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62, avenue Notre Dame du Lac - 49000 Angers
{nicolas.delanoue, bertrand.cottenceau}@istia.univ-angers.fr

2 Laboratoire E3I2

ENSIETA, 2 rue François Verny
29806 Brest Cedex 09
luc.jaulin@ensieta.fr

Abstract. This paper gives a numerical algorithm able to compute the
number of path-connected components of a set S defined by nonlinear
inequalities. This algorithm uses interval analysis to create a graph which
has the same number of connected components as S. An example coming
from robotics is presented to illustrate the interest of this algorithm for
path-planning.

1 Introduction

There exist different kinds of algorithms for path-planning. Most of the ap-
proaches are based on the use of potential function introduced by Khatib [3].
This type of methods may be trapped in a local minimum and often fail to give
any feasible path.

Interval analysis [7] is known to be able to give guaranteed results (See e.g.
[2]). In the first section, the notion of feasible configuration space is recalled and
it is shown why its topology can be a powerful tool for path-planning. In the
next section, topological definitions and a sufficient condition to prove that a
set is star-shaped are given. This sufficient condition is the key result of the CIA
algorithm presented in the fourth section. This algorithm creates a graph which
has the same number of connected components as S where S is a subset of Rn

defined by non-linear inequalities. [9] and [8] give algorithms where S is (closed)
semi-algebraic.

Throughout this article, we use a robot to illustrate a new path-planning
algorithm.

2 Motivation with an example coming from robotics

2.1 A robot

Consider a 2-dimensional room which contains two walls (represented in gray
in the Figure 1. The distance between the walls is y0. A robotic arm with two
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degrees of freedom α and β is placed in this room. It is attached to a wall at a
point O and has two links OA and AB.

Fig. 1. A robotic arm with two links, OA = 2 and AB = 1.5.

The Cartesian coordinates of A and B are given by the following equations :
{

xA = 2 cos(α)
yA = 2 sin(α)

{
xB = 2 cos(α) + 1.5 cos(α + β)
yB = 2 sin(α) + 1.5 sin(α + β)

2.2 Configuration set

Each coordinate of the configuration space represents a degree of freedom of the
robot (See Figure 2). The number of independent parameters needed to specify
an object configuration corresponds to the dimension of the configuration space.
In our example, only α and β are necessary to locate the robot configuration, so
our configuration space is a 2-dimensional space.

Fig. 2. A point in the configuration space (left) and its corresponding robot configu-
ration.

Since the robot cannot run through the walls, one has the following con-
straints yA ∈ [0, y0] and yB ∈] −∞, y0] and α ∈ [−π, π] and β ∈ [−π, π]. When
these constraints are satisfied, the robot is said to be in a feasible configuration.
The feasible configuration set S is thus defined as :

S =
{

(α, β) ∈ [−π, π]2/
{

2 sin(α) ∈ [0, y0]
2 sin(α) + 1.5 sin(α + β) ∈ ]−∞, y0]

}
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2.3 Connectedness of the feasible configuration set and
path-planning

Figure 3 shows how the feasible configuration set is affected by y0. Three cases
are presented :

Fig. 3. - Fig.3.1. Feasible configuration set when y0 = 2.3. The robot can move from
every initial feasible configuration to any goal feasible configuration. In this case, S has
only one connected component. It is said path-connected (See Definition 1). - Fig.3.2.
Feasible configuration set when y0 = 1.9. The configuration set has two path-connected
components. It is impossible to move the robot from the first configuration FC1 to the
second one FC2 without violating any constraint. - Fig.3.3. Feasible configuration
set when y0 = 1.1. The robot can be trapped in four regions. S has four connected
components. In each connected component, the robot can move but cannot reach any
another components.

In this article, a reliable method able to count the number of connected com-
ponents of sets described by inequalities is presented. These sets can be feasible
configuration sets. With a couple of configurations, we are able to guarantee
that there exists or not a path to connect this ones. Moreover, when we have
proven that two configurations are connectable, we are able to propose a path
to connect them without violating any constraint.
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3 Topological brief overview and a key result leading to
discretization

In this section, definitions of a path-connected set and star-shaped set are re-
called. Then, it is shown how this notions are linked. The last result is the key
result leading to a robust discretization presented in the next section.

