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Abstract: An imperative condition of operation in Predictive Control is that a control must
be applied after the end of its calculation. In this paper, we analyze and formalize this causality
phenomenon which depends on both the computer time and the control problem. Two techniques
are proposed. When the causality forbids the complete convergence of the algorithm, we propose
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at each iteration of the algorithm. The plant is described by a Timed Event Graph while the
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1. INTRODUCTION

A classical problem is the control of a Timed Event Graph
where some events are stated as controllable, meaning that
the corresponding transitions (input) may be delayed from
firing until some arbitrary time provided by a supervisor.
In this paper, the specifications are defined by a P-time
Event Graph which describes the desired behavior of the
interconnections of all internal transitions. We wish to
determine an input in order to obtain the desired behavior
defined by the specifications.

This subject or a variant of this problem have already been
considered in many papers but, the causality phenomenon
which poses a problem does not seem to be fully considered
at the best of our knowledge. Approaches based on a
feedback defined by a Petri net are limited by the condition
that the duration and the initial marking of each added
place are non-negative. The existence of a linear state
feedback is discussed in (Katz (2007)). In a similar way,
the approaches based on a prediction (Model Predictive
Control) present an analogous difficulty as they calculate
a future control which must be applied on-line: for the
above procedure, the application of the control must be
made after the past dates of the state which are the known
initial starting point of the problem. More precisely, the
application of the first calculated control must be made
after the addition of the last past date of the known
state and the computer time. This difficulty arises if
we consider the practical control of large scale systems
as transportation systems, process with delays in the
application of the control, real-time systems, etc.

Therefore, the aim of this paper is to deal with this causal
constraint and to propose different techniques when a
predictive control is used. A first objective is the analysis

of the causality phenomenon and the determination of its
effects on the control approach. In this paper, we will
show that a possible technique (denoted technique 1 in
this paper) is to modify the control such that the causal
constraint is satisfied.

With the aim of fulfill the requirements of this time
constraint, a natural objective is to improve the on-
line procedure. A technique is to avoid the repetition
of the same calculations at each iteration which can be
costly in terms of time. Before the application of the on-
line control, a preparation can contain these calculations
allowing a reduction of the complexity of the on-line
procedure (Declerck (2013)). Another technique (denoted
technique 2) given in (Declerck and Guezzi (2012)) is
based on a restriction of the state space leading to a
convergence of the algorithm at the first iteration under a
space condition.

However, the above approaches can be insufficient or do
not succeed in the practical context of the control problem:
we must also consider the case where no technique over-
comes the causality problem. Therefore, we propose an
approach based on a compromise approach whose main
points are as follows. If a fixed point algorithm is used,
we can reduce the CPU time by stopping the algorithm
before the occurrence of a causality problem. The control
generated by this unusual technique (denoted technique 3)
is suboptimal as the convergence is not waited and only a
subset of the constraints is satisfied. This approach can be
sufficient if the important constraints are guaranteed by
an analysis. Clearly, the satisfaction of safety regulations
for a grade crossing is obligatory contrary to the following
non-crucial constraint taken in the food industry: In good
bakery practice, the dough stays in the fermentation room
from three to five hours, the time depending on room tem-



perature and flour or gluten quality; if these times are too
short or too long, the quality of the product will slightly
be damaged (bad inner structure and grain in the finished
loaf). Therefore, the resolution of this problem implies that
we focus on the validity of the constraints at each iteration
which allows the application of suboptimal control to the
process before the convergence of the algorithm.

The broad outline of the paper is as follows. Firstly, we
describe the control problem and the fixed point algorithm
which calculates the control and the state trajectories (De-
clerck and Guezzi (2012)). Then, we analyze the causality
phenomenon in predictive control and propose Technique
1. Based on a basic theorem of (max, +) algebra, the
consistency of the constraints is finally analyzed and a
second Technique 3 is proposed. A pedagogical example
using a variation of the model given in (Declerck and
Guezzi (2012)) illustrates the main points. Due to lack
of space, the preliminary remarks are also given in this
reference.

