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Abstract The problem of optimal transportation was formalized by the French
mathematician Gaspard Monge in 1781. Since Kantorovitch, this (generalized)
problem is formulated with measure theory. Based on Interval Arithmetic, we
propose a guaranteed discretization of the Kantorovitch’s mass transportation
problem. Our discretization is spatial: supports of the two mass densities are
partitioned into finite families. The problem is relaxed to a finite dimensional
linear programming problem whose optimum is a lower bound to the optimum
of the initial one. Based on Kantorovitch duality and Interval Arithmetic, a
method to obtain an upper bound to the optimum is also provided. Prelimi-
nary results show that good approximations are obtained.

Keywords Optimal Transportation · Interval Arithmetic · Continuous
programming · Optimization

1 Introduction

Optimal Transportation is a mathematical research topic which started with
Monge theory “des remblais et déblais” in 1781. In the 40’s, Kantorovitch [11]
gave the modern formulation of this problem. This problem is to minimize the
transport cost between two mass densities µ and ν. Without loss of generality,
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the total mass to be moved can be supposed to be equal to 1. Therefore, the
transportation problem is stated, in modern literature, as follow:

T (µ, ν) = min
π∈Γ (µ,ν)

∫
X×Y

c(x, y)dπ(x, y), (1)

where Γ (µ, ν) denotes the collection of all probability measures on X × Y
with marginals µ on X and ν on Y . This problem is an infinite dimensional
linear programming problem with convex constraints. Following the seminal
discoveries of Brenier in the 90’s [5,6], Optimal Transportation has received
renewed attention from mathematical analyst and the Fields Medal awarded
in 2010 to C. Villani [28] (see also [9] for a survey).

Our main contribution is to provide a bounded approximation of optimum
T . This approximation is given in a guaranteed way. That means, the approx-
imation is such that:

T ≤ T ≤ T ,

where T (resp. T ) is the lower bound (resp. upper bound) of optimum T .
The main idea to obtain this guaranteed approximation can be sketched, with
some simplifications, as follows. The lower bound T is obtained by a spatial
discretization of µ and ν, the integral (1) is then replaced by a sum. The proof
of these results is presented in Section 3. Needed enclosures on c, µ and ν can
be computed thanks to Interval Arithmetic which is presented in Section 2.
For the upper bound T , this is the Kantorovitch duality which is carried. This
part is detailed in Section 4. In each of these sections, an example illustrates
our approach. Our approach is quite similar to [23] but their method supposes
to be able to compute exactly minimum and maximum values of the function
c over subsets of X × Y .

Our finite dimensional relaxation scheme is different to the one presented
in [25,26]. In [25], measures are approximated by discrete measures (weighted
sum of Dirac). As in [25], our method generates a sequence of finite-dimensional
linear programs such that the optimum T is the limit of the optimal values of
these programs. Note also that there exists an approach based on the gradient
descent method [8,7].

Otherwise, our contribution can be compared with obtained results by
applying the methodology developed by J.B Lasserre [13] (See Proposition
7.7 p. 177). Indeed, his approach based on moments creates a sequence of
semidefinite programs. The computed sequence {Ti}i∈N of optimums of these
semidefinite programs is nonincreasing and converges to T . The approximation
scheme based on moments can be seen as a spectral decomposition whereas
our approach is spatial. Moreover, our method is not limited to cost functions
c that are polynomial and to measures with basic semi-algebraic support. Very
few other authors have solved numerically the mass transfer problem, we can
cite Anderson [24], Benamou [4] and Mérigot [17].

To our knowledge, no other method is able to generate guaranteed bounds
of T when c is not supposed to be polynomial.
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2 Interval Arithmetic

This section introduces notations and definitions related to interval analysis.
An interval [x, x] is a set which can be written as {x ∈ Rn, x ≤ x ≤ x} with
x and x in Rn. Here the relation ≤ has to be understood component-wise.
Note that this definition implies that intervals are bounded. The set intervals
is usually denoted by IRn.