3.1 Topological brief overview

Definition 1. A topological set S is path-connected if for every two points
x, y ∈ S, there is a continuous function γ from [0, 1] to S such that γ(0) = x and
γ(1) = y. Path-connected sets are also called 0-connected.

Definition 2. A point v∗ is a star for a subset X of an Euclidean set if X
contains all the line segments connecting any of its points and v∗. A subset X
of an Euclidean set is star-shaped or v∗-star-shaped if there exists v∗ ∈ X such
that v∗ is a star for X.

Proposition 1. A star-shaped set S is a path-connected set.

Proof. Since S is star-shaped, there exists v ∈ S such that v is a star for S. Let
x and y be in S and :

γ : [0, 1] → S

t 7→
{

(1− 2t)x + 2tv if t ∈ [0, 1
2 [

(2− 2t)x + (2t− 1)v if t ∈ [ 12 , 1].

γ is a continuous function from [0, 1] to S such that γ(0) = x and γ(1) = y.

Proposition 2. Let X and Y be two v∗-star-shaped set, then X ∩ Y is also
v∗-star-shaped.

Fig. 4. Intersection stability.

The next result is a sufficient condition to prove that a set defined by only one
inequality is star-shaped. This sufficient condition can be checked using interval
analysis (An algorithm such as SIVIA, Set Inversion Via Interval Analysis [5],
can prove that equations (1) are inconsistent).
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Proposition 3. Let us define S = {x ∈ D ⊂ Rn|f(x) ≤ 0} where f is a C1

function from D to R, and D a convex set. Let v∗ be in S. If

f(x) = 0, Df(x) · (x− v∗) ≤ 0, x ∈ D (1)

is inconsistent then v∗ is a star for S.

Proof. See [1]

Remark 1. Combining this result with the Proposition 2, Proposition 3 can be
used to prove that a set is star-shaped even if the set S is defined by several
inequalities.

4 Discretization

The main idea of this disretization is to generate star-spangled graph which
preserves the number of connected components of S.

Definition 3. A star-spangled graph of a set S, noted by GS, is a relation R on
a paving 3 P = {pi}i∈I where :

– for all p of P, S ∩ p is star-shaped.
– R is the reflexive and symmetric relation on P defined by

p R q ⇔ S ∩ p ∩ q 6= ∅.
– S ⊂

⋃

i∈I

pi

Proposition 4. Let GS be a star-spangled graph of a set S.
GS has the same number of connected components as S. i.e. π0(S) = π0(GS)4.

Proof. See [1].

4.1 The algorithm CIA

The algorithm called: CIA (path-Connected using Interval Analysis) tries to
generate a star-spangled graph GS (Proposition 4). The main idea is to test a
suggested paving P. In the case where the paving does not satisfy the condition
that for all p in P, p ∩ S is star-shaped, the algorithm tries to improve this one
by bisecting any boxes responsible for this failure.
For a paving P, the algorithm checks for a box p of P whether S∩p is star-shaped
or not (Proposition 1 and 2), and to build its associated graph with the relation
R mentioned before.
3 A paving is a finite collection of non overlapping n-boxes (Cartesian product of n

intervals), P = {pi}i∈I
4 In algebraic topology, π0(S) is the classical notation for the number of connected

components of S.
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In Alg. 1 CIA5, P∗, Pout, P∆ are three pavings such that P∗∪Pout∪P∆ = P, with
P is a paving whose support is a (possibly very large) initial box X0 (containing
S):

– the star-spangled paving P∗ contains boxes p such that S∩ p is star-shaped.
– the outer paving Pout contains boxes p such that S ∩ p is empty.
– the uncertain paving P∆, nothing is known about its boxes.