2. CONTROL PROBLEM

Let us consider the initial control problem of this paper
defined over Rmax. Below, the variable xi(k) is the date of
the kth firing of the transition xi and n is the dimension
of x(k). In this paper, we consider a classical predictive
control based on the infinite repetition of the following
control step on a sliding finite horizon. For one control
step, the objective of this paper is the determination of
the greatest control u (with respect to the componentwise
order) on an arbitrary horizon [ks+1, kf ] with h = kf−ks

∈ N such that its application to the Timed Event Graph
defined by{

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k + 1)
y(k) = C ⊗ x(k) (1)

for k ≥ ks, satisfies the following conditions:

a) y ≤ z knowing the trajectory of the desired output z ;

b) The state trajectory follows the model of the P-time
Event Graph defined by(

x(k)
x(k + 1)

)
≥

(
A= A+

A− A=

)
⊗

(
x(k)
x(k + 1)

)
; (2)

c) The initial value of the state trajectory x(k) for k ≥ ks

is finite and is a known vector denoted x(ks). This “ non-
canonical ” initial condition can be the result of a past
evolution of a process. Since x(ks) is finite, the trajectories
considered in this paper are finite.

Underlined symbols like x(ks) correspond to known data
of the problem and x(k) and y(k) are estimated in the
following resolutions.

The system (2) can always be obtained and corresponds
to a P-time Event Graph where the initial marking of each
place is equal to one at the greatest. When we consider the
places having a unitary (respectively, null) initial marking,
the lower bound a of the temporization of the place linking
its ingoing transition xj to its outgoing transition xi

generates the entry A−i,j = a ≥ 0 (respectively, A=
i,j = a ≥

0) and the upper bound b of the temporization of the place
linking its ingoing transition xi to its outgoing transition
xj generates the entry A+

i,j = −b ≤ 0 (respectively,

A=
i,j = −b ≤ 0). More details can be found in (Declerck

(2013)).

2.1 Relations on horizon [ks, kf ]

The relations of the Timed Event Graph can be rewritten
under the following classical form on horizon [ks, kf ].

X = Ωh ⊗ x(ks)⊕Ψh ⊗ U (3)

where h = kf − ks,
X =

(
x(ks + 1)t x(ks + 2)t · · · x(kf − 1)t x(kf )t

)t (t:
transposed),
U =

(
u(ks + 1)t u(ks + 2)t · · · u(kf − 1)t u(kf )t

)t , Ωh

is a column of h blocks (Ωh)i = Ai for i = 1 to h and Ψh

is a h x h matrix of blocks (Ψh)i,j for i, j ∈ {1, 2, . . . , h}
where (Ψh)i,j = Ai−j ⊗B for i > j and ε otherwise.

Below we consider the additional constraints (2) for k ≥
ks and an autonomous Timed Event Graph defined by the
inequality x(k) ≥ A ⊗ x(k − 1) which is the relaxation of
the earliest firing rule, starting from x(ks) = x(ks).




(
x(ks)
X

)
≥ Dh ⊗

(
x(ks)
X

)

x(ks) = x(ks)
(4)

where Dh is a tridiagonal matrix of blocks (Dh)i,j for
i, j ∈ {1, 2, . . . , h + 1}: This square matrix is composed of
a main diagonal ((Dh)i,i = A= for i ∈ [1, h+1]), an upper
diagonal ((Dh)i,i+1 = A+ for i ∈ [1, h]), a lower diagonal
((Dh)j+1,j = A ⊕ A− for j ∈ [1, h]); all other blocks are
zero matrices (square submatrix ε). The matrix Dh is a
n.(h + 1) x n.(h + 1) matrix where n is the dimension of
x. More details can be found in (Declerck (2013)).

2.2 Fixed point form and algorithm

We introduce the following extended state vector x =(
(x(ks))t (X)t

)t which expresses the complete state tra-
jectory. Let (x)+ be the greatest estimate of state trajec-
tory and F =
(
x(ks)t (C\z(ks + 1))t (C\z(ks + 2))t · · · (C\z(kf ))t

)t .
Theorem 1. (Declerck and Guezzi (2012)) The greatest
state and control trajectory of the control problem is the
greatest solution of the following fixed point inequality
system {

x ≤ Dh\x ∧ F
U ≤ Ψh\X
X ≤ Ωh ⊗ x(ks)⊕Ψh ⊗ U

(5)

with condition x(ks) ≤ x+(ks). ¥
The effective calculation of the greatest control can be
made by the classical iterative algorithm of McMillan and
Dill (1992). The general resolution of x ≤ f(x) is given
by the iterations of x〈i〉 ← x〈i−1〉 ∧ f(x〈i−1〉) if the finite
starting point x〈0〉 is greater than the final solution. Here,
number 〈i〉 represents the number of iterations and not the
number of components of vector x.