Definition 1 A function [f ] : IRn → IRm is said to be an inclusion function
of f : Rn → Rm if ∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]) (where f([x]) = {f(x)|x ∈ [x]}).

Fig. 1 Illustration of inclusion function.

Interval Arithmetic [14] provides an effective method to build inclusion
functions. In [18], Neumaier proves that it is always possible to find an inclusion
function [f ] when f is defined by an arithmetical expression. This possibility
to enclose the image of an interval [x] under f is powerful. Indeed, let us
suppose that 0 6∈ [f ]([x]), one can conclude that ∀x ∈ [x], f(x) 6= 0. Since
Moore’s works [14] [15] that introduced Interval Arithmetic, many algorithms
have been developed in different areas, for example in global optimization [21],
non-linear dynamical systems [16] . . .

As interval analysis provides rigorous methods, these algorithms can prove
mathematical assertion. For instance, in 2003, Hales launched the ”Flyspeck
project” (”Formal Proof of Kepler”) in an attempt to use computers to auto-
matically verify every step of the proof (partially based on interval analysis)
of the Kepler’s conjecture. Another important example is a generalization of
the Newton method called Interval Newton method. This method can be ap-
plied to find all zeros of a given differentiable map f : Rn → Rn. The interval
Newton method creates a sequence of intervals containing zeros of f and has
very interesting properties: combined with Brouwer fixed point theorem, it
can prove existence and uniqueness of a zero of f [3], [19]. About dynamical
systems, Warwick Tucker proved that the Lorentz equations support a strange
attractor with an approach partially based on Interval Arithmetic [22].

In this paper, Interval Analysis is used to generate bounds of the cost func-
tion c in (1). Moreover, it is also possible to use this Arithmetic to compute
guaranteed enclosures for definite integrals. In Subsection 2.1, Interval Arith-
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metic is clearly defined. Subsection 2.2 provides a method, based on Interval
Arithmetic, to compute bounds of a definite integral.

2.1 Guaranteed bounds with Interval Arithmetic

Definition 2 (Interval Arithmetic) Let us consider two real intervals [x] =
[x, x] and [y] = [y, y], i.e. [x], [y] ∈ IR . The four basic interval operations are
defined, as in [12], by:

[x] + [y] = [x+ y, x+ y],
[x]− [y] = [x− y, x− y],
[x]× [y] = [min{xy, xy, xy, xy} , max{xy, xy, xy, xy}],
[x]÷ [y] = [x]×

[
1
y ,

1
y

]
, if yy > 0.

(2)

Proposition 1 The four basic interval operations (2) are inclusion function
of addition, subtraction, multiplication and division defined on reals.

Proof Trivial. ut

Interval Arithmetic also define negative, square and power functions as
follows:

− [x] = [−x,−x], (3)

[x]
n

=


[1] if n=0,
[xn, xn] if n is odd or x ≥ 0,
[xn, xn] if n is even and x ≤ 0,
[0,max{xn, xn}] otherwise.

(4)

The inclusion functions are stable by composition. Therefore, as soon a
function is given by its expression and we have inclusion function for their
atoms, one can automatically generate an inclusion function.

Proposition 2 If f and g are functions with inclusion function [f ] and [g],
then [f ] ◦ [g] is an inclusion function of f ◦ g.

Proof Let [x] ∈ IRn, then g([x]) ⊂ [g]([x]). So f ◦ g([x]) ⊂ [f ] ◦ [g]([x]). ut

Example 1 Let us assume that f : R→ R is defined by

f(x) =
3

2
(1− 2x+ x2).

The function [f ] : IR→ IR defined by

[f ]([x, x]) =

[
3

2
,

3

2

]
×
(
[1, 1]− [2, 2]× [x, x] + [x, x]2

)
,

is an inclusion function for f .
Moreover, if x is supposed to be non negative,

[f ]([x, x]) =

[
3

2
− 3x+

3

2
x2 ,

3

2
− 3x+

3

2
x2
]
.
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Remark 1 Please note that the real numbers 3
2 , 1 and 2 were converted to

intervals of width zero and all real operation were changed to interval ones.
In practice, using floating point arithmetic, if a real number α is not repre-
sentable, then this real number is converted to an interval [α, α] with repre-
sentable bounds containing α. In a way, one can avoid the rounded errors of
the floating point arithmetic, and finally obtain guaranteed bounds.

