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Abstract

Many methods exist to detect stable equilibrium points 2* of nonlinear dynam-
ical systems & = f(x). Most of them also prove the existence of a neighborhood
N of z* such that all trajectories initialized in N converge to z*. This paper
provides a numerical method combining Lyapunov theory with interval analysis
which makes to find a set A/ which is included in the attraction domain of z*.

Keywords: interval computations, reliable algorithm, nonlinear stability
theory.

1. Introduction

Consider a nonlinear dynamical system described by a differential equation
& = f(x), where f : R® — R" is a smooth vector field. The point x* is
an equilibrium point if f(z*) = 0. To find the equilibrium points it suffices
to solve n nonlinear equations with n unknowns. This can be solved using
elimination theory-based methods [18], or any local numerical algorithm [20]. A
point z* is asymptotically stable if for all neighborhood M of x*, there exists a
neighborhood A of z* such that all trajectories initialized in N converge to z*
and remain inside M.

From the theoretical point of view, the Hartman-Grobman theorem states
that if f is sufficiently regular around a hyperbolic equilibrium state z* then
there exists a local homeomorphism between the solutions of the & = f(x) and
its linearization £ = D f(z*)(z —2*). In other words, the qualitative behavior of
the dynamical system f around a* is the same that of Df(a*). Therefore, the
existence of A is usually provided by studying the eigenvalues of the Jacobian
matrix of f at z*. Interval based methods have already been used to study
the stability of dynamical systems. In the case of linear system, a classical
result from control theory states that the origin (which is always an equilibrium
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state) is stable if and only if all roots of the characteristic polynomial of f
have a negative real part. Such a polynomial is said to be Hurwitz stable.
In [16], Khraritonov gives a necessary and sufficient effective condition to the
Hurwitz stability of a polynomial with interval coefficients. When f is linear
with unknown bounded coefficients (i.e. f can be represented by a matrix
whose entries are intervals), the Khraritonov’s condition only offers a sufficient
condition to check that the origin is stable. More recently, Wang and al [17]
determine a necessary and sufficient effective condition to the Hurwitz stability
of an interval matrix.

The present paper deals with nonlinear dynamical system. Contrary to the
linear case, the stability of an equilibrium state is, most of the time, only local :
the trajectories must be initialized sufficiently close to the equilibrium state x*
to converge to x*. The set of initial states for which the trajectory converges
to x* is the attraction domain of x*. The main contribution of this paper is
an algorithm which provides a neighborhood N of z* included in the attraction
domain of z*.

Given an equilibrium for a dynamical system, we have the well-known con-
nection with the linearization near the stationary point. By studying this lin-
earization it is more or less straightforward to construct such neighborhoods N,
see for example [3], [4]. The approach to be considered, based on Lyapunov
theory and interval analysis, also proves existence and uniqueness of an asymp-
totically stable equilibrium state x* even if we only have a rigorous enclosure of
x*.

The paper is organized as follows. Interval analysis is briefly presented in
Section 2. Section 3 provides a method and a sufficient condition to check that
a real valued function is positive. In Section 4, we combine interval analysis and
Lyapunov analysis in an algorithm that is able to solve our stability problem.
Finally, an example illustrates our approach in Section 5.

2. Interval arithmetic

This section introduces notations and definitions related to interval analysis.
An interval [z, 7] of R™ is a set which can be written as {z € R",z < z < T}
with z and Z in R™. Here the relation < has to be understood component-wise.
Note that this definition implies that intervals are bounded. The set intervals
is usually denoted by IR".

Definition 1. A map [f] : IR" — IR™ is said to be an inclusion map of f :
R — R™ if V[z] € IR", f([z]) C [f]([z]) (where f([z]) = {f(z)|z € [2]}).