An algorithm specific to the determination of the great-
est state and control is given below. Since it follows the
algorithm of McMillan and Dill, this algorithm is also
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Fig. 1. Plant: Timed Event Graph (variation of the exam-
ple given in (Declerck and Guezzi (2012))

pseudo-polynomial. Starting from x〈0〉 = F , the trajec-
tory x is minimized in each iteration of the following
algorithm where (x)1 =

(
(x1(ks))t (X1)t

)t and (x)2 =(
(x2(ks))t (X2)t

)t correspond to useful intermediate val-
ues. Each iteration 〈i〉 with i > 0 considers the three steps
1, 2 and 3.

Algorithm 1 (Declerck and Guezzi (2012))

Step 0 (initialization): 〈i〉 ← 〈0〉; (x)2 ← F

Repeat

- 〈i〉 ← 〈i + 1〉 (numbering of the iteration)

- Step 1: (x)1 ← D∗
h\(x)2

- Step 2: U ← Ψh\X1

- Step 3: (x)2 ← (x)1 ∧
(

+∞
Ωh ⊗ x1(ks)⊕Ψh ⊗ U

)

until X1 = X2. ¥
Step 1 is deduced from the resolution of x ≤ Dh\x ∧
(x)2. The obtained solution (x)1naturally satisfies (x)1 ≤
Dh\(x)1 which is equivalent to the first relation in (4). The
rest of the algorithm checks that this calculated solution,
also satisfies X1 = Ωh⊗x1(ks)⊕Ψh⊗U with U = Ψh\X1.

Used in section 4.2, the following result shows the minimi-
sation of the state trajectory and the property that the
state equation is satisfied at the end of each iteration.
Property 1. (Declerck and Guezzi (2012)) X ′ ≤ X1 and
X2 = X ′ where X ′ = Ωh ⊗ x1(ks)⊕Ψh ⊗ U .

Algorithm 1 proposes an initial state x1(ks) satisfying
x1(ks) ≤ x(ks) and generates a trajectory starting from
x1(ks) given by the expression Ωh ⊗ x1(ks)⊕Ψh ⊗ U .

2.3 Example 1

This example is a variation of the example given in
(Declerck and Guezzi (2012)): We will show that the new
matrix B leads to a more complex convergence.

Timed Event Graph (Fig. 1): A =

( 0 7 5
5 2 ε
ε 4 6

)
, B =

( 4 3 ε )t and C = ( ε 5 ε )

P-time Event Graph (Fig. 2): A= =

(
ε ε −11
ε ε −11
1 1 ε

)
,

X1 X2

X3

[3,5]

[0,8]

[2,9]

[4,11]

[1,11]

[1,6]

[1,9]

[1,11]

Fig. 2. Specifications: P-Time Event Graph (Declerck and
Guezzi (2012))

A− =

(
ε 0 1
3 ε 4
1 2 ε

)
and A+ =

(
ε −5 −9
−8 ε −9
−6 −11 ε

)

Taking h = 3, the desired output z(k) and the initial
condition x(ks) are as follows:
z(k) = 25, 25, 28 for ks + 1 ≤ k ≤ ks + 3 and x(ks) =
( 2 0 3 )t. Needing two iterations, Algorithm 1 gives the
following results: u(k) = 4, 10, 16 for ks + 1 ≤ k ≤ ks + 3,
x(ks) = ( 2 0 3 )t, x(ks + 1) = ( 8 7 9 )t, x(ks + 2) =
( 14 13 15 )t, x(ks + 3) = ( 20 19 21 )tand y(k) = 12, 18,
24 for ks + 1 ≤ k ≤ ks + 3. The new matrix Ψh is given
below. By lack of place, matrix (Dh)∗ is not given but can
be found in (Declerck and Guezzi (2012)).

(Ψh)t =

( 4 3 ε 10 9 7 16 15 13
ε ε ε 4 3 ε 10 9 7
ε ε ε ε ε ε 4 3 ε

)

3. CAUSALITY

3.1 Causality phenomenon and technique 1

Approaches based on a feedback defined by a Petri net
are limited by the condition that the duration and the
initial marking of each added place are non-negative.
The existence of a linear state feedback is discussed in
(Katz (2007)). In a similar way, the approaches based
on a prediction (Model Predictive Control) present an
analogous difficulty as they calculate a future control
which must be applied on-line: for the above procedure,
the application of the control u(ks +1) must be made after
the dates of x(ks) which are the data of the problem.

