly, the input places of each output transition de-
notedy, are without token otherwise a place witout token is
added.

For tj ∈← ti, yi(k) ≥ xj(k) + aji

andyi(k) ≤ xj(k) + bji

or xj(k) ≥yi(k)− bji

Naturally, for each input transitionti, |← ti |= 0 and
| t→i |= 1 and for each output transitionti, |← ti |= 1 and
| t→i |= 0. In the (max,+) algebra, an equivalent inequality
set is:

(tj ∈ t→i ) xi(k) ≥ b−ij ⊗ uj(k), ui(k) ≥b+
ij ⊗ xj(k)

(tj ∈← ti) yi(k) ≥ c−ij ⊗ xj(k) , xi(k) ≥ c+
ij⊗yj(k)

with b−ij = aij , b+
ij = −bji, c−ij = aij , c+

ij =−bji.
Additional input and output places
In relation to the input and output transitions, the following

additions to the initial Event Graph do not modify its



behavior and make it possible to alleviate the notations
and expressions without reduction of generality. Now, the
previous transitions denotedu andy are considered as simple
transitions and are denotedx.

To each input transition, an input place and its input
transition denotedu are added such that the place is without
token and has an interval[0, 0].

For tj ∈ t→i , xj(k) ≥ ui(k −mij) + aij with aij = 0
andxj(k) ≤ ui(k −mij)+bij with bij = 0
or ui(k) ≥xj(k + mij)− bji

Similarly, to each output transition, an output place and
its corresponding output transition denotedy are added such
that the place is without token and has an interval[0, 0].

For tj ∈← ti, yi(k) ≥ xj(k −mji) + aji with aji = 0
andyi(k) ≤ xj(k −mji) + bji with bji = 0
or xj(k) ≥yi(k + mji)− bji

Naturally, for each input transitionti, |← ti |= 0 and
| t→i |= 1 and for each output transitionti, |← ti |= 1 and
| t→i |= 0. In the (max,+) algebra, an equivalent inequality
set is:

(tj ∈ t→i ) xi(k) ≥ b−ij ⊗ uj(k), ui(k) ≥b+
ij ⊗ xj(k)

(tj ∈← ti) yi(k) ≥ c−ij ⊗ xj(k) , xi(k) ≥ c+
ij⊗yj(k)

with b−ij = aij = 0, b+
ij = −bji=0, c−ij = aij = 0 ,

c+
ij =−bji = 0

IV. M ODELS IN (MAX ,+) ALGEBRA

One can represent the date sequencex(k) ∈ Rmax with
k ∈ Z by the following formal power series in one variable
γ and coefficients inRmax: x(γ) = ⊕

k∈Z
x(k)γk. Variable

γ may be regarded as the backward shift operator in event
domain (formally,γx(k) = x(k − 1)) and γ-transform of
functions is analogous to theZ-transform used in discrete-
time classical control theory. DenotedRmax[[γ]] , the set of
formal series inγ constitutes a dioid which brings a synthetic
representation of trajectoryx(k) ∈ Rmax with k ∈ Z.

The state inequalities are deduced from 1. As the trajec-
tory x is non-decreasing, conditionx ≥ γ1x is introduced
into A−1 .





x ≥ ⊕
0≤i≤M

A−i ⊗ γix

x ≥ ⊕
0≤i≤M

A+
i ⊗ γ−ix

(2)

with: M =
⊕
i∈P

mi ; for k = m(·(ti)) , if tj ∈← ti

,(A−k )ij = e ⊕ a−ij if k = 1, i = j and (A−k )ij = a−ij
otherwise; fork = m((ti)·) , (A+

k )ij = a+
ij if tj ∈ t→i .

{
x≥ B− ⊗ u andu ≥B+ ⊗ x
y ≥C− ⊗ x andx ≥ C+ ⊗ y

(3)

In this part, we will successively, consider the static parts
of the system based on the transitions denotedx and on the
transitions denotedu andy.