Interval arithmetic [1] provides an effective method to build inclusion maps.
In [5], Neumaier proves that it is always possible to find an inclusion map [f]
when f is defined by an arithmetical expression. This possibility to enclose
the image of an interval [z] under f is powerful. Indeed, let us suppose that
0 ¢ [f](Jz]), one can conclude that Vz € [z], f(x) # 0. On the other hand, if
0 € [f]([z]), this does not imply that 3z € [z] | f(z) = 0.
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Figure 1: Illustration of inclusion function.

Since Moores works [1] [2] that introduced interval arithmetic, many algorithms
have been developed in different areas, for example in global optimization [7],
non-linear dynamical systems, etc. As interval analysis provides rigorous meth-
ods, these algorithms can prove mathematical assertion. For instance, in 2003,
Hales launched the ”Flyspeck project” ("Formal Proof of Kepler”) in an at-
tempt to use computers to automatically verify every step of the proof (par-
tially based on interval analysis) of the Kepler’s conjecture. Another impor-
tant example is a generalization of the Newton method called Interval Newton
method. This method can be applied to find all zeros of a given differentiable
map f : R® — R”. The interval Newton method creates a sequence of inter-
vals containing zeros of f and has very interesting properties : combined with
Brouwer fixed point theorem, it can prove existence and uniqueness of a zero of
76, 14].

Note that the set of inclusion maps of a given f : R™ — R" can be partially
ordered by the relation : [f]; <’ [f]2 & V|z] € IR™,[f]1([z]) C [f]2([z]). Due
to the fact that the available inclusion map is rarely minimal (related to <’),
interval analysis cannot basically be used to prove the assertion Vx € [z], f(x) >
0 in the case of existence of zy € [z] such that f(z¢) = 0. The next section
shows how such a proof can be done by combining interval computation with
algebra calculus.

3. Sufficient condition to check f > 0.

This section proposes a theorem which provides a sufficient condition to
check the following assertion for a given differentiable real valued function f :
Vo € [z], f(x) > 0. The main idea is close to the second derivative criterion
classically used in optimization. Then, an algorithm based on the proposed
theorem and interval analysis is presented. Let us recall that a symmetric real
matrix A is positive definite if Vo € R® — {0}, 2T Az > 0. In this paper, the set
of positive definite symmetric n X n matrices is denoted by S™*.

Theorem 1. Let f € C™([z] C R™"R). If there exists z* € [x] such that
f(*)=0and Df(xz*) =0, andVz € [z], D*f(z) € S™*, thenVx € [z], f(x) >0
and f(z) =0=z =a*.



PROOF. The assertion Vz € [z], D% f(x) € S™F implies that f is a strictly convex

function defined on a convex set [z]. Since Df(x*) = 0, one can conclude

that in[f]f(x) > f(z*) = 0. The proof of uniqueness is by reduction to a
zElx

contradiction. Suppose that there exists ** € [z] such that f(z**) = 0 and
x** £ x*. As f is strictly convex, one has

F(55) < 3160 + 5@ =0

Therefore, since [z] is convex, we have m = ©£2= ¢ [z] such that f(m) < 0.
g

This theorem induces an effective method to prove that Vz € [z], f(x) > 0.
Indeed, if f(z*) = 0 and Df(2*) = 0 for some z* € [x] can be proved by
calculus algebras [8], one only has to check that D?f([x]) is included in S™* to
conclude.

In practice, this inclusion is performed using results based on interval sym-
metric matrices. With A and A two symmetric matrices such that A < A,
an interval symmetric matrix is a set [A] of symmetric matrices of the form :
[A] = {A e R™" A< A< A AT = A} [15]. Here the partial order relation <
between matrices is understood component-wise.
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Figure 2: With n = 2, an interval symmetric matrix [A, A ].
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Definition 2. A symmetric interval matrix [A] is positive definite if [A] C S™7.

