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Abstract

This paper presents a new numerical algorithm based on interval analysis able to test, in a guaranteed way, that a differentiable function
f : A ⊂ Rn → Rn is injective. This algorithm also performs a partition of the domain A in subsets Ai where, for all x ∈ Ai, the cardinal
of f−1(f(x)) is constant.
In the context of parameter estimation, we show how this algorithm give a efficient and numerical method to study the structural
identifiability of parametric models. It is able to decompose the parametric space into subsets where the number of feasible vectors of
parameters is fixed. In consequence, if the decomposition leads to only one set where the feasible parameter vector is unique then the
structural identifiability of the considered model is proved.
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1 Introduction

1.1 Problem Statement

Consider a differentiable function f defined from a set A ⊂
Rn to Rn, we define the injectivity function of f by

µ :

{
A → N
x → |{x̃ ∈ A | x̃ = f−1 (f (x))

} |
(1)

where | · | denotes the cardinal of a set. The function µ
associates to each vector x the number of solutions x̃ of the
equation

f(x̃) = f(x). (2)

This paper proposes a new algorithm able to enclose the
function µ between two functions µ− and µ+ such that

∀x ∈ A, µ−(x) ≤ µ(x) ≤ µ+(x). (3)
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This algorithm is important for injectivity problems and
identifiability analysis of parametric models as illustrated in
the following. To our knowledge, it does not exist any nu-
merical and guaranteed approaches to enclose µ. This paper
presents the first attempt in that direction.
Note that Braems and al. has presented in [3] an approxi-
mated method to test whether the function µ is equal to one.
Otherwise, formal approaches may turn out unsatisfactory
for different reasons:

i) If Equation (2) is not polynomial, the formal calculus
often fail to reach a solution.

ii) Even in the polynomial case, the degree of some of
them may be too large for the existence of an analytic
expression of the solutions. Then, the use of numeri-
cal methods is imposed and the formal nature of the
solution is lost.

iii) The complexity of the formal manipulations (doubly
exponential) is much more complicated than that al-
lowed by computers.

iv) The number of solutions for the x̃’s depend on the
value of x. It is then impossible to reach a structural
conclusion.

The following example illustrates the points i) and iv). It
will be treated in Section 4 with the new approach advocated
in this paper.
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Example 1 Consider the function

f :

{
[−3, 3] → R

x → x cosx
(4)

and let a be the real number defined in Figure 1. One has

µ(x) = |{x̃ ∈ [−3, 3] | x̃ cos x̃ = x cos x}|, (5)

=





3 if x ∈]− a, a[,

2 if x = −a or x = a,

1 otherwise.

(6)

Remarks that f is injective when its injectivity function µ is
equal to one.

Fig. 1. The grey zone corresponds to the values of x for which
the equation f(x) = f(x̃) has more than one solution.

1.2 Application to structural identifiability

The notion of (structural) identifiability is the question of
whether one can hope uniquely to estimate the parameters
of a model from the experimental data that can be collected.
The importance of the notion has been recognized more than
50 years ago [8] and it is particularly relevant for knowledge-
based models, where the parameters have a concrete mean-
ing, and whenever decisions have to be taken on the basis
of their numerical values [2].
In this paper, we show that the analysis of the structural
identifiability amounts to study the injectivity function µ of
a specific function build from the parametric model to be
considered. If µ is equal to one, the model is globally identi-
fiable; if µ is bounded, the model is locally identifiable and
otherwise, it is unidentifiable [12].

1.3 Contents of the paper

The paper is organized as follows. Section 2 presents interval
analysis and some possibilities of this tool. Section 3 defines
the injectivity function restricted to a domain and points out

its main properties. By a combination of interval analysis
and the properties of the injectivity function, an effective
algorithm is built in Section 4. It is able to enclose the
injectivity function µ for any x. In Section 5, an illustrative
example shows the efficiency of the algorithm to test models
for structural identifiability.
Note that a solver called IAVIA (Injectivity Analysis Via
Interval Analysis) implemented in C++ is made available at
http://www.istia.univ-angers.fr/~lagrange/.