We consider the forward part of 2.
x ≥ ⊕

0≤i≤M

A−i ⊗ γix ⊕B− ⊗ u (respectively,

x ≥ ⊕
0≤i≤M

A+
i ⊗ γ−ix )

If the Event Graph is live, there is no circuit without token
and consequently the matrix(A−0 )∗ (respectively,(A+

0 )∗ )
converges because they are no circuits.

If we directly transpose the approach used for Timed Event
Graph, an inequation set is

{
x ≥(A−0 )∗[

⊕
1≤i≤M

A−i ⊗ γix⊕B− ⊗ u]

x ≥A−0 ⊗ x
(4)

Respectively,
{

x ≥(A+
0 )∗[

⊕
1≤i≤M

A+
i ⊗ γ−ix⊕ C+ ⊗ y]

x ≥A+
0 ⊗ x

(5)

Therefore, we can a priori deduce the following expression
for a P-time Event Graph.

x ≥ (A−0 )∗[
⊕

1≤i≤M A−i ⊗ γix⊕B− ⊗ u]
⊕ (A+

0 )∗[
⊕

1≤i≤M A+
i ⊗ γ−ix]

(6)

However, this right hand term does not represent the least
solution of the two initial inequalities which must be taken
together. It can be formulated with the following equivalent
inequality.

x ≥ ⊕
0≤i≤M

A−i ⊗ γix ⊕B− ⊗ u ⊕
⊕

0≤i≤M

A+
i ⊗ γ−ix ⊕C+ ⊗ y

=
(A−0 ⊕A+

0 )⊗ x ⊕⊕
1≤i≤M

A−i ⊗ γix ⊕
⊕

1≤i≤M

A+
i ⊗ γ−ix ⊕B− ⊗ u⊕ C+ ⊗ y

So,





x ≥ (A−0 ⊕A+
0 )∗[

⊕
1≤i≤M

A−i ⊗ γix⊕
⊕

1≤i≤M

A+
i ⊗ γ−ix⊕B− ⊗ u⊕ C+ ⊗ y]

x ≥ (A−0 ⊕A+
0 )⊗ x

(7)

As (A−0 ⊕ A+
0 )∗≥(A−0 )∗ and (A−0 ⊕ A+

0 )∗≥(A+
0 )∗ , we

can deduce that the right hand term of the first inequality of 7
which represents the least solution of the previous inequality,
is greater than the corresponding right hand term of 6.

x ≥(A−0 ⊕A+
0 )∗[

⊕
1≤i≤M

A−i ⊗γix⊕ ⊕
1≤i≤M

A+
i ⊗γ−ix] =

(A−0 ⊕A+
0 )∗[

⊕
1≤i≤M

A−i ⊗γix]⊕(A−0 ⊕A+
0 )∗[

⊕
1≤i≤M

A+
i ⊗γ−ix]

≥(A−0 )∗[
⊕

1≤i≤M

A−i ⊗ γix⊕B−⊗ u]⊕(A+
0 )∗[

⊕
1≤i≤M

A+
i ⊗ γ−ix]

A consequence is that 6 includes trajectories which are
not consistent with 7 and the p-time event graph.

Example
The following system (figure 1) is not live.

A−0 =
(

ε ε
4 ε

)
A−1 =

(
ε 0
ε ε

)
A+

0 =
(

ε −3
ε ε

)

A+
1 =

(
ε ε

−10 ε

)



x 1
x 2

p 1

p 2

p 3

[ 4  5 ]

[ 0  1 0 ]

[ 1  3 ]

Fig. 1. p-time event graphs not live

(A−0 )∗ ⊗ A−1 =
(

ε 0
ε 4

)
and (A+

0 )∗ ⊗ A+
1 =

( −13 ε
−10 ε

)
but A−0 ⊕ A+

0 =
(

ε −3
4 ε

)
and (A−0 ⊕

A+
0 )∗ =

(
T T
T T

)

Consequently, the following result can be deduced in a
natural manner.