Remark 1. Let V([A]) denote the finite set of corners of [A]. Since the cone
S™* and [A] are convex subsets of the set of symmetric matrices, one has the
following equivalence :

[A] € ™" & V(]A]) c S

. . . . . 1
The set of symmetric n x n-matrices is a vector space of dimension %

n(n+1)

Therefore V([A]) has a cardinality of 27 = . In [9], Rohn proposes a method
to check [A] C ST by testing positive definiteness of only 2"~ matrices. The
procedure is the following : with [A] a interval symmetric matrix, one can create




two symmetric matrices A, and A such that [A] = {4, 4, —A <A< A+ A}
where A. = 1(A+ A) and A = (A — A). Let us denote by C' the finite set

C = {z e R",

|z;| = 1,Vi € {1,...,n}}. One has #C = 2™. For each z in

C, let us denote by T, the diagonal matrix defined by z, i.e. T, = diag(z) and
by A, the matrix A. — T,AT,. Each A., with z € C, is obviously in [4], and
since A_, = A,, the set {A,,2 € C} is finite and of cardinal 2"~1. In [9], Rohn

proves that

[A] c 8" = {A,,z€C} Cc S".

Example 1. Let f : R? — R be the function defined by f(z,y) = — cos(z? +
V2sin?y) + 22 + 32 + 1. This function satisfies f(0,0) = 0 and Df(0,0) = 0

since

B 2z (sin(22 + v/2sin? y) + 1) g
Dren) - ( ey ) - O

21/2 cos y sin y sin (\/5 sin’ y + 2
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Figure 3: Graph of f.
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The Hessian matrix is given by D?f = < ’ ’ > where a; ; are given

by the following formulas :

ar = 2sin (\/ﬁsinzy—i—xg) + 422 cos (ﬂsin2y+x2) +2,
a2 = —2v/2sin? ysin(v/2sin’ y + 22) 4 2v/2 cos? ysin(v/2sin? y + 22)
+8cos? ysin?y cos(\/i sin? y + 2?) + 2,
aip=az1 = 4+v2z cosysiny cos(v2sin®y+2?).

Thanks to interval analysis, it is possible to guarantee that Va € [—0.5,0.5]2,
D2 f(x) C [A] where [A] is the following interval symmetric matrix :

[ 19,41 [-1.3,14]
4] = ( (~1.3,1.4]  [1.9,5.4] )
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Figure 4: The interval symmetric matrix [A] is represented in blue. The two matrices used
in the Rohn sufficient condition are red corners. This interval symmetric is positive definite
since it is included in the cone S™t.

According to Remark 1, to prove that f(z) > 0 for all z in [-3, 1], one

only has to check that the 2 matrices :
19 -13 1.9 14
A= ( ~13 1.9 ) and Az = < 14 1.9 >
are definite positive [6] (this can be shown using rigorous computations). Inter-

val symmetric matrix [A] is represented in Figure 4 with a blue box. The two
matrices Ay and A used in the Rohn [9] sufficient condition are red corners.

4. Algorithm for proving stability

In this section, an efficient method able to prove asymptotic stability is
given. The theorem presented in 4.1 combines results of the previous section
with Lyapunov theory and induces an algorithm given in 4.2. This algorithm
also generates a subset N of the attraction domain of the asymptotically stable
point.

4.1. Theorem

To prove stability, most of the methods are based on Lyapunov theory. It
consists in creating a real valued L function which is energy-like. Before intro-
ducing our algorithm, let us present some definitions and theorems related to
stability. Let {g' : R™ — R™},cr denotes the flow associated to the vector field
x — f(x), i.e. the 1-parameter family of functions {g* : R" — R"},cg satisfying



%gt(ﬂc) = f(g'(z)) forallt € R

@) = 2
Definition 3. A subset N of R™ is stable (according to f) if V¢ > 0, g*(N) C N,

Definition 4. Let M and N be two subsets of R” such that N' € M. An
equilibrium point z* is asymptotically (A, M)-stable (according to f) if

vt > 0,9"(N) Cc M
Vo e N, Jim gi(z) = z*
—00

This notion is illustrated by Figure 5.

Figure 5: The point z* is asymptotically (N, M)-stable.