Therefore, each component (u(ks + 1))i must be greater
than the date of the possible application which is the
addition (in the standard algebra) of the maximum of the
components of x(ks) and the computer time Tcomp which
is the time taken from the start of the algorithm until the
end as measured by an ordinary clock (more details are
given in section 3.2). More formally, we have

⊕

i∈[1,n]

xi(ks)⊗ Tcomp ≤
∧

i∈[1,card(u)]

ui(ks + 1) (6)

where
⊕

i∈[1,n]

xi(ks) ⊗ Tcomp is the availability date of the

calculated control. We can also rewrite this causality
condition under the form of a (max, +) inequality

u(ks + 1) ≥ Gu ⊗ x(ks) (7)



where Gu is the ⊗−product of Tcomp and a full matrix
of zeros (e = 0) with appropriate dimensions. A control
satisfying inequality (7) is called ”causal”. The algorithm
can directly consider this causal constraint by adding
x(ks) ≤ Gu\u(ks + 1) in the constraints of the control
problem which leads to a mimimization of the trajectories.
Note that the introduction of the above constraints can
naturally modify the trajectories and leads to a minimized
control and output (another approach implying a maxi-
mized control will be proposed in a next paper). It can
also change the consistency of the system.

3.2 CPU time and complexity of the on-line control

As the causality phenomenon is a constraint depending
on the computer time, we consider the CPU time which
gives a picture of the computer time Tcomp: recall that
the CPU time is the amount of time for which a central
processing unit was used for processing instructions of a
computer program contrary to the computer time Tcomp

which includes the CPU time and also the variable time
spent by the computer in executing Kernel routines.

In our approach, the CPU time of the control does not
include the calculation of the matrices Ωh, Ψh and star
(Dh)∗ which is made in the off-line preparation and
depends on the matrices of the models and the size of the
horizon. Therefore, the calculations of the on-line control
are only limited to simple operations: a multiplication, an
addition, a minimisation and two left ⊗−residuation of
matrices. The complexity of one iteration of Algorithm 1
is O(h2.n.max((n, q)) with q = card(u) (remember that
h = kf −ks and n = card(x)). We also made computation
tests on one iteration of Algorithm 1 using the max-plus
toolbox in Scilab 3.1.1 with an Intel Core2 Duo 2.26 GHz.
For n = 50, the off-line preparation approximately needs
362 seconds while the on-line procedure only needs 0.12
seconds. Therefore, the computer time Tcomp of the on-line
control is drastically reduced by the off-line preparation.

4. CONSTRAINT CONSISTENCY

As the objective of Algorithm 1 is to fulfil the requirements
of the control problem, we now focus on the satisfaction
of the different constraints at each iteration which can
be complete or partial. Before the description of the
relevant studies, we present Theorem 2 which poses a
general problem and highlights an important case where
Algorithm 1 gives the final state trajectory at the first
iteration 〈1〉: It implies that Algorithm 1 is strongly
polynomial since the resolution is reduced to a unique
iteration composed of the simple application of elementary
operations ⊕, ⊗, ∧ and \.
Theorem 2. (Declerck and Guezzi (2012)) The trajec-
tory (x)2 satisfies the system composed of (3) and the

first relation of (4) when
(

I ε
ε Ψh

)
⊗

(
x0(ks)
U

)
= (x)1.

Moreover, (x)2 = (x)1. ¥

Rewritten with a simpler notation, the condition of The-
orem 2 is analyzed in the following sections: The problem
is to check the solution existence of u ∈ Rq in the equality

B ⊗ u = x for any x ∈ Rn satisfying x ≥ A⊗ x (8)

with the following notation: B =
(

I ε
ε Ψh

)
, u =

(
x(ks)
U

)
, x =

(
x(ks)
X

)
, A = D.

h , n=card(x) and

q=card(u). We assume in (8) that matrix B has no null
rows as x is finite. Without a loss of generality, we assume
that matrix B has no null columns so that u=B\x is finite.
We naturally assume that the associated graph of A does
not contain circuits with strictly positive weight so that
A
∗ ∈ Rnxn

max. The objective is also to obtain practical tests
which use only the entries of B and A

∗
without calculating

the state and the control

4.1 Complete validity of the constraints and space controller
(technique 2) (Declerck and Guezzi (2012))

Property 2 analyzes the existence of a solution u in (8).
Property 2. (Declerck and Guezzi (2012)) The greatest
vector u=B\x satisfies the system (8) if and only if B ⊗(B
\A∗) = A