2 Interval Arithmetic

In this section, we introduce some notations and concepts to
be used in the paper. First, we present the interval arithmetic
[10][11]. Then, the interval Newton method [5], usually used
to prove the existence and the unicity of the zero of a function
f : Rn → Rn, is generalized to functions defined from
Rn × Rm to Rn.

2.1 Interval Arithmetic

A vector interval or a box [x] of Rn is defined by

[x] = [x,x] = {x ∈ Rn | x ≤ x ≤ x} , (7)

where x and x are two elements of Rn and the partial order
≤ is understood componentwise. The set of all bounded
boxes of Rn is denoted by IRn as in [6].
To bisect a box [x] means to cut it along a symmetry plane
normal to a side of maximal length. The length of this side
is the width of [x] denoted by ω ([x]). A bisection of [x]
generates two non overlapping boxes [x1] and [x2] such that
[x] = [x1] ∪ [x2] (see Figure 2).

Fig. 2. Bisection of the box [x] into the sub-boxes [x1] and [x2]
where xc is the center of [x] (denoted center([x])).

Let f : Rn → Rm be a vector function; a set-valued function
[f ] : IRn → IRm is a inclusion function of f if

∀ [x] ∈ IRn, f ([x]) ⊂ [f ] ([x]) . (8)
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Note that f ([x]) is usually not a box contrary to [f ] ([x]).
Moreover, since [f ([x])] is the hull box 1 of f ([x]), one has

f ([x]) ⊂ [f ([x])] ⊂ [f ] ([x]) (see Figure 3).

In [11], Neumaier proves that it is always possible to find an
inclusion function [f ] when f is defined by an arithmetical
expression.

Fig. 3. Inclusion function [f] of the function f.

2.2 Interval Newton Method

The purpose of this subsection is to give a sufficient condi-
tion for verify that

∀y ∈ [y] , ∃!x ∈ [x] such that h (x,y) = 0, (9)

where h is a differentiable function defined by

h :

{
Rn×Rm → Rn

(x,y) → h (x,y)
(10)

and [x] , [y] are two boxes included in Rn and Rm respec-
tively.
To perform this verification, we propose to generalize the in-
terval Newton method by defining an extension of the unic-
ity operators [9].
This new result will be exploited in the next section in order
to show that a function f : Rn → Rn satifies

∀y ∈ [y] , ∃!x ∈ [x] such that f (x) = y. (11)

by setting h :

{
Rn×Rn → Rn

(x,y) → f (x)− y
.

2.2.1 Unicity operator

This paragraph recalls the definition of a (interval) unicity
operator. Let us consider a function f : Rn → Rn and a
interval [x] ⊂ Rn.

1 A hull box of a compact set A ⊂ Rn, denoted [A], is the
smallest box of IRn that contains A.

Definition 1 An operator N is a unicity operator of f :
Rn → Rn if

N (f , [x]) is true ⇒ ∃!x ∈ [x] , f (x) = 0.

Example 2 Consider the expression

center ([x])− Inv ([Dxf([x])] , f(center([x]))) (12)

where Dxf is the Jacobian matrix of f (according to x) and
Inv ([A] , [b]) is an interval vector that contains the set

{
x = A−1b | A ∈ [A],b ∈ [b]

}
. (13)

(we will not explain in detail how to compute such a vector,
e.g. Gauss Interval Algorithm [1] could be used).
The standard (interval) unicity operator is the unicity oper-
ator of Newton [5] defined by

N (f , [x]) =

{
true if (12) is strictly included in [x]

false otherwise
(14)

2.2.2 Generalized unicity operator

Now, let us extend the unicity operator defined for functions
from Rn to Rn to functions defined from Rn × Rm to Rn.
These extended operators will be named generalized unicity
operators.
Consider the function h defined by (10) and two boxes [x] ∈
IRn and [y] ∈ IRm. For a fixed point y ∈ [y], define

hy :

{
Rn → Rn

x → hy (x) = h (x,y) .
(15)

Now, let N (hy, [x]) be a unicity operator of hy then, ac-
cording to Definition 1, we get