Alg. 1 CIA - path-Connected using Interval Analysis
Require: S a subset of Rn, X0 a box of Rn

1: Initialization : P∗ ← ∅, P∆ ← {X0}, Pout ← ∅
2: while P∆ 6= ∅ do
3: Pull the last element of P∆ into the box p
4: if ”S ∩ p is proven empty” then
5: Push {p} into Pout, Goto Step 2.
6: end if
7: if ”S ∩ p is proven star-shaped” and if we can guarantee ∀p∗ ∈ P∗, p ∩ p∗ ∩ S is

empty or not then
8: Push {p} into P∗, Goto Step 2.
9: end if

10: Bisect(p) and Push the two resulting boxes into P∆

11: end while
12: n ← Number of connected components of GS (i.e. the relation R on P∗).
13: return ”S has n path-connected components”

4.2 Application

Consider again the example presented in Section 1, the feasible configuration set
S is :

S =



(α, β) ∈ [−π, π]2/




−2 sin(α) ≤ 0
2 sin(α)− y0 ≤ 0
2 sin(α) + 1.5 sin(α + β)− y0 ≤ 0



 (2)

When y0 is equal to 2.3, 1.9 and 1.1, algorithm CIA generates these star-
spangled graphs presented respectively on Figures 5,6 and 7.

5 This algorithm has been implemented (CIA.exe) and can be found at
http://www.istia.univ-angers.fr/˜delanoue/
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Fig. 5. The feasible configuration set and one of its star-spangled graph generated by
CIA when y0 = 2.3. The star-spangled graph GS is connected. By using Proposition
4, we deduce that from every couple of endpoints, it is possible to create a path to
connect this ones. Subsection 4.3 shows how a path can be found.

Fig. 6. The feasible configuration set and its star-spangled graph generated by CIA

when y0 = 1.9. Since GS has two connected components, we have a proof that S has
two path-connected components.

Fig. 7. The feasible configuration set and its star-spangled graph generated by CIA

when y0 = 1.1. GS and S have 4 connected components.
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4.3 Path-planning

A star-spangled graph can be used to create a path between endpoints. Our goal
is to find a path from the initial configuration x to the goal configuration y (e.g.
Fig. 8).

Fig. 8. Initial configuration, x = ( 3π
4

, π
3
) and goal configuration, y = (π

6
,−π

6
)

As shown in Section 1, it suffices to find a path which connects x to y in the
feasible configuration set. The algorithm Path-planning with CIA, thanks to a
star-spangled graph, creates a path γ in S. This algorithm uses the Dijkstra [6]
algorithm which finds the shortest path between two vertices in a graph. Since
GS is a star-shaped graph, every p in P is necessary star-shaped and we denote
by vp one of its stars.

Alg. 2 Path-planning with CIA

Require: A set S, x, y ∈ S, GS a star spangled graph of S (The relation R on the
paving P).

Ensure: γ ⊂ S a path whose endpoints are x and y.
1: Initialization : λ ← ∅
2: for all p ∈ P do
3: if x ∈ p then px ← p; if y ∈ p then py ← p
4: end for
5: if Dijkstra(GS, px, py) = ”Failure” then
6: Return ”x and y are in two different path-connected components”
7: else
8: (pk)1≤k≤n = (px, . . . , py) ← Dijkstra(GS, px, py)
9: end if

10: γ ← [x, vpx]
11: for k ← 2 to n− 1 do
12: wk−1,k ← a point in pk−1 ∩ pk ∩ S; wk,k+1 ← a point in pk ∩ pk+1 ∩ S
13: γ ← γ ∪ [w(k−1,k), vpk ] ∪ [vpk , w(k,k+1)]
14: end for
15: γ ← γ ∪ [vpy , y]

Figure 9 shows the path γ created by Path-planning with CIA.
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Fig. 9. Path γ generated by Path-planning with CIA from x to y when y0 = 2.3.

The corresponding configurations of the path γ are illustrated on Figure 10.

Fig. 10. Corresponding robot motion from the initial to the goal configuration
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5 Conclusion

In this article, an algorithm which computes the number of connected compo-
nents of a set defined by several non-linear inequalities has been presented. This
dicretization makes possible to create a feasible path in S (Alg. 2). One of the
main limitations of the proposed approach is that the computing time increases
exponentially with respect to the dimension of S. At the moment, we do not
have a sufficient condition about f (Proposition 3) to ensure that algorithm CIA
will terminate.
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