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Abstract. This paper proposes a new approach to solve the problem of
computing the capture basin C of a target T. The capture basin corre-
sponds to the set of initial states such that the target is reached in finite
time before possibly leaving of constrained set. We present an algorithm,
based on interval analysis, able to characterize an inner and an outer ap-
proximation C− ⊂ C ⊂ C+ of the capture basin. The resulting algorithm
is illustrated on the Zermelo problem.

1 Introduction

The purpose of this paper is to present an algorithm based on guaranteed nu-
merical computation which, given the dynamics of the system, provides an in-
ner and outer approximation of the capture basin. We recall some definitions
and notations related to capture basin. In the sequel, we consider nonlinear
continuous-time dynamical systems of the form

{
ẋ(t) = f(x(t),u(t)),
x(0) = x0,

(1)

were x ∈ Rn is the state of the system with initial condition x0 at t = 0 and
u ∈ Rm is the control vector. We shall assume that the function f is sufficiently
regular to guarantee that for all piecewise continuous function u(.) the solution
of (1) is unique. The state vector x(t) is not allowed to exit a given compact set
K ⊂ Rn and the input u(t) should belong to a given compact set U ⊂ Rm.
We define the flow (see [1]) φt(x0,u) as the solution of (1) for the initial vector
x0 and for the input function u(.). The path from t1 to t2 is defined by

φ[t1,t2](x0,u) def=
{
x ∈ Rn | ∃t ∈ [t1, t2],x(t) = φt(x0,u)

}
. (2)



2

Define a target set T ⊂ K ⊂ Rn as a closed set we would like to reach for one
t ≥ 0. The capture basin C of T is the set

C ,
{
x0 ∈ K | ∃t ≥ 0, ∃u(.) ∈ F( [0, t] → U),φt(x0,u) ∈ T

and φ[0,t](x0,u) ⊂ K}
, (3)

where F ([0, t] → U) represents the set of piecewise continuous functions from
[0, t] → U. Then, C is the set of initial states x ∈ K for which there exists an
admissible control u, and a finite time t ≥ 0 such that the trajectory φ[0,t](x0,u)
with the dynamic f under the control u lives in K and reaches T at time t.
The aim of the paper is to provide an algorithm able to compute an inner and
an outer approximation of C, i.e., to find two subsets C− and C+ such that

C− ⊂ C ⊂ C+.

Our contribution is twofold. First, in Section 2, we shall introduce interval anal-
ysis in the context of capture basin problem [2–4]. Second, in Section 3, we shall
provide the first algorithm able to compute a garanteed inner and an outer ap-
proximation for capture basins. The efficiency of our approach will be illustrated
on the Zermelo problem in Section 4. Section 5 will then conclude the paper.

2 Interval analysis

The interval theory was born in the 60’s aiming rigorous computations using
finite precision computers (see [5]). Since its birth, it has been developed and
it proposed today orignal algorithms for solving problems independently to the
finite precision of computers computations, although reliable computations using
finite precision remains one important advantage of the interval based algorithms
[6].
An interval [x] is a closed and connected subset of R. A box [x] of Rn is a
Cartesian product of n intervals. The set of all boxes of Rn is denoted by IRn.
Note that Rn =]−∞,∞[× · · ·×]−∞,∞[ is an element of IRn. Basic operations
on real numbers or vectors can be extended to intervals in a natural way.

Example 1. If [t] = [t1, t2] is an interval and [x] =
[
x−1 , x+

1

]× [
x−2 , x+

2

]
is a box,

then the product [t] ∗ [x] is defined as follows

[t1, t2] ∗
([

x−1 , x+
1

]
[
x−2 , x+

2

]
)

=
(

[t1, t2] ∗
[
x−1 , x+

1

]
[t1, t2] ∗

[
x−2 , x+

2

]
)

=
(

[min(t1x−1 , t1x
+
1 , t2x

−
1 , t2 x+

1 ),
[min(t1x−2 , t1x

+
2 , t2x

−
2 , t2x

+
2 ),

max(t1x−1 , t1x
+
1 , t2x

−
1 , t2x

+
1 )]

max(t1x−2 , t1x
+
2 , t2x

−
2 , t2x

+
2 )]

)
.
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2.1 Inclusion function

The function [f ](.) : IRn → IRp is an inclusion function of a function f :Rn → Rp

if
∀[x] ∈IRn, f([x]) , {f(x) | x ∈ [x]} ⊂ [f ]([x]).

Fig. 1. Illustration of inclusion function

Interval computation makes it possible to obtain inclusion functions of a large
class of nonlinear functions, as illustrated by the following example.