2.2 Guaranteed approximation to a definite integral

In this subsection, we propose a method to rigorously enclose a definite inte-
gral. The approach and the convergence are similar to the classical rectangle
method.

Definition 3 Let X be a subset of Rn and µ be a probability measure. A
finite collection {Xi}i of subsets of Rn is said to be a µ−paving if X ⊂ ∪iXi

and i 6= j ⇒ µ(Xi ∩Xj) = 0.

Proposition 3 Let f : X → R be in L1(λ) and {Xi}i∈I a λ−paving of X,
then ∫

X

f(x)dλ(x) ∈
∑
i∈I

[f ](Xi) λ(Xi), (5)

where λ denotes the Lebesgue measure.

Proof Let Xi be an element of the paving. Since [f ] is an inclusion function
for f , we can write

∀x ∈ Xi, f(Xi) ≤ f(x) ≤ f(Xi)

with [f(Xi), f(Xi)] = [f ](Xi). Therefore, one has∫
Xi

f(Xi)dλ(x) ≤
∫
Xi

f(x)dλ(x) ≤
∫
Xi

f(Xi)dλ(x).

Equivalently,

f(Xi)

∫
Xi

dλ(x) ≤
∫
Xi

f(x)dλ(x) ≤ f(Xi)

∫
Xi

dλ(x).

Since {Xi}i is an λ-paving, we end up with∑
i∈I

f(Xi) λ(Xi) ≤
∫
X

f(x)dλ(x) ≤
∑
i∈I

f(Xi) λ(Xi).

ut

Figure 2 shows an example of function from R to R. The definite integral,
illustrated by the algebraic area, is between sum of areas of the rectangles on
left and on right.
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Fig. 2 Illustration of Proposition 3. The definite integral
∫ b
a f(x)dx (center) is between∑

i∈I f(Xi) λ(Xi) (left) and
∑

i∈I f(Xi) λ(Xi) (right).

Example 2 Let us consider the same function f and inclusion function [f ]
as in example 1 and define a regular paving {Xi} defined by Xi = [ i−1n , in ].

The paving {Xi} is a λ−paving of [0, 1] since ∀i ∈ {1, . . . , n}, λ({ in}) = 0.
According to Proposition 3, one can conclude that

1

n

n∑
i=1

3

2
− 3

i

n
+

3

2

(
i− 1

n

)2

≤
∫ 1

0

f(x)dλ(x) ≤ 1

n

n∑
i=1

3

2
− 3

i− 1

n
+

3

2

(
i

n

)2

.

Proposition 4 proves that the method given by Proposition 3 is convergent.
To speak about convergence, one needs to topologize the set of intervals. This
can be done by the distance d defined by

[x], [y] ∈ IRn, d([x], [y]) = max{‖x− y‖, ‖x− y‖}

where ‖ · ‖ is the Euclidean norm on Rn. This distance is equivalent to the
classical Hausdorff distance defined on compact subsets of Rn. With this
topology, the notion of continuous inclusion function is now well defined. Fi-
nally, with [x] an element of IRn, let us also define the diameter of [x] by
∆([x]) = max{‖x− y‖ | x, y ∈ [x]}.

Proposition 4 (Convergence) Let X be an element of IRn, and let [f ] be
a continuous inclusion function of f satisfying ∀x ∈ X, [f ]({x}) = {f(x)}. Let
{Xi}i∈I be a λ−paving of X and h = maxi∈I{∆(Xi)} then

lim
h→0

∑
i∈I

[f ](Xi) λ(Xi) =

∫
X

f(x)dλ(x).