N (hy, [x]) is true ⇒ ∃!x ∈ [x] ,hy (x) = 0. (16)

Taking
Ng(h, [x] ,y) = N (hy, [x]), (17)

the relation (16) becomes

Ng(h, [x] ,y) is true ⇒ ∃!x ∈ [x] ,h (x,y) = 0. (18)

Thus, the operator Ng can be view as a unicity operator of
the function h at the point y.
Now, according to (18) and since no assumption has been
done on y, one has

∀y ∈ [y] , (Ng(h, [x] ,y) is true ⇒ ∃!x ∈ [x] ,h (x,y) = 0)
(19)
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and therefore

Ng(h, [x] , [y]) is true ⇒ ∀y ∈ [y] , ∃!x ∈ [x] ,h (x,y) = 0.
(20)

Thus, the operator Ng is a unicity operator of h for all
y ∈ [y], namely a generalized unicity operator. Concisely,
the definition is the following :

Definition 2 An operator Ng is a generalized unicity oper-
ator of h : Rn × Rm → Rn if

Ng(h, [x] , [y]) is true ⇒ ∀y ∈ [y] , ∃!x ∈ [x] ,h (x,y) = 0.

Example 3 Consider the function h defined in (10). Accord-
ing to Example 2, the unicity operator of NewtonN (hy, [x])
of the function hy (defined in (15)) is true if

center ([x])− Inv ([Dxhy([x])] ,hy(center([x]))) (21)

is strictly included in [x] and false otherwise. Note that
Dxhy ([x]) denotes the Jacobian matrix (according to x) of
hy and Inv(·, ·) is defined as in (12).
According to (17), the corresponding generalized unicity
operator of Newton Ng(h, [x] , [y]) of h is true if

center ([x])− Inv ([Dxh([x], [y])] ,h(center([x]), [y]))
(22)

is strictly included in [x] and false otherwise.

3 Injectivity function

Consider a differentiable function f : [x] ⊂ Rn → Rn.
This section presents some basic properties of the injectivity
function µ of f defined in (1). Then, a main theorem, based
on the algorithm to be presented, will be introduced. This
theorem gives a sufficient condition to enclose the injectivity
function.

3.1 Properties of the injectivity function

Let [x̃] be a box included in [x], we define the injectivity
function (of f ) restricted to [x̃], denoted µ[x̃], by

µ[x̃] :

{
[x] → N
x → ∣∣{x̃ ∈ [x̃] | x̃ = f−1 (f (x))

}∣∣ .
(23)

µ[x̃](x) is the number of solutions x̃ of the equation f(x̃) =
f(x) that belongs to [x̃].
Note that, since we only consider the injectivity function of
f , we omit to specify it in the following.

Example 4 Consider the function f(x) = x cosx of Exam-
ple 1. The graph of the function µ[−a,a] has been depicted
on Figure 4.

Fig. 4. Graph of the injectivity function µ[−a,a] of f . The graph
of f has been superposed as dotted-lines.

Now, the following proposition gives the relation between
the injectivity function restricted to an union of boxes and
the one restricted to each boxes.

Proposition 1 Consider a function f : [x] ⊂ Rn → Rn

and a collection [x̃1], . . . , [x̃q] of boxes of [x]. For I =
{1, . . . , q} , we get

µ⋃
i∈I

[x̃i]
(x) =

∑

J⊂I

(−1)|I|−1
µ ⋂

i∈J

[x̃i]
(x) . (24)

Proof. By definition, one has

µ⋃
i

[x̃i]
(x) =

∣∣∣∣∣

{
x̃ ∈

⋃

i

[x̃i] | x̃ = f−1 (f (x))

}∣∣∣∣∣ . (25)

According to the inclusion-exclusion principle, one has

∣∣∣∣
⋃
i∈I

[x̃i]
∣∣∣∣ =

∑

J⊂I

(−1)|I|−1

∣∣∣∣∣
⋂

i∈J

[x̃i]

∣∣∣∣∣ . (26)

Therefore

µ⋃
i∈I

[x̃i]
(x) =

∑
J⊂I

(−1)|I|−1

∣∣∣∣
{
x̃ ∈ ⋂

i∈J

[x̃i] | x̃ = f−1 (f (x))
}∣∣∣∣ .