Example 2. If f(x1, x2) , ((1− 0.01x2) x1; (−1 + 0.02x1) x2), a methodology to ob-
tain an enclosure of the image set f([10, 20], [40, 50]) is as follows:

f

(
[40, 50]
[10, 20]

)
⊂

(
(1− 0.01 ∗ [40, 50]) ∗ [10, 20]

(−1 + 0.02 ∗ [10, 20]) ∗ [40, 50]

)
=

(
(1− [0.4, 0.5]) ∗ [10, 20]

(−1 + [0.2, 0.4]) ∗ [40, 50]

)
=

(
[0.5, 0.6] ∗ [10, 20]

[−0.8,−0.6] ∗ [40, 50]

)
=

(
([5, 12])

([−40,−24])

)
.

This methodology can easily be applied for any box [x1]× [x2] and the resulting
algorithm corresponds to an inclusion function for f .
The interval union [x] t [y] of two boxes [x] and [y] is the smallest box which
contains the union [x] ∪ [y]. The width w([x]) of a box [x] is the length of its
largest side.
The ε-inflation of a box [x] = [x−1 , x+

1 ]× · · · × [x−n , x+
n ] is defined by

inflate ([x], ε) , [x−1 − ε, x+
1 + ε] × · · · × [x−n − ε, x+

n + ε]. (4)

2.2 Picard theorem

Interval analysis for ordinary differential equations were introduced by Moore [5]
(See [7] for a description and a bibliography on this topic). These methods pro-
vide numerically reliable enclosures of the exact solution of diffential equations.
These techniques are based on Picard Theorem.
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Theorem 1. Let t1 be a positive real number. Assume that x(0) is known to
belong to the box [x](0). Assume that u(t) ∈ [u] for all t ∈ [0, t1]. Let [w] be a
box (that is expected to enclose the path x(τ), τ ∈ [0, t1]). If

[x](0) + [0, t1] ∗ [f ]([w], [u]) ⊂ [w], (5)

where [f ]([x].[u]) is an inclusion function of f(x,u), then, for all t ∈ [0, t1]

x([0, t1]) ⊂ [x](0) + [0, t1] ∗ [f ]([w], [u]). (6)

2.3 Interval flow

Definition: The inclusion function of the flow is a function

[φ] :
{
IR× IRn × IRm → IRn

([t], [x], [u]) → [φ] ([t], [x], [u])

such that

∀t ∈ [t], ∀x ∈ [x],∀u ∈F([0, t] → [u]),φ(t,x,u) ∈ [φ] ([t], [x], [u])

Using Theorem 1, one can build an algorithm computing an enclosure [x]([t])
for the path x([t]) = {x(t), t ∈ [t]} from an enclosure [x] for x(0). The principle
of this algorithm is illustrated by Figure 2.

Algorithm 1: Inclusion function [φ]
Data: [t] = [t1, t2], [x](t1), [u]
Result: [x](t2), [w]
begin1

[x̂](t2) := [x](t1) + (t2 − t1) ∗ [f ]([x](t1), [u]);2

[v] := [x](t1) t [x̂](t2);3

[w] := inflate([v],α.w([v]) + β);4

if [x](t1) + [0, t2 − t1] ∗ [f ]([w], [u]) * [w] then5

[x](t2) := Rn
6

return7

[x](t2) := [x](t1) + (t2 − t1) ∗ [f ]([w], [u]);8

end9

Comments : The interval [t] = [t1, t2] is such that t1 ≥ 0. Step 2 computes
an estimation [x̂](t2) for the domain of all x(t1) consistent with the fact that
x(0) ∈ [x]. Note that, at this level, it is not certain that [x̂](t2) contains x(t2).
Step 3 computes the smallest box [v] containing [x](t1) and [x̂](t2). At Step 4, [v]
is inflated (see (4)) to provide a good candidate for [w]. α and β are small positive
numbers. Step 5 checks the condition of Theorem 1. If the condition is not
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satisfied, no bounds can be computed for x(t2) and Rn is returned. Otherwise,
Step 8 computes a box containing x(t2) using theorem 1. ¥
The algorithm to we gave to compute the interval flow is very conservative. The
pessimism can drastically be reduced by using the Lohner method [8].

Fig. 2. Principle of algorithm [φ]

3 Algorithm

This section presents an algorithm to compute an inner and an outer approxi-
mation of the capture basin. It is based on Theorem 2.

Theorem 2. If C− and C+ are such that C− ⊂ C ⊂ C+ ⊂ K, if [x] is a box
and if u ∈ F( [0, t] → U), then

(i) [x] ⊂ T⇒ [x] ⊂ C
(ii) [x] ∩K = ∅ ⇒ [x] ∩ C = ∅
(iii) φ (t, [x],u) ⊂ C− ∧ φ ([0, t] , [x],u) ⊂ K⇒ [x] ⊂ C
(iv) φ (t, [x] ,U) ∩ C+ = ∅ ∧ φ (t, [x] ,U) ∩ T = ∅ ⇒ [x] ∩ C = ∅

Proof. (i) and (ii) are due to the inclusion T ⊂ C ⊂ K. Since T ⊂ C− ⊂ C,
(iii) is a consequence of the definition of the capture basin (see (3)). The proof
of (iv) is easily obtained by considering (3) and in view of fact that C ⊂ C+ ⊂ K.