Proposition 4.1 A necessary condition of a state evolution
in Rmax is the convergence of(A−0 ⊕A+

i )∗ in Rmax

In other words, there is no strictly positive circuit in
A−0 ⊕A+

0 .
In short, the model can be written as follows.
Dynamic part

x ≥(A−0 ⊕A+
0 )∗[

⊕

1≤i≤M

A−i ⊗ γix⊕
⊕

1≤i≤M

A+
i ⊗ γ−ix]

(8)
Static part





x ≥ (A−0 ⊕A+
0 )⊗ x

x≥ B− ⊗ u andx ≥ C+ ⊗ y
y ≥C− ⊗ x andu ≥B+ ⊗ x

(9)

This set of inequations contains a lot of loops which can
produce inconsistency in the model. They are inx ≥ (A−0 ⊕
A+

0 )⊗x but more generally, in the static part, in the dynamic
part and in their interconnexions. In the aim of reduction of
the complexity of the problem, we assume that additional
input and output places has been added. A consequence is
that the loops of the initial P-time Event Graph will only be
contained in the two first inequations and not in the input
and output inequations which correspond to null loops.

The two forms 8 and 9 express the system completely and
can be simplified by increasing the vector state.

Dynamic part

X ≥ (γ1.A− ⊕ γ−1.A+)X (10)

Static part



X ≥ A− ⊗X
X≥ B− ⊗ u andX ≥ C+ ⊗ y
y ≥C− ⊗X andu ≥B+ ⊗X

(11)

Remark. This form generalizes the classical state equation
of the Timed Event Graphs: ifA+ = ε, B+ = ε andC+ = ε

, the system becomes

{ X ≥ γ1.A−X ⊕B− ⊗ u
y ≥ C− ⊗X

These expressions describe the ”lower” constraints onX
produced by the model which can maximize it. Symmetri-
cally, as(γ1.A−⊕γ−1.A+) is residuated, the following form
expresses every ”upper” constraint onX which can minimize
it.
X ≤ (γ1.A− ⊕ γ−1.A+)\X
u ≤ B−\X andX ≤ B+\u
X ≤ C−\y andy ≤ C+\X
The two models show a dualism if we remark that

(γ1.A−⊕γ−1.A+)X =γ1.A−X⊕γ−1.A+X and(γ1.A−⊕
γ−1.A+)\X =(γ−1.A+)\X ∧ (γ1.A−)\X (property f3 in
[2] part 4.4.4)

Symbols≥, ⊕ and⊗,correspond respectively to≤, ∧ and
\. Symbolγ1 is replaced byγ−1 and reciprocally. Each lower
(upper) matrix correspond respectively to upper (lower)
matrix with the same notation.

V. EXTREMAL ACCEPTABLE TRAJECTORIES

An acceptable functioning of a system can be defined by
any functioning which guarantees the liveness of tokens and
which does not lead to any deadlock situation, consequently.
As this behavior can be represented by a state trajectory
which verifies the algebraic model, an aim is to study the
existence of a state trajectory. The resolution of the following
problem will give an approach.

Let us assume that an initial condition is given byX (0) ∈
[X−0 ,X+

0 ] . Another aim is the determination of the lowest
(respectively, greatest) acceptable trajectories(X , u, y) sat-
isfying this initial condition. In other words, the problem is
the determination if there is an acceptable trajectory starting
from the interval[X−0 ,X+

0 ].
We consider a finite horizon which introduces a new dif-

ficulty on the initial and final values. A realistic assumption
is that the model, operates on the same horizon. Therefore,
the process starts atk = 0 and the constraints before zero
cannot be considered. So, the only constraint onX (k) for
k = 0 is X (0) ≥ A+ ⊗ X (1) ⊕ X−0 . Symmetrically, as the
process can stop afterh , the only constraint onX (k) for
k = h is X (h) ≥ A− ⊗ X (h − 1). Let us notice that the
hypothesis of an initial conditionx(−1) = ε is usually taken
in Timed Event Graphs and a final conditionx(h + 1) = T
is usually taken for the corresponding classical ”backward”
equations (part 5.6.2 in [2]) .

A. Lowest state trajectory

Theorem 5.1 If the process operates on the horizonh and
if the matriceswk defined below have no positive circuit, the
lowest state trajectory checkingX (0) ≥ X−0 is given by the
following forward/backward algorithm.