Definition 5. Let M be a subset of R™ and x* be in the interior of M. A
differentiable real valued function L is a Lyapunov function for the dynamical
system & = f(z) if :

1. L(z) =0 & x =z,

2. Ve e M — {z*},L(z) > 0,

3. Vx e M — {z*},(DL(z), f(z)) <O.

This theory is motivated by the following theorem which gives a sufficient
condition to asymptotic stability.

Theorem 2. If L : M — R is a Lyapunov function related to the dynamical
system & = f(x) then there exists a subset N' of M such that the point z* € M
(the unique one satisfying L(z*) = 0) is asymptotically (N, M)-stable.



The proof can be found in [12]. To check stability, one merely has to :

1. find a candidate for the Lyapunov function,
2. check that this candidate is of Lyapunov.

For the first step, since the set of differentiable functions is infinite dimen-
sional, one prefers to limit the search for the candidate to a finite dimen-
sional subspace. For instance, we may suppose that L is a quadratic form
L(z) = xTWax where W is a symmetric square matrix. It is well known [12]
that, in the linear case (¢ = Ax where A is a square matrix), the origin is
asymptotically stable if and only if there exists a matrix W in S™* such that

ATW + WA =—1. (2)

Solving this equation whose unknown is W amounts to solving linear equations.
If W is positive definite, then all conditions of Theorem 2 are fulfilled, thus the
origin is asymptotically stable. In other words, in the linear case, an effective
method to prove stability exists. Our idea is partially based on this effective
method. The main idea is to construct a quadratic Lyapunov function on M for
a linear equation. Then we show that it is a Lyapunov function for the original
equation as well. We conclude the existence of the locally asymptotically stable
fixed point z* and construct the final neighborhood based on the eigenvalues of
W taking into account that we only have a rigorous enclosure of z*.

Definition 6. With [z] a box of R", we denote by B(r, [x]) the set
B(r,[x]) ={y € R", 3z € [z], |z —y| <r}.
Let us denote by [ the real valued function defined on IR" x IR™ by
L: (], [y]) = sup{r € R [ B(r, [z]) C [y]}.

Theorem 3. Consider the dynamical system & = f(x) and a matriz W € S*
whose maximum and minimum eigenvalues are Apmaz and Amin respectively. Let
L¢+ be a quadratic form defined by

Lg*: ./\/l — R 3
v oo (o — )W (w—€), (3)

with & € M. Let [x*] and N be bozes such that
o z]C N CM,

e the center of N is in [z*],

o the radius of N is smaller than \/n3=1([z*], M).

max

We have the following implication:
If there exists a single x* € M strictly inside [x*], such that f(z*) =0, and

Vo € M,VE* € [2*], D*(DL¢x (), — f(2)) € ST,
then x* is asymptotically (N, M)-stable.



PROOF. Since W € S™7, one has :

1. Ly«(z) =0z =2z*
2. Ve e M —{a*}, Ly«(z) >0

Let h be the real valued function defined by h(z) = (DL,«(x),—f(x)). By
construction, we have h(z*) = 0 and Dh(z*) = 0.

Moreover, since Yz € M,VE* € [z*], D?*(D L« (x), — f(z)) € S™T, supposing
&* = z*, one can conclude that Vo € M, D?h(z) € S™*.

Applying Theorem 1 to h, one has Vo € M, h(xz) > 0. Therefore, L.~ is a
Lyapunov function for the dynamical system @ = f(z). In other words, there
exists a subset N of M and z* € A/ such that :

vt e RY, g'(N) C M,
Ve e N, lim g'(x) =x*.
t——+oo

Let & be the ellipsoid oriented by W, with center z*, and long axe v/ Aminl([2*], M).
Obviously, the set £ is included in M and is stable. Thus, any boxes A" whose

center is in [2*] and whose radius is smaller than |/n3=={([z*], M) is, by con-

struction, included in the ellipsoid €. Therefore, z* is asymptotically (N, M)-
stable. 0

From a dynamical system & = f(z) and a set M, the following algorithm
computes a set N and proves that there exists an unique equilibrium point
x* which is asymptotically (N, M)-stable. The computed set A is therefore
included in the attraction domain of z*.