(27)

and according to the definition of the injectivity function,
we get (24).

Example 5 Consider the function f : [x] ⊂ R→ R and the
real number a depicted on Figure 5. Since [x] =

⋃i=4
i=1 [x̃i]

and according to Proposition 1, one has

µ[x] (a) =
4∑

i=1

µ[x̃i] (a)

= 0 + 1 + 2 + 0 = 3.
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Fig. 5. Graph of the function f

Remark 1 Consider a function f : [x] ⊂ Rn → Rn

and [x1] ⊂ [x]. Trivially, for any box [x̃] that contains
f−1 (f ([x1])) (see Figure 6), one has

∀x ∈ [x1],
{
x̃ ∈ [x] \ [x̃] | x̃ = f−1 (f (x))

}
= ∅. (28)

Hence, µ[x]\[x̃] ([x1]) = 0.

Fig. 6. Representation of the box [x̃] ⊃ f−1 (f ([x1])).

3.2 Condition to enclose the injectivity function

In this paragraph, we introduce a partial result which gives,
respectively, a sufficient condition to compute and to bound
the injectivity function µ of a differentiable function f re-
stricted to a box [x̃1] ⊂ [x] denoted µ[x̃1]. Then, these results
are exploited to enclose the injectivity function µ ≡ µ[x].

Lemma 1 Consider a function h defined by

h :

{
[x] ⊂ Rn × Rn → Rn

(x,y) → f (x)− y.
(29)

where f : [x] ⊂ Rn → Rn is differentiable and suppose that
Ng is generalized unicity operator of h. Let [x1] and [x̃1]
be two boxes included in [x]. One has,

i) Ng (h, [x̃1], f([x1])) is true ⇒ µ[x̃1] ([x1]) = 1,

ii) [Dfx([x̃1])] is full rank ⇒ µ[x̃1] ([x1]) ≤ 1.

(30)

Proof. i) Supposed that Ng (h, [x̃1], f([x1])) is true. Since
Ng is a generalized unicity operator of h (see Definition 2),

then we get

∀y ∈ f([x1]), ∃!x̃1 ∈ [x̃1],h (x̃1,y) = 0, (31)

or equivalently,

∀y ∈ f([x1]), ∃!x̃1 ∈ [x̃1], f (x̃1) = y. (32)

Thus,

∀x1 ∈ [x1], ∃!x̃1 ∈ [x̃1], f (x̃1) = f (x1) . (33)

Hence,

∀x1 ∈ [x1],
∣∣{x̃1 ∈ [x̃1] | x̃1 = f−1 (f (x1))

}∣∣ = 1, (34)

i.e. µ[x̃1]([x1]) = 1.

ii) The proof is by contradiction. Supposed that

µ[x̃1] ([x1]) ≥ 2,

then

∃x̃1, x̃2 ∈ [x̃1], such that x̃1 6= x̃2 and f(x̃1) = f(x̃2).
(35)

According to the Generalized Mean value theorem 2 ,
∃x̃1, x̃2 ∈ [x̃1], ∃Jx̃1,x̃2 ∈ [Df([x̃1])], such that

x̃1 6= x̃2 and 0 = f(x̃2)−f(x̃1) = Jx̃1,x̃2 ·(x̃2−x̃1). (36)

i.e. ∃Jx̃1,x̃2 ∈ [Df([x̃1])] such that Jx̃1,x̃2 is not full rank
and thus, the (interval) matrix [Df([x̃1])] is not full rank.

Now, the following theorem uses the previous lemma to en-
close the injectivity function µ. This theorem will motivate
the implementation of the algorithm presented in next para-
graph.