Forward/backward algorithm
a) Coefficients by forward iteration



Initialization: w0 = ε andβ−0 = X−0
for k = 1 to h, wk = A− ⊗ (wk−1)∗ ⊗A+ and

β−k = A− ⊗ (wk−1)∗ ⊗ β−k−1 ,
b) TrajectoryX+ by backward iteration

X−(h) = (wh)∗ ⊗ β−h
for k = h− 1 to 0, X−(k) = (wk)∗ ⊗ [A+ ⊗

X (k + 1)⊕ β−k ]

B. Greatest state trajectory

Theorem 5.2 If the process operates on the horizonh and

if the matriceswk defined below have no positive circuit, the
greatest state trajectory checkingX (0) ≤ X+

0 is given by the
following forward/backward algorithm.

Forward/backward algorithm
Coefficients by forward iteration
a) Initialization:w0 = ε andβ+

0 = X+
0

for k = 1 to h, wk = A−⊗ (wk−1)∗⊗A+ andβ+
k =

((wk−1)∗ ⊗A+)\β+
k−1

b) TrajectoryX+ by backward iteration

X+(h) = (wh)∗\β+
h

for k = h − 1 to 0, X+(k) =
(wk)∗\[A−\X (k + 1)∧β+

k ]

In short, the two algorithms allow us to determine low-
est (greatest, respectively) acceptable trajectories verifying
X (0) ≥ X−0 (respectively,X (0) ≤ X+

0 ). They make it
possible to check the existence of a trajectory verifying
X (0) ∈ [X−0 ,X+

0 ] if the constraintsX (0) ≤ X+
0 and

X (0) ≥ X−0 are respectively added in the corresponding
algorithms.

Remark
Defined on an interval[X−0 ,X+

0 ], the initial condition
is less restrictive that the more usualX (0) = X0 and
generalizes it. In a natural manner, the checking of this last
case is realized as follows. The determination of the lowest
trajectory such asX (0) ∈ [X0,X+

0 ] , makes it possible to
check the admissibility ofX0 or in other words, ifX (0) =
X0 is possible. The determination of the greatest trajectory
such asX (0) ∈ [X−0 ,X0] gives the same result.

The following theorem gathers the results of this paper.
Theorem 5.3
A necessary and sufficient condition of existence inR of

a state trajectory on an infinite horizon starting from a finite
initial condition is:

- logical liveness : no circuit is without token
- temporal liveness : the following matrices have only

negative or null circuits: the matrixA−0 ⊕ A+
0 (static case);

the matriceswk (dynamic case)
Proof:

Representing the logical point of view, the first condition is
well known. The introduction of time introduces new condi-
tions and the propositions 4.1 and 5.1 relatively to the static
and dynamic cases gives conditions of existence inRmax.
Therefore, the components of a possible state trajectory
belongs toR∪{ε}. The Forward/backward algorithm shows
that we can express a least finite trajectory verifying the

model if we choose a finiteX−0 . In this case,X (0) ≥ X−0
and each component is different fromε because the trajectory
is non decreasing.

VI. COMPUTATIONAL COMPLEXITY

The following curve gives indications on the possible
CPU times needed to compute the different matriceswk,
and the lowest and greatest trajectories on an ordinary
Pentium 1.3 GHz for a horizonh= 1000. Computation
tests are made using maxplus toolboxes under Scilab. The
matricesA− andA+ are completely full: there is a place
containing a token between each couple of transitions. For
instance, if n = 50, the relevant Petri net contains50
transitions and2500 places. The matrixA− is generated
randomly andA+ is deduced fromA− such that the system
is temporally live on the desired horizon: the complete
calculations are made, therefore. In that objective, we also
take A= = ε which do not effect significantly the time.
At the moment, the code is not completely optimized and
contains redundant operations.