Proof Since X is compact and [f ] continuous, by Heine-Cantor Theorem [f ]
is uniformly continuous. That is to say:

∀ε > 0 ∃δ > 0 ∀A,B ⊂ X, d(A,B) < δ ⇒ d([f ](A), [f ](B)) < ε.

In particular, with B = {a} ⊂ A one has

∀ε > 0 ∃δ > 0 ∀A ⊂ X, d(A, {a}) < δ ⇒ d([f ](A), f({a})) < ε.

Therefore,

∀ε > 0 ∃δ > 0 ∀A ⊂ X,∆(A) < δ ⇒ ∆([f ](A)) < ε.
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Let {Xi} be a λ-paving of X such that ∀i ∈ I,∆(Xi) < h,

∀ε > 0 ∃δ > 0, h < δ ⇒
∑
i∈I

(f(Xi)− f(Xi))λ(Xi) < ελ(X).

That is to say,
∑
i∈I(f(Xi)− f(Xi))λ(Xi) converges to 0 as h tends to 0.

In other words, the two bounds of enclosure (5) converge to the same value.
We end up with

lim
h→0

∑
i∈I

[f ](Xi) λ(Xi) =

∫
X

f(x)dλ(x).

ut

3 Lower bound of the optimal value

This section contains one of the two main contributions of this article. The
following theorem lets us generate a finite dimensional linear programming
problem where the optimal value is a lower bound for the optimal value of (1).
In Subsection 3.1, the theorem and its proof are given. Subsection 3.2 illus-
trates this theorem with an example. Finally, assuming continuous hypothesis
about inclusion function and compactness, the method can be proved to be
convergent. In other words, one can generate a sequence of lower bounds which
converges to the optimal value. This result is provided in Subsection 3.3.

3.1 Finite dimensional relaxation

Theorem 1 (Relaxation) Let µ and ν (with support X and Y ) be absolutely
continuous measures with respect to Lebesgue measure λ. If {Xi}1≤i≤n and
{Yj}1≤j≤m be λ−pavings of X and Y . Suppose that µ(Xi) ∈ [µ

i
, µi], ν(Yj) ∈

[νj , νj ], and there exist reals cij ∈ R such that ∀x, y ∈ Xi × Yj , cij ≤ c(x, y)
and define T by

T = inf
πij∈Rn⊗Rm

∑
i,j

cijπij

subject to ∀i, µ
i
≤
∑
j

πij ≤ µi,

∀j, νj ≤
∑
i

πij ≤ νj ,

∀i,∀j, πij ≥ 0,

(6)

then T ≤ T (µ, ν).

Remark 2 The finite dimensional linear programming problem (6) has n×m
variables which are denoted by πif . Indeed, the tensor product Rn ⊗ Rm is
isomorphic to Rn×m.
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Proof The first part of the proof is to prove that the cost function (1) is
greater than the cost of (6). Let π be a transference plan from µ to ν then,
the collection {Xi × Yj}{(i,j)∈I×J} is a π-paving. Therefore, one has:∑

i,j

∫
Xi×Yj

c(x, y)dπ(x, y) =

∫
X×Y

c(x, y)dπ(x, y).

Since ∀x, y ∈ Xi × Yj , cij ≤ c(x, y), one can conclude that

cijπ(Xi × Yj) ≤
∫
Xi×Yj

c(x, y)dπ(x, y).

Therefore: ∑
ij

cijπij ≤
∫
X×Y

c(x, y)dπ(x, y)

with πij = π(Xi × Yj).
The second part of the proof consists to prove that constraints of (1) implies

constraints of (6). Let π be a probability measure on X × Y with µ and ν as
marginals. For each i, one has∑

j

π(Xi × Yj) = µ(Xi).

Since µ(Xi) is supposed to belong to [µ
i
, µi], one has:

∀i, µ
i
≤
∑
j

πij ≤ µi

with πij = π(Xi×Yj). Finally, as π is a probability measure over X×Y , then
πij ≥ 0. ut

3.2 An academic example

Let us consider the two probability measures µ and ν with support [0, 1] de-
fined by µ = dx and ν = 3

2 (1 − y2)dy. Those two probability measures are
represented by Figure 3. For this optimization problem, we consider that c is
the square of the Euclidean distance c(x, y) = (x− y)2.