Theorem 1 Consider a function h defined by

h :

{
[x] ⊂ Rn × Rn → Rn

(x,y) → f (x)− y.
(37)

where f : [x] ⊂ Rn → Rn is differentiable and suppose
that Ng is a generalized unicity operator of h. Let [x1] be

2 Let f : A ⊂ Rn → Rm be a differentiable function. If x̃1

and x̃2 belong to a convex set X ⊂ A. Then, ∀x̃1, x̃2 ∈ X ,
∃Jx̃1,x̃2 ∈ [Df(X )] such that

f(x̃2)− f(x̃1) = Jx̃1,x̃2 · (x̃2 − x̃1),

where [Dfx(X )] denotes the hull box of the Jacobian matrix
Dfx(X ). This result can be proved by applying the Mean-Value
Theorem [7] on each components fi : Rn → R of f .
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a set included in [x] and {[x̃i]}i∈{1,...,q} be a partition that
contains f−1 (f ([x1])) which satisfies the two conditions

i) ∀i ∈ {1, . . . , q′},Ng (h, [x̃i], f([x1])) is true,

ii) ∀i ∈ {q′ + 1, . . . , q}, [Dfx([x̃i])] is full rank
(38)

where q′ ∈ N, 1 ≤ q′ ≤ q. Then, it holds

q′ ≤ µ[x] ([x1]) ≤ q. (39)

Proof. First of all, according to Proposition 1, one has

µ[x] ([x1]) = µ⋃
i
[x̃i]

([x1]) + µ[x]\
⋃

i
[x̃i]

([x1]) . (40)

Since
⋃

i[x̃i] ⊃ f−1 (f ([x1])) and according to Remark 1,
we get

µ[x] ([x1]) = µ⋃
i
[x̃i]

([x1]) . (41)

Since {[x̃i]}i∈{1,...,q} is a partition (i.e. [x̃i] ∩ [x̃j ] = ∅
(∀i 6= j)) and according to Proposition 1, one has

µ[x] ([x1]) =
q∑

i=1

µ[x̃i] ([x1]) . (42)

Now, considering the condition i) and according to Lemma
1 (i), one has, ∀i ∈ {1, . . . , q′} ,

Ng (h, [x̃i], f([x1])) is true ⇒ µ[x̃i]([x1]) = 1. (43)

Therefore,

µ[x] ([x1]) =
q′∑

i=1

µ[x̃i] ([x1]) +
q∑

i=q′+1

µ[x̃i] ([x1]) (44)

=
q′∑

i=1

1 +
q∑

i=q′+1

µ[x̃i] ([x1]) (45)

= q′ +
q∑

i=q′+1

µ[x̃i] ([x1]) . (46)

As a consequence, q′ is a lower bound of µ[x] ([x1]), i.e.

µ[x] ([x1]) ≥ q′. (47)

Now, according to Lemma 1 (ii), one has, ∀i ∈ {q′ + 1, . . . , q} ,

[Dfx([x̃i])] is full rank ⇒ µ[x̃i] ([x1]) ≤ 1. (48)
Thus,

q∑

i=q′+1

µ[x̃i] ([x1]) ≤ q − q′ (49)

and according to (46), one has

µ[x] ([x1]) ≤ q′ + q − q′ = q. (50)

As a conclusion, according to Equations (47) and (50), the
Theorem 1 is proved.

Remark 2 Note that, if all the boxes {[x̃i]}i∈{1,...,q} of the
partition verify the condition i) of Theorem 1 (i.e. q′ = q),
then the injectivity function µ satisfies

q ≤ µ[x]([x1]) ≤ q ⇔ µ[x]([x1]) = q.

4 Algorithm IAVIA

This section presents the algorithm called Injectivity Anal-
ysis Via Interval Analysis (IAVIA).
Consider a differentiable function f : [x] ⊂ Rn → Rn, the
algorithm to be presented decomposes the initial box [x] in
a paving 3 {[xi]}i where injectivity function µ[x]([xi]) is
enclosed.
The principle of IAVIA can be decomposed in two distinct
sub-algorithms :

• Algorithm 1 exploits the Theorem 1 in order to enclose
the injectivity function over a box [x1] ⊂ [x]. It re-
turns either two positive integers (µ−, µ+), which cor-
respond to the bounds of µ[x][x1] or (−1,−1) when
no conclusion can be reached.