0 20 40 60 80 100 120 140 160 180 200
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Fig. 2. CPU time for different dimensions from 3 to 200 and h=1000

The algorithms use elementary operations on matrices as
⊗, ⊕, \, ∧ and the more complex operation Klenne Star
∗. The last one determines the computational complexity
of each step and the complexities of the different known
algorithms are polynomial. Therefore, the complexity of
calculation of the greatest trajectory is aboutO(h.n2) with h
the horizon andn the dimension of the matrices. The space
needed for the matriceswk is l.n2 with l the minimum of
the horizonh and the length of the transient period. In short,
the algorithm can consider important sizes of Event Graphs
and horizon of calculation. Future papers will also consider
sparse matrices.

VII. E XAMPLE

The following example allows us to illustrate and apply the
results about liveness and extremal trajectories. The horizon
of calculation considered here ish = 9. Computation tests
are made using max-plus toolbox under Scilab.

The stateX (k) is defined by:(
x1(k) x2(k) x3(k) x4(k)

)t
(t transposed)

The modelling of the event graph of figure 3 enabled us
to deduce the following matrices :



p 1

p 2
p 3

p 4

p 5

p 6

[ 1  5 ]

[ 2  6 ]

[ 2  7 ]

[ 3  1 1 ]

[ 3  8 ]

[ 2  9 ]

x 1 x 2

x 3

x 4

Fig. 3. Example of a live p-time event graph

A−0 ⊕ A+
0 =




ε −6 ε ε
2 ε ε −7
ε ε ε −9
ε 2 2 ε


 A−1 =




ε ε ε 1
ε ε ε 3
ε ε ε 3
ε ε ε ε


 A+

1 =




ε ε ε ε
ε ε ε ε
ε ε ε ε
−5 −11 −8 ε




(A−0 ⊕ A+
0 )∗ =




0 −6 −11 −13
2 0 −5 −7
−5 −7 0 −9
4 2 2 0


 A− =




ε ε ε 1
ε ε ε 3
ε ε ε 3
ε ε ε 5


 A+ =




−18 −24 −21 ε
−12 −18 −15 ε
−14 −20 −17 ε
−5 −11 −8 ε




with ε = −∞ in the usual algebra.
The calculation of the matriceswk shows that they are

constant :wk = w2 for w ≥ 2.

wk =




−4 −10 −7 ε
−2 −8 −5 ε
−2 −8 −5 ε
0 −6 −3 ε




This convergence implies the existence of an acceptable
trajectory on the horizonh = 9. Given the following
initial conditions,X−(0) = (1, 3, 3, 5)t and X+(0) =
(5, 11, 8, 17)t, we obtain the following tables which give
respectively the lowest and greatest state trajectories :

k 1 2 3 4 5 6 7 8 9
x−1 1 6 11 16 21 26 31 36 41
x−2 3 8 13 18 23 28 33 38 43
x−3 3 8 13 18 23 28 33 38 43
x−4 5 10 15 20 25 30 35 40 45
k 1 2 3 4 5 6 7 8 9

x+
1 5 22 39 56 73 90 107 124 141

x+
2 11 28 45 62 79 96 113 130 147

x+
3 8 25 42 59 76 93 110 127 144

x+
4 17 38 55 72 89 106 123 140 157

VIII. C ONCLUSION

P-time Event Graphs presents a nondeterministic behavior
defined by lower and upper limits. In this paper, we have
shown that it can be modelled under the special form of a

model which uses a ”noncausal” matrix (exponents can be
negative. See definition 5.35 in [2]). This fact entails that the
trajectories cannot easily be deduced by a simple forward
iteration like in the state equation in Timed Event Graphs
but must be expressed by a forward/backward iteration.
In reality, a p-time Event Graph naturally contains many
circuits in the dynamic part but also in the static part which
increases the complexity of the resolution. The introduction
of a nondecreasing serie of matrices makes it possible to
determine the extremal state trajectories satisfying an initial
condition defined on an interval. It is important to notice
that each extremal trajectory depends on the lower and upper
bounds of the model and not only, one limit. Its convergence
determines the existence of a trajectory without deaths of
tokens and introduces natural conditions of existence for
the static and dynamic parts. As the size of the matrices
corresponds to the size of the forward/backward model which
depends on the number of transitions and the initial marking,
this serie gives an efficient way to calculate the circuit
weights of the dynamic induced graph and to solve the
temporal liveness problem.
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