0.2 0.4 0.6 0.80 1

1.2

0.8

0.4

1.6

0.2

1.2

0.4 0.6 0.80 1

0.8

0.4

1.6

Fig. 3 Probability measures µ and ν.
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Let us divide the interval [0, 1] with a regular paving with n = m = 6
elements

Xi =

[
i− 1

n
,
i

n

]
, Yj =

[
j − 1

m
,
j

m

]
with i, j ∈ {1, . . . , n}. Our approach generates the following finite dimensional
linear programming:

T = min
πij∈Rn⊗Rm

∑
i,j

cijπij

subject to ∀i, µ
i
≤
∑
j

πij ≤ µi,

∀j, νj ≤
∑
i

πij ≤ νj ,

∀i,∀j, πij ≥ 0,

(7)

with the following data:

(
cij
)
1≤i,j≤n =


0.000 0.000 0.027 0.111 0.250 0.444
0.000 0.000 0.000 0.027 0.111 0.250
0.027 0.000 0.000 0.000 0.027 0.111
0.111 0.027 0.000 0.000 0.000 0.027
0.250 0.111 0.027 0.000 0.000 0.000
0.444 0.250 0.111 0.027 0.000 0.000

 .

µ = (0.166, 0.166, 0.166, 0.166, 0.166, 0.166),
µ = (0.167, 0.167, 0.167, 0.167, 0.167, 0.167),
ν = (0.247, 0.233, 0.205, 0.164, 0.108, 0.039),
ν = (0.248, 0.234, 0.207, 0.165, 0.109, 0.040).

Lower bounds cij have been computed using interval arithmetic as shown in
Subsection 2.1. Data ν, µ, ν and µ have been generated using the method to
compute a guaranteed approximation to a definite integral as presented in
Subsection 2.2.

This linear programming problem has been solved using the GLPK solver
[2] with library gmp [1] to avoid rounded errors coming from floating-point
number representation. According to Theorem 1, we have a proof that the
solution to the infinite dimensional linear problem considering in this example
satisfies

1.085× 10−3 ≤ T .

The same approach can be used to generate better lower bounds to the
problem by taking bigger n. Figure 4 shows lower bounds computed for dif-
ferent values of n.
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Fig. 4 Computed lower bounds on T with respect to n (with m = n).

For this example, regular pavings are chosen with the same cardinality, i.e.
m = n. Note that generated linear problems are of dimension n2 and composed
with 2n linear constraints.

3.3 Convergence

Proposition 5 (Convergence) Let X,Y be elements of IRk, µ = fdλ, ν =
gdλ be non negative measures with supports in X and Y . Let us suppose that
[f ], [g], [c] = [c, c] are continuous inclusion functions of f, g, c satisfying ∀x ∈
X∀y ∈ Y, [f ]({x}) = {f(x)}, [g]({y}) = {g(y)} and [c]({(x, y)}) = {c(x, y)}.
Let {Xi}i∈I and {Yj}j∈J be a λ−pavings of X and Y . Let us denote by h =
max{max{∆(Xi) | i},max{∆(Yj) | j}}, if T is the optimal solution of (6)
then

lim
h→0
T = T

Proof Let us denote by T̃ the following optimal value:

T̃ = inf
π̃ij∈Rn⊗Rm

∑
i,j

c̃ij π̃ij

subject to ∀i,
∑
j

π̃ij = µ(Xi),

∀j,
∑
i

π̃ij = ν(Yj),

∀i,∀j, π̃ij ≥ 0,

(8)

where c̃ij = sup{c(x, y) | (x, y) ∈ Xi × Yj}.
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The main idea of the proof consists to demonstrate the following two asser-
tions. First, inequalities T ≤ T ≤ T̃ are true and, second, the quantity T̃ − T
converges to 0 as h tends to 0.