• Algorithm 2 divides the initial box [x] into a paving
{[xi]}i such that, for all i, Algorithm 1 succeeds in
obtaining an enclosure of injectivity function over the
[xi]’boxes.

In Algorithm 1, from Step 2 to Step 12, the set inversion
technique [4,6] is exploited to characterize a list Lx̃ of boxes
([xi])i such that

f−1 (f ([x1])) ⊂
⋃

i

[xi]. (51)

The purpose of the condition in Step 5 is to avoid useless
splitting of [x] ad infinitum.
In Step 13, all the boxes [xi] of Lx̃ are reorganized to
form a partition that still contains f−1 (f ([x1])) (the boxes
[xi] which intersect each other are collected in new boxes
([x̃i])j , j ≤ i such as depicted in Figure 7).

Finally, from Step 14 to Step 24, two tests are performed
according to Theorem 1 :
First, if all the boxes [x̃i] of the partition verify [Df([x̃i])] is
full rank 4 , then the number of [x̃i]’boxes is a upper bound
of the injectivity function µ[x]([x1]).

3 A paving of [x] is a finite set of non-overlapping boxes {[xi]}i

such that [x] =
S

i[xi]
4 Several techniques could be used to test an interval matrix for
full ranking. In the square case (i.e. f : R2 → R2), the simplest
way consists in verifying that the determinant (which is an interval)
not contains zero. Otherwise (i.e. f : Rn → Rp), the Interval
Gauss Algorithm could be used [11].
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Algorithm 1 Injectivity_Enclosure
Input: f a C1 function, [x] the initial box and [x1] a box

included in [x].
Output: Two integers µ− and µ+ :

µ− ≥ 1 and µ+ ≥ 1 : µ− ≤ µ[x]([x1]) ≤ µ+,

µ− = −1 and µ+ = −1 : The enclosure of the

injectivity function failed.

1: Initialization : Lstack := {[x]}, Lx̃ := ∅, µ− = 0,
µ+ = 0.

2: while Lstack 6= ∅ do
3: Pop Lstack into [w].
4: if [f ] ([w]) ∩ [f ] ([x1]) 6= ∅ then
5: if width([w]) > width([x1]) then
6: Bisect [w] into [w1] and [w2].
7: Stack [w1] and [w2] in Lstack

8: else
9: Push [w] in Lx̃.

10: end if
11: end if
12: end while
13: Match Lx̃ to build a partition
14: for i = 1 to size of(Lx̃) do
15: if [Df ]([x̃i]) is full rank then
16: if Ng(h, [x̃i], [f ]([x1])) is true then
17: µ− = µ− + 1
18: end if
19: else
20: Return (−1,−1) \\ "Failure"
21: end if
22: end for
23: µ+ := size of (Lx̃)
24: Return (µ−, µ+)

Fig. 7. Illustration of the decomposition performed in Step 13
with Lx̃ = {[x1], . . . , [x6]}. The [xi]’boxes of Lx̃ are matched in
order to obtain the two disjoint (and larger) boxes [x̃1] and [x̃2].

Secondly, the number of boxes [x̃i] of the partition such
that Ng(h, [x̃i], f([x1]) is true (where h is defined by (37)),
gives a lower bound of the injectivity function µ[x]([x1]).
Otherwise, if any boxes verify one of these two conditions,
then the injectivity function enclosure failed (Theorem 1
could not be used).

Remark 3 The generalized unicity operator Ng of h used
in the solver IAVIA is the generalized unicity operator of
Newton defined in Equation (22). However, different gener-
alized unicity operators could be build as Krawczyk opera-
tor or Hansen-Sengupta operator [11].

Algorithm 2 creates a paving ([xi])i of the initial box [x]
such that, for all i, Algorithm 1 encloses the injectivity func-
tion µ[x]([xi]). Algorithm 2 is stopped with a ε condition on
the width of boxes [xi] which remain to test (see Step 4).
Therefore, different domains are obtained :
An indeterminate domain composed of the boxes of lower
width than ε (archived in U) for which the enclosure pro-
cess failed (i.e. (µ−, µ+) = (−1,−1)).
And, domains where the injectivity function is enclosed
(archived in the list S).