∗
. ¥

Therefore, Property 2 provides conditions described by
Theorem 2 which lead to a convergence in one iteration.
When B ⊗(B \A∗) = A

∗
is not satisfied for all columns

(A
∗
).,k but for some columns denoted (A

∗
)=.,k., a property

in (Declerck and Guezzi (2012)) shows that Algorithm 1
can stop for any iteration when x ∈Im(A

∗
)=. Since the

fulfilment of this condition is not guaranteed, we proposed
a predictive control using a space controller in (Declerck
and Guezzi (2012)). This approach compensates for the
non-satisfaction of the condition B ⊗(B \A∗) = A

∗
by

reducing the state space to the subspace Im(A
∗
)= under

the condition Im(A
∗
)= 6= ∅. The relevant algorithm is

strongly polynomial, contrary to Algorithm 1 considered
without additionnal condition. However, Algorithm 1 can
still be used even if Im(A

∗
)= = ∅.

4.2 Partial validity of the constraints and compromise
technique (technique 3)

In the previous section, we consider an important case
where the convergence of Algorithm 1 is efficient as it is
reduced to one iteration. The conditions of this important
case can be fullfilled by a space controller based on a
restriction of the space.

We now consider that the above techniques cannot be
applied. The addition of (7) in the constraints is not
possible or not desired because it leads to a control with
a major delay. We cannot apply a predictive control us-
ing a space controller as the conditions are not satisfied.
More precisely, we cannot reduce the CPU time by apply-
ing a predictive control using a space controller because
Im(A

∗
)= = ∅. Moreover, we consider the case where the

control calculated by Algorithm 1 is not causal.

Therefore, we consider in this section Algorithm 1 without
the addition of (7) and analyze the consistency of each row
of system (8): The mathematical objective is to generalize
Theorem 2 and Property 2.



As we consider that the control cannot be postponed,
we now propose a symmetrical approach which is to
reduce the CPU time by stopping Algorithm 1 before
the convergence such that inequality (7) is still satisfied
for the current calculated control. This unusual technique
is realistic as the algorithm makes a minimization of
the variables: each iteration of the algorithm proposes a
control which generates an output satisfying the desired
output (expressed by vector F ) and the state equation
(Property 1). Moreover, a subset of the constraints is
satisfied. This suboptimal solution can be sufficient if we
can guarantee the important constraints such as safety
regulations. Naturally, the maximal number of iterations
under the causality condition must be taken as the solution
is improved at each iteration (except at the end of the
convergence which check the stability of the solution).
Therefore, a compromise must be made between:

• The increase of the availability date expressed by
the right hand term of the causal condition (7) (and
produced by the increase of the computer time which
depends on the number of iterations)

• and, the decrease of the dates of the control which
is the left hand term in (7) (and is minimized by the
fixed point algorithm at each iteration) .

We now analyze the validity of the constraints at each
iteration of Algorithm 1. Contrary to the previous section,
the validity can be partial. The approach uses the following
lemma which considers the finite solution to A ⊗ x = b
where A ∈ Rmxn

max , b ∈ Rm. The relevant set of solutions
over R is denoted S. This lemma is a slight generalization
of Theorem 2.2 in (Butkovic and Tam (2009)) (R.A.
Cuninghame-Green, K. Zimmermann, P. Butkovic) where
A is over R.

We denote the set of indexes for the rows I = {1, .., m}
and for the columns J = {1, .., n} as A is a (mxn) matrix.
Remember that x+ is the greatest solution to A ⊗ x ≤ b.
We consider the finite entries of A which can imply the
equality Ai,j⊗x+

j = bi where Ai,j , x+
j and bi ∈ R: for j ∈ J

, Vj = {i ∈ I such that Ai,j is finite and x+
j = Ai,j\bi} .

Lemma 1. Let A ∈ Rmxn
max , b ∈ Rm. So, x ∈ S if and only

if x ≤ x+ and
⋃

j∈J| xj=x+
j

Vj = I. ¥

Corollary 1. The following three statements are equiva-
lent: 1) card(S) 6= 0 2) x+ ∈ S 3)

⋃
j∈J

Vj = I. ¥

So, if a row of A is null,
⋃

j∈J| xj=x+
j

Vj 6= I and there is no

finite solution (Moreover, there is no infinite solution as
ε is absorbing and bj ∈ R). If a column Aj is null, Vj is
empty and there is no effect on the equality.