Inequality T ≤ T was proven in Theorem 1. Let us now show the inequality
T ≤ T̃ . Let π̃∗ = (π̃∗ij) be an optimal solution to problem (8). From π̃∗, let us
define a measure π ∈ Γ (µ, ν) satisfying ∀i∀j, π(Xi × Yj) = π̃∗i,j . One has∫

X×Y
c(x, y)dπ(x, y) =

∑
i,j

∫
Xi×Yj

c(x, y)dπ(x, y).

Since ∀(x, y) ∈ Xi × Yj , c(x, y) ≤ c̃ij , one can conclude:

∫
X×Y

c(x, y)dπ(x, y) ≤
∑
i,j

∫
Xi×Yj

c̃ijdπ(x, y) =
∑
i,j

c̃ij π̃
∗
i,j = T̃

with π ∈ Γ (µ, ν). In other words, from any optimal solution of (8), it is
possible to create a feasible solution of (1). Moreover, this feasible solution to
(1) is smaller than T̃ . In particular, with T the optimal value of (1), one can
conclude T ≤ T̃ .

Let us now prove that T̃ −T converges to 0 as h tends to 0. The main idea
is to prove that both T̃ − T

˜
and T

˜
− T converge to 0 as h tends to 0 where

T
˜

is the optimal value to the following finite dimensional linear problem:

T
˜

= inf
πij∈Rn⊗Rm

∑
i,j

cijπij

subject to ∀i,
∑
j

πij = µ(Xi),

∀j,
∑
i

πij = ν(Yj),

∀i,∀j, πij ≥ 0.

(9)

One has:

T ≤ T
˜
≤ T ≤ T̃ .

Following the same idea of proof of Proposition 4, by Heine-Cantor Theo-
rem, since [c] is uniformly continuous, thus

∀ε > 0 ∃δ > 0, h < δ ⇒ (c̃ij − cij) < ε.

Therefore, ∀(πij) ∈ Rn ⊗ Rm satisfying
∀i,

∑
j

πij = µ(Xi),

∀j,
∑
i

πij = ν(Yj),
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one has

∀ε > 0 ∃δ > 0, h < δ ⇒
∑
ij

(c̃ij − cij)πij < εµ(X). (10)

In particular, with (πij) an optimal solution to (9), one can conclude

∀ε > 0 ∃δ > 0, h < δ ⇒
∑
ij

c̃ijπij −
∑
ij

cijπij < εµ(X). (11)

i.e.

∀ε > 0 ∃δ > 0, h < δ ⇒
∑
ij

c̃ijπij − T
˜
< εµ(X).

i.e.

∀ε > 0 ∃δ > 0, h < δ ⇒
∑
ij

c̃ijπij < εµ(X) + T
˜
.

As T̃ ≤
∑
ij c̃ijπij , one has

∀ε > 0 ∃δ > 0, h < δ ⇒ T̃ < εµ(X) + T
˜
.

Therefore,

∀ε > 0 ∃δ > 0, h < δ ⇒ T̃ − T
˜
< εµ(X).

Let us now prove that T
˜
− T converges to 0 as h tends to 0. The real

numbers T and T
˜

are optimal values of the two finite dimensional linear

programming problems (6) and (9). Using matrix notation, we have:

T
˜

= inf{c
˜
Tπ | b = Aπ = b, π ≥ 0},

T = inf{c
˜
Tπ | b− ε ≤ Aπ ≤ b+ ε, π ≥ 0}

with

A =



1 · · · 1︸ ︷︷ ︸
m

. . .

1 · · · 1︸ ︷︷ ︸
m

1
. . .

1︸ ︷︷ ︸
m

· · ·
1

. . .

1︸ ︷︷ ︸
m︸ ︷︷ ︸

n times.


, π =



π11
...