Finally, a simple but efficient bisection algorithm is then easily constructed. It
is summarized in Algorithm 2. The algorithm computes both an inner and outer
approximation of the capture basin C. In what follows, we shall assume that the
set U of feasible input vectors is a box [u]. The box [x] to be given as an input
argument for Enclose should contain set K.
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Algorithm 2: ENCLOSE
Data: K,T, [x],[u]
Result: C−,C+

begin
C− ← ∅;C+ ← [x];L ← {[x]} ;1

while L 6= ∅ do2

pop the largest box [x] from L;3

if [x] ⊂ T then4

C− ← C− ∪ [x];

else if [x] ∩K = ∅ then5

C+ ← C+\[x];

take t ≥ 0 and u ∈ [u]6

if [φ] (t, [x],u) ⊂ C− and [φ] ([0, t], [x],u) ⊂ K then7

C− ← C− ∪ [x];

else if [φ] (t, [x], [u]) ∩ C+ = ∅ and [φ] (t, [x], [u]) ∩ T = ∅ then8

C+ ← C+\[x];

else if w([x]) ≥ ε then9

bisect [x] and store the two resulting boxes into L;

end

Comments. Steps 4 and 7 uses Theorem 2, (i)-(iii) to inflate C−. Steps 5 and 8
uses Theorem 2, (ii)-(iv) to deflate C+.
where

ε : ENCLOSE stops the bisecting procedure when the precision is reached ;
C− : Subpaving (list of nonoverlapping boxes) representing an inner approxima-

tion of the capture basin, that is the boxes inside the capture basin C ;
C+ : Subpaving representing the outer approximation of the capture basin, that is

the boxes outside C and the boxes for which no conclusion could be reached ;

These subpavings provide the following bracketing of the solution set :

C− ⊂ C ⊂ C+.

4 Experimentations

This section presents an application of Algorithm 2. The algorithm has been
implemented in C + + using Profil/BIAS interval library and executed on a
PentiumM 1.4Ghz processor. As an illustration of the algorithm we consider the
Zermelo problem [9, 10]. In control theory, Zermelo has described the problem
of a boat which wants to reach an island from the bank of a river with strong
currents. The magnitude and direction of the currents are known as a function of
position. Let f(x1, x2) be the water current of the river at position (x1, x2). The
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method for computing the expression of the speed vector field of two dimensional
flows can be found in [11]. In our example the dynamic is nonlinear,

f(x1, x2) ,
(

1 +
x2

2 − x2
1

(x2
1 + x2

2)2
,

−2x1x2

(x2
1 + x2

2)2

)
.

The speed vector field associated to the dynamic of the currents is represented
on Figure 3.

Fig. 3. vector field of the currents

Let T , B (0, r) with r = 1 be the island and we set K = [−8, 8] × [−4, 4],
where K represents the river. The boat has his own dynamic. He can sail in any
direction at a speed v. Figure 4 presents the two-dimensional boat. Then, the
global dynamic is given by





x′1(t) = 1 +
x2

2 − x2
1

(x2
1 + x2

2)2
+ v cos(θ)

x′2(t) =
−2x1x2

(x2
1 + x2

2)2
+ v sin(θ)

,

where the controls 0 ≤ v ≤ 0.8 and θ ∈ [−π, π].
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Fig. 4. Zermelo’s problem

Figure 5 shows the result of the ENCLOSE algorithm, where the circle delimits
the border of the target T. Then, C− corresponds to the union of all dark grey
boxes and C+ corresponds to the union of both grey and light grey boxes. Thus,
we have the following inclusion relation :

C− ⊂ C ⊂ C+.

Fig. 5. Two dimensional example of ENCLOSE algorithm

5 Conclusion

In this paper, a new approach to deal with capture basin problems is presented.
This approach uses interval analysis to compute an inner an outer approximation
of the capture basin for a given target. To fill out this work, different perspectives
appear. It could be interesting to tackle problems in significantly larger dimen-
sions. The limitation is mainly due to the bisections involved in the interval
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algorithms that makes the complexity exponential with respect to the number
of variables. Constraint propagation techniques [12] make it possible to push
back this frontier and to deal with high dimensional problems (with more than
1000 variables for instance). In the future, we plan to combine our algorithm
with graph theory and guaranteed numerical integration [7, 13] to compute a
guaranteed control u.
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