Algorithm 2 IAVIA
Input: f a C1 function and [x] the initial box.
Output: A list S that contains boxes in [x] and their corre-

sponding enclosure of the injectivity function.
1: Initialization : L := {[x]}, S = ∅, U = ∅.
2: while L 6= ∅ do
3: Pull [w] in L.
4: if ω ([w]) > ε then
5: (µ−, µ+) =Injectivity_Enclosure(f , [x] , [w])
6: if (µ−, µ+) = (−1,−1) then
7: Bisect [w] into [w1] and [w2]
8: Push [w1] and [w2] in L
9: else

10: Push ([w] , (µ−, µ+)) in S
11: end if
12: else
13: Push [w] in U
14: end if
15: end while

By combination of Algorithm 1 and Algorithm 2, a
C++ solver, called IAVIA, is able to enclose the in-
jectivity function of any function f : [x] ⊂ R2 →
R2 or f : [x] ⊂ R → R. It is made available at
http://www.istia.univ-angers.fr/~lagrange/.

Example 6 Consider the function

f :

{
[−3, 3] → R

x → x cosx
(52)

presented in Example 1 and defined in (4).
With a condition ε = 10−3 and after 10 seconds, the solver
IAVIA returns the boundaries presented in Figure 8, where
the graph of f has been superposed.
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Fig. 8. Injectivity Analysis of f . Intervals from dark grey to light
grey are respectively the domain where the injectivity function
µ[−3,3] is equal to 3 and 1 (in this example the lower bound
equal the upper bound). The black intervals correspond to the
undeterminate domains (where the enclosure of µ[−3,3] failed).
The white interval correspond to the domains where the function
µ[−3,3] is enclosed between 1 and 3.

5 Numerical test for structural identifiability

This section gives an illustrative example which shows the
efficient of the (numerical) algorithm IAVIA to test models
for structural identifiability.

5.1 Test case

Consider the parametric model M (p) defined by the fol-
lowing state equations :

{
d
dtx(t) = [(1− p2) p1 cos p1 + sin p1 + 1] x(t) + u(t)

y(t) = [p1 (1 + sin p1 − p2 sin x1) + p2 cos p1] x(t)
(53)

where the vector of parameters p = (p1, p2)
T belongs to

[p] = [5, 13]× [
0, 1

10

]
. Study the structural identifiability of

parameter of (53) amounts to characterize, for all p ∈ [p],
the cardinal of

Sp = {p̃ ∈ [p] | M(p) = M(p̃)} (54)

If |Sp| = 1, the vector of parameters p is structurally glob-
ally identifiable (s.g.i); if |Sp| is finite, p is structurally lo-
cally identifiable (s.l.i). Otherwise, p is unidentifiable.

After the Laplace transformation of (53) and elimination of
the state x, one gets the transfer function in canonical form:

H (s,p) =
y (s)
u (s)

(55)

=
(1− p2) p1 cos p1 + sin p1 + 1

s− p1 (1 + sin p1 − p2 sin x1) + p2 cos p1
.(56)

Thus, M (p) = M (p̃) translates into

f (p) = f (p̃) (57)

where f : R2 → R2 is defined by

f (p) =

(
(1− p2) p1 cos p1 + sin p1 + 1

p1 (1 + sin p1 − p2 sin x1) + p2 cos p1

)
. (58)

Therefore the analysis of structural identifiability of (53)
amounts to count the number of solutions of Equation (57),
for all p ∈ [p]. In other words, it consists in studying the
injectivity function µ[p](·) of the function f (defined in (58)).
If µ[p](p) = 1, p is s.g.i; if µ[p](p) is bounded, p is s.l.i.
Otherwise, p is unidentifiable. Thus, the solver IAVIA could
be used to perform the structural identifiability analysis.

5.2 Solution obtained by IAVIA

Let us enclose the injectivity function µ[p] of the function
f (defined in (58) and depicted in Figure 9) with the solver
IAVIA.

Fig. 9. The function f transforms the box [5, 13]× ˆ0, 1
10

˜
into a

ribbon which overlaps three times.