π1m
π21

...
π2m

...
πm1

...
πnm



, b =



µ1

...
µn
ν1
...
νm


,
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and

ε =



µ1 − µ1

...
µn − µn
ν1 − ν1

...
νm − νm


, ε =



µ1 − µ1

...
µn − µn
ν1 − ν1

...
νm − νm


.

Therefore, those two linear programs have the same cost function c, and
constraint matrixA. Since [f ] and [g] are supposed to satisfy, ∀x ∈ X, [f ]({x}) =
{f(x)} and ∀y ∈ Y, [g]({y}) = {g(y)}, according to Proposition 4, ε and ε can
be as small as we need. So T may be seen as the optimal value of a perturbed
linear program of (9). Using bounds provided by [20], we can prove that T
converges to T

˜
as long as ε and ε converges to 0. ut

4 Upper bound of the optimal value

In this section, Kantorovitch duality is used to propose an upper bound to the
optimal value. Kantorovitch Theorem states the following:

Theorem 2 (Kantorovitch duality) Let µ and ν be probability measures
and let c : X × Y → R+ ∪ {+∞} be a lower semi-continous cost function.
Define

T ′(µ, ν) = sup
ϕ∈C(X),ψ∈C(Y )

∫
X

ϕdµ+

∫
Y

ψdν,

subject to ϕ(x) + ψ(y) ≤ c(x, y),

then
T (µ, ν) = T ′(µ, ν).

With C(X) the set of continuous real bounded functions over X.

The proof of this Theorem can be found in [27].

4.1 Finite dimensional relaxation

Theorem 3 (Upper relaxation) Let µ and ν (with compact supports X
and Y ) be absolutely continuous measures with respect to Lebesgue measure.
Let {Xi}i and {Yj}j be λ−pavings of X and Y . Suppose that µ(Xi) ≤ µi,
ν(Yj) ≤ νj, and ∀(x, y) ∈ Xi × Yj , c(x, y) ≤ cij,

T = sup
(ϕi)∈Rn,(ψj)∈Rm

∑
i

ϕiµi +
∑
j

ψjνi

subject to ϕi + ψj ≤ cij ,
(12)
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then

T ≤ T .

Proof Let (ϕ,ψ) be in C(X) × C(Y ). Since each Xi and Yj is compact, there
exist real numbers ϕi = supx∈Xi

ϕi(x), ψi = supy∈Yj
ψi(y) such that∫

Xi

ϕ(x)dµ ≤ ϕi µ(Xi) and

∫
Yj

ψ(x)dν ≤ ψj ν(Yj).

As µ(Xi) is supposed to be smaller than µi, one has:∫
X

ϕdµ+

∫
Y

ψdν ≤
∑
i

ϕiµi +
∑
j

ψjνi.

The second part of the proof consists to demonstrate that condition ∀(x, y), ϕ(x)+
ψ(y) ≤ c(x, y) implies ∀(i, j), ϕi+ψj ≤ cij . Let us suppose that ∀(x, y), ϕ(x)+
ψ(y) ≤ c(x, y), then

∀(x, y) ∈ Xi × Yj , ϕ(x) + ψ(y) ≤ c(x, y) ≤ cij .

As Xi and Yj are supposed to be compact, there exists (ξ, ζ) ∈ Xi × Yj such
that

ϕ(ξ) = sup
x∈Xi

ϕ(x) = ϕi, and ψ(ζ) = sup
y∈Yj

ψ(x) = ψj .

We can write

ϕi + ψj ≤ cij .

ut

4.2 An academic example

Here, we consider the same example as in Subsection 3.2. Let us consider a
regular paving of the unit interval [0, 1]. Theorem 3 generates, with m = n = 6,
the following finite dimensional linear programming problem:

T = sup
(ϕi)∈Rn,(ψj)∈Rm

∑
i

ϕiµi +
∑
j

ψjνi

subject to ϕi + ψj ≤ cij
(13)

with the following data:

µ = (0.167, 0.167, 0.167, 0.167, 0.167, 0.168),

ν = (0.248, 0.234, 0.207, 0.165, 0.109, 0.040),
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and

(cij)1≤i,j≤n =


0.028 0.112 0.250 0.445 0.695 1.000
0.112 0.028 0.112 0.250 0.445 0.695
0.250 0.112 0.028 0.112 0.250 0.445
0.445 0.250 0.112 0.028 0.112 0.250
0.695 0.445 0.250 0.112 0.028 0.112
1.000 0.695 0.445 0.250 0.112 0.028

 .