4.2. Algorithm

The main idea, of this algorithm, is first to linearize the given system us-
ing a point close to the equilibrium state. In a second step, one checks that a
Lyapunov function for the linearized one is also a Lyapunov function for the non-
linear one according to results obtained in Section 3. This can be summarized
in Algorithm 1.

Step 1 can be performed using the interval Newton method previously cited.
Note that at step 3 the matrix A chosen is not the exact linearization of f
with £* but is a linearization with an approximation of z* denoted Z*. This is
important because, in practice, it is often impossible to compute the exact zero
of a given function. The exact position of the equilibrium state is not needed
for the rest of the procedure. An step 4, linear algebra is used to solve linear
equations. This linear system does not need to be solved in a rigorous way to
ensure the correctness of the general method. At step 5, interval analysis is used
to prove that : D*(DL,- (M), —f(M)) C 5™,



Alg. 1 Algorithm
Require: a box M of R”,
Require: a dynamical system & = f(z) where f € C>°(M,R"),
Ensure: a box N, and a proof of existence and uniqueness of an equilibrium
state z* which is asymptotically (N, M) stable,
1: [2*] := Newton Interval Algorithm for f(x) =0, z € M.

*

2: &* := an element of [z*].
3: df
A=|— 4
4: Solve ATW + WA = 1.
5. if W e S" and D*(DL+)(M), —f(M)) C S, then
6: Return the box N whose center is Z* and radius is ni‘:;z 1([z*], M).
7: else
8:  Return “Failure”.
9: end if

5. Illustrative example

In this section, the proposed method is discussed via the example :

() (o) o

where M = [-0.6,0.6]2. The vector field associated to this dynamical system
is represented on Figure 6.

First, interval Newton method is used to prove that the box M contains a
unique z* equilibrium state. Moreover, this fixed point of the flow is proven
to lie in [z*] = [-0.02,0.02]2. Then, the dynamical system is linearized with
Z* = (0.01,0.01). Figure 6 also shows the linearized one with Z* in red dotted
lines. In this case, the Lyapunov function created is :

Lo = -7 ( Ghe Sy ) @€ ©

Some level curves of L¢- for some values £* € [2*] are represented on Figure

7. In a neighborhood of [z*], the function L¢- seems to be a Lyapunov function
since vectors f(x) cross the level curves form outside to inside. As Lg¢- is of
Lyapunov for the linearized system, the last geometrical interpretation is equiv-
alent to Vo € M — {z*}, (DL(x), f(x)) < 0. This last assertion is true since
h(z*) = 0, Dh(z*) = 0, and D?h,«j(M) C S™ as D?hj«j(M) C [A] with
[—1.78,5.78] [—4.14,4.15]

4] = ( [~4.14,4.15]  [0.56,3.45] > positive definite.
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Figure 6: Normalized vector field and its linearization around z*. The linearized one is
represented by red dotted lines.

6. Conclusion

This paper provides an effective rigorous method able, from a given dynam-
ical system described by # = f(z) and a given box M to compute a box N such
that N contains an unique asymptotically (N, M)-stable equilibrium state z*.
These ideas has already been employed by A. Rauh [22] to verify stability anal-
ysis of continuous-time control systems with bounded parameter uncertainties.

Our point of view is that the marriage of Lyapunov theory and interval
analysis works because of genericity. Indeed, interval based method succeeds in
generic cases and Lyapunov functions are stable in the sense that any positive
definite function in a sufficiently small neighborhood containing a Lyapunov
function for a dynamical system is also of Lyapunov.

To fill out this work, different perspectives appear. It could be interesting to
prove that the proposed algorithm terminates in the generic case. This method
could also be combined with graph theory and guaranteed numerical integration
of O.D.E. [10, 11, 21] to compute a rigorous approximation of the attraction
domain of z*. The computed box A/ (with non empty interior) could be a good
first approximation of the attraction domain for an iterative scheme.
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