One can see that, since the graph of f overlaps two and three
times in the dark gray domains, several vectors of parameters
(respectively two and three) lead to the same input-output
behaviors of the model (53).

Now, after 60 minutes, the results of the enclosure of the
injectivity function obtained by IAVIA are depicted in Fig-
ure 10. As predicted, IAVIA finds out domains where the
injectivity function is equal to one, two and three which cor-
respond to the domains where one, two and three vectors
of parameters are possible. As a conclusion, the structural
identifiability of the model (53) is test and zones of the para-
metric space where several vectors of parameters are possi-
ble have been characterized.
Remark that the color of the gray domains on Figure 10 has
been chosen so that they are mapped (by f ) in domains of
same color on Figure 9.

6 Conclusion

Consider any differentiable function f defined from a box
[x] ⊂ Rn to Rn. In this paper, we have proposed a new
numerical and guaranteed method to enclose the injectivity
function of f defined by

µ(x) = |{x̃ ∈ [x] | f (x̃) = f (x)}| .
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Fig. 10. Solution of the process of enclosure of µ[p] obtained by
IAVIA. In light gray, the value of the parameters for which the
system (53) is structurally identifiable (µ+ = µ− = 1). The two
dark gray zones correspond to the value of the parameters for
which the system (53) is locally identifiable. 2 or 3 parameter
vectors are possible (µ+ = µ− = 2 or µ+ = µ− = 3). In the
white domains, the injectivity function is enclosed.

To our knowledge it did not exist any numerical method able
to perform this enclosure. Note that, in case of functions
f : R → R and f : R2 → R2, the solver IAVIA developed
in C++ is made available.

In the context of parameter estimation, we have shown that
the proposed algorithm returns domains for which a known
and fixed number of parameters is possible. Therefore, a
numerical test for structural identifiability is obtained.

In order to fill out this work, note that the efficiency of the
algorithm can be improved by the additional uses of con-
straint propagation [6]. Secondly, it will be possible to build
a graph which links the domains of same image by function
f . For instance, in the context of parameter estimation, it will
be interesting to take to into account this additional infor-
mation. Indeed, suppose that a estimation of the parameter
vector have been obtained via any numerical method (e.g.
mean square error). Therefore, it will be possible to deduce,
on the basis of their numerical values, all the equivalent vec-
tors of parameters (linked in the graph) for which the model
holds the same behavior.

References

[1] G. Alefeld. Inclusion methods for systems of nonlinear equations -
the interval newton method and modifications. In Proceedings of the
IMACS-GAMM International Workshop on Validated Computation,
pages 7–26, Oldenburg, Germany, August 1993.

[2] F. Berthier, J. P. Diard, L. Pronzato, and E. Walter. Identifiability
and distinguishability concepts in electrochemistry. Automatica,
32(7):973–984, July 1996.

[3] I. Braems, L. Jaulin, M. Kieffer, and E. Walter. Guaranteed numerical
alternatives to structural identifiability testing. In Proceedings of the
40th IEEE Conference on Decision and Control., volume 4, pages
3122–3127, Orlando, December 2001.

[4] A. Goldsztejn. A right-preconditioning process for the formal-
algebraic approach to inner and outer estimation of ae-solution set.
Reliable Computing, 11(6):443–478, 2005.

[5] E. Hansen and R.I. Greenberg. An interval newton method. APPL.
MATH. COMPUT., 12(2-3):89–98, 1983.

[6] J. Jaulin, M. Kieffer, D. Didrit, and E. Walter. Applied Interval
Analysis. Springer, 2001.

[7] W. Kaplan. Advanced Calculus. Addison Wesley Publishing
Company, September 1991.

[8] T.C. Koopmans and O. Reiersol. The identification of structural
characteristics. Ann. Math. Stat., 21(2):165–181, 1950.

[9] J.-P. Merlet. Solving the foward kinematics of a gough-type parallel
manipulatorwith interval analysis. The International Journal of
robotics research, March 2004.

[10] R. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

[11] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
Univ. Press, 1990.

[12] E. Walter and L. Pronzato. Identification of parametric models from
experimental data. Springer, 1997.

9