As for example in Subsection 3.2, reals cij have been computed using interval
arithmetic. This finite dimensional linear programming problem admits T =
0.091 as optimal value. According to Theorem 3, we can write

T ≤ 91× 10−3.

This upper bound can be improved by increasing m and n. Figure 5 shows
this upper bound decreases with respect to n (with m = n).

Fig. 5 Computed lower and upper bounds on T with respect to n (with m = n).

In general, the finite dimensional linear programming problem is of dimen-
sion m+ n with mn constraints.

Remark 3 The vectors µ and ν must be generated with attention. Indeed, if∑
i µi 6=

∑
j νj , then solution to (13) may be unbounded. One can remark that

µ6 has been chosen to 0.168 instead of 0.167 in order to guarantee
∑
i µi =∑

j νj .
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Remark 4 Since the cost c is convex and µ and ν has supports on the real line.
We can prove that

T =

∫ 1

0

∣∣G−1(t)− F−1(t)
∣∣2 dt,

where F−1 and G−1 are respectively the generalized inverses of the cumulative
distribution functions of f and g:

F (x) =

∫ x

−∞
dµ, and G(x) =

∫ x

−∞
dν.

The proof of this result can be found in [27]. In our case, one has

F (x) = x, ∀x ∈ [0, 1],

G(x) =
3

2
x− 1

2
x3, ∀x ∈ [0, 1],

and

F−1(t) = t, ∀t ∈ [0, 1],

G−1(t) = 2 cos

(
arccos(−t)

3
+

4π

3

)
, ∀t ∈ [0, 1].

Finally, using a standard method for numerical integration, we obtain

T =

∫ 1

0

∣∣G−1(t)− F−1(t)
∣∣2 dt ' 19, 0476× 10−3.

This value is represented by the black line in Figure 5 and is, of course,
between our computed bounds.

4.3 Numerical examples

In this subsection, we first consider the following problem

T (µ, ν) = min
π∈Γ (µ,ν)

∫
X×Y

|x− y|dπ(x, y), (14)

where two probability measures µ and ν with support [0, 1] = X = Y defined
by µ = dx and ν = 3

2 (1 − y2)dy. We consider regular subdivision of the
unit interval with n intervals. Figure 6 shows the computed lower and upper
bounds.
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Fig. 6 Computed lower and upper bounds on T with respect to n (with m = n).

Finally, as mentioned in the introduction, our approach is not limited to
polynomial cost and to measures with basic semi-algebraic support. Let us
consider

T (µ, ν) = min
π∈Γ (µ,ν)

∫
X×Y

(x− y)2dπ(x, y), (15)

where two probability measures µ and ν with support [0, 1] = X = Y defined
by µ = 3

2 (1− x2)dx and ν = 2 sin2(πy)dy. The two measures are represented
on Figure 7.
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Fig. 7 Probability measures µ and ν.

Computed lower and upper bounds on T are shown on Figure 8.
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Fig. 8 Computed lower and upper bounds on T with respect to n with µ = 3
2

(1− x2)dx,

ν = 2 sin2(πy)dy and c(x, y) = (x− y)2.

5 Conclusion

In this paper, two rigorous spatial discretizations has been proposed to enclose
the optimum of the Kantorovitch mass transportation problem. Our approach
is general in the sense that only existence of inclusion function of c in (1) is
required. The functionality of the designed algorithms, implemented in C++,
was confirmed on some illustrating examples. The source code is available on
the webpage of the author. We hope that obtained bounds could be used in a
constraint propagation method to compute bounds of the solution [10].
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