The consideration of the following equality

B ⊗ v = A
∗

, (9)
where v is a (qxn) matrix will be useful. The greatest
solution is denoted v+. Lemma 1 allows an analysis of each
row of system (9) by inspection of the sets Vj,k defined
as follows. We denote the set of indexes for the rows
I = {1, .., n} and for the columns J = {1, .., q} as B is
a (nxq) matrix. Let K = {1, .., n} be the set of indices of

columns of A
∗
. Corresponding to column j ∈ J of B and

column k ∈ K of A ∗ , Vj,k is defined by Vj,k = {i ∈ I such
that Bi,j is finite and v+

j,k = B i,j\(A∗)i,k} .

Property 3. The system (9) has a solution v if and only
if v ≤ v+ and

⋂
k∈K

⋃
j| vj,k=v+

j,k

Vj,k = I. The set
⋂

k∈K

⋃
j∈J

Vj,k

gives the rows of (9) where the equality holds for v=v+. ¥

Now we can consider the system (8). The following result
generalizes the converse of property 2 (Section 4.1) by
considering the consistency of each row.
Property 4. For the greatest vector u=B \ x,

• each equality B i,. ⊗u = xi with i ∈ Ig =
⋂

k∈K

⋃
j∈J

Vj,k

is always satisfied for any x ∈ImA
∗
.

• each equality B i,. ⊗u = xi with i ∈ Ip,k =
⋃

j∈J

Vj,k is

always satisfied when x ∈Im(A
∗
).,k for a given k ∈ K.

• An equality B i,. ⊗u = xi with i ∈ Ip = {i ∈⋃
k∈K

⋃
j∈J

Vj,k and i /∈ Ig} is possibly satisfied when

x ∈ImA
∗
. ¥

In the first point, the set Ig guarantees the consistency
of a subset of constraints in (9) for any state trajectory
x ∈ImA ∗. The same remark holds for the set Ip,k but
the state trajectory x follows a unique direction (A

∗
).,k

with k ∈ K : x = λk ⊗ (A
∗
).,k. We directly deduce that,

depending of the state evolution inside the space ImA ∗,
the set Ip gives the rows of B ⊗u = x where the equality
is possibly satisfied.

Considering system (4) (Section 2.1) at each iteration of
Algorithm 1, the following theorem generalizes Theorem
2.
Theorem 3. The constraints corresponding to the rows
i ∈ Ig of the first relations of (4) are satisfied at each
iteration of Algorithm 1 for the control calculated at step
2. ¥

When there is no restriction produced by the causality,
Algorithm 1 must be continued until the convergence
where all the constraints are satisfied. If a causality prob-
lem occurs, Algorithm must be stopped before its normal
convergence: Therefore, we can guarantee the satisfaction
of a subset of the constraints at the end of the last executed
iteration (at the end of step 3) for the control calculated
at step 2.
Remark 1. The situation I 6= Ig only means that the
conditions of Property 2 (Section 4.1) leading to a conver-
gence in one iteration are not satisfied. It does not imply
that the general control problem is inconsistent as it also
depends on the initial state x(ks). In fact, some rows of B

i,. ⊗u = xi can be inconsistent. See below Example 1.

4.3 Example 1 (continued).

We have n = (h + 1).n = 12 and q = n + h.card(u)= 6
as n = 3 and h = 3. So, I = {1, ..., 12}, J = {1, ..., 6}
and K = {1, ..., 12}. Remember that A

∗
= (Dh)∗ and



B =
(

I ε
ε Ψh

)
. Each entry ∆i,k of the following n x n

symbol matrix gives the row index i ∈ ⋃
j∈J

Vj,k for each

column (A
∗
).,k where symbol = expresses that the relevant

equality Bi,.⊗ v.,k = (A
∗
)i,k is satisfied while symbol <

shows that Bi,.⊗ v.,k < (A
∗
)i,k is obtained.

∆ =




= = = = = = = = = = = =

= = = = = = = = = = = =

= = = = = = = = = = = =

= < = < = < = < = < = <

= = = = = = = = = = = =

< < < < < < < < < < < <

= = = = = = < = < = < =

= = = = = = = = = = = =

< < < < < < < < < < < <

= = = = = = = = = < = =

= = = = = = = = = = = =

< < < < < < < < < < < <




(10)

The analysis of the rows of this matrix ∆ gives Ig =
{1, 2, 3, 5, 8, 11} and Ip = {4, 7, 10}.
Therefore, the equality B ⊗u = (A

∗
).,k does not hold

for any k ∈ K but the equality for the rows i ∈ Ig is
guaranteed. The constraints corresponding to x2(ks + 1),
x2(ks + 2) and x2(ks + 3) are always satisfied, that is
x2(k) ≥ (A⊕A−)2,.⊗x(k−1)⊕A=

2,.⊗x(k)⊕A+
2,.⊗x(k+1)

for k = ks + 1 and ks + 2 and x2(k) ≥ (A ⊕ A−)2,. ⊗
x(k − 1)⊕A=

2,. ⊗ x(k) for k = ks + 3. Remember that the
equalities relevant to rows {1, 2, 3} are always satisfied for
any problem by construction of system (8). The following
table generated by the simulation is coherent with these
first results. Using the data obtained at the end of an
iteration expressed by (x)2, the table shows the evolution
of the validity of the different constraints at each iteration,
that is, the first relations of (4) (notation: g guaranteed;
s satisfied; ns non satisfied). Only two iterations are
necessary.

Iteration 〈i〉 x3(ks+2) x1(ks+3) x2(ks+3): g x3(ks+3)

1 15 (s) 21 (s) 20 (s) 21 (ns)

2 15 (s) 20 (s) 19 (s) 21 (s)

...

Iteration 〈i〉 x3(ks+2) x1(ks+3) x2(ks+3): g x3(ks+3)

1 15 (s) 21 (s) 20 (s) 21 (ns)

2 15 (s) 20 (s) 19 (s) 21 (s)

Relations relevant to x1(ks + 2) and x3(ks + 3) (which
corresponds to rows 7 and 12 of Bi,.⊗ v = A

∗
) at the end

of iteration 〈1〉 are not satisfied: x1(ks + 2) = 14 � A+
1,2 ⊗

x2(ks + 3) = (−5) ⊗ 20 and x3(ks + 3) = 21 � A=
3,1 ⊗

x1(ks + 3) = 1⊗ 21.

Moreover, each equality B i ⊗u = xi for i ∈ Ip = {4, 7, 10}
is possibly satisfied. In the numerical example, all the
constraints and B i ⊗u = xi for i ∈ Ip = {4, 7, 10} are
satisfied at the end of iteration 〈2〉.
Finally, the equalities B i ⊗u = xi for i ∈ In = {6, 9, 12}
are not necessary in this simulation. They are not satisfied
at the end of iterations 〈1〉 and 〈2〉 (remark 1) but the
equality of the state equation is obtained with xi(k) =
Ai,. ⊗ x(k − 1): we have at the end of iteration 〈2〉 :

x3(k) = A3,. ⊗ x(k − 1) for k = ks + 1, ks + 2 and ks + 3

x3(ks + 1) = 9 = A3,3 ⊗ x3(ks) = 6 ⊗ 3 > B3,. ⊗ u(ks +
1) = 4⊗ 4

x3(ks +2) = 15 = A3,3⊗x2(ks +1) = 6⊗9 > B3,.⊗u(ks +
2) = 4⊗ 10

x3(ks + 3) = 21 = A3,3 ⊗ x2(ks + 2) = 6 ⊗ 15 > B3,. ⊗
u(ks + 3) = 4⊗ 16

5. CONCLUSION

In this paper, we analyze the causality phenomenon and
enlarges the class of the processes where the predictive
control can operate when the causality phenomenon for-
bids the application of the calculated control. Indeed, the
computer can be too slow with respect to the size, the
type and the data of the control problem. A first approach
is to consider this limitation as a standard additional
constraint which can be written in the (max, +) algebra.
The proposed Technique 1 adds a minimization of the state
and control trajectories under the condition of consistency
of the modified system. Contrary to Techniques 1 and
2 (Declerck and Guezzi (2012)) where all the additional
constraints must be satisfied, the second proposed Tech-
nique 3 can be applied when only a subset of crucial
constraints must be satisfied. Moreover, we consider the
situation where the conditions of the space controller
(Technique 2) leading to a convergence in one iteration
cannot be fulfilled. The suboptimal solution is the result of
a compromise between the availability time of application
of the control and the calculated dates. The analysis based
on Lemma 1 has shown that a subset of the constraints are
guaranteed while another subset is possibly satisfied.
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