R'esum'e : Critère quadratique, méthode de la plus forte pente, algorithme de Newton-Raphson, convexité.

L'énoncé de ce TP se trouve sur l'intranet : ISTIA\Public\Depots_Ens\Jean-Claude_Jolly

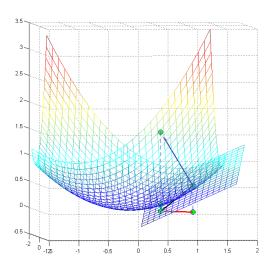


Fig. 1 $J(x) = \frac{1}{2} (x_1^2 + x_2^2 - x_1 x_2)$

Exercice 1 (Méthode de la plus forte pente – steepest descent method)

La figure représente le critère quadratique $J(x) = \frac{1}{2} \left(x_1^2 + x_2^2 - x_1 x_2 \right)$. On considère un algorithme de descente $x^{k+1} = x^k - \rho^k d^k$ où d^k est la direction de descente, $\|d^k\| = 1$, et ρ^k est la profondeur de descente. La Fig. 1 illustre la descente à partir du point $x^0 = (1,1)$.

- 1. En considérant l'approximation du premier ordre $J\left(x^k+u\right)=J\left(x^k\right)+J'\left(x^k\right)\cdot u+o\left(\|u\|\right)$, expliquez pourquoi $d^k=-\frac{\nabla J(x^k)}{\|\nabla J(x^k)\|}$ est la meilleure direction de descente.
- 2. Calculez la profondeur optimale de descente $\rho^1 = r^1 \|\nabla J(x^0)\|$ de la première itération, c'est-à-dire celle qui minimise la fonction $\phi(r^1) = J(x^0 r^1 \nabla J(x^0))$.
- 3. Donnez l'équation du plan tangent à la surface $z = J(x_1, x_2)$ au point $M_0 = (1, 1, J(1, 1))$.
- 4. En supposant que la Fig. 1 représente le point x^1 donné par l'algorithme de descente en partant de x^0 , que représentent les 5 points et les 3 vecteurs de la Fig. 1?
- 5. En réalité la Fig. 1 donne le point $x^0 \nabla J(x^0)$. Modifiez le fichier TDoptRn1.m (voir intranet) pour qu'il donne la figure correspondant au point $x^1 = x^0 r_1 \nabla J(x^0)$ calculé précédemment. Comment expliquer le résultat que semble donner la figure?
- 6. Écrivez en Matlab un algorithme à pas prédéterminé selon le choix $\rho_k = \frac{1}{\sqrt{k}}$ (voir le polycopié pour une justification). Pour le choix initial $x^0 = (1,1)$, combien faut-il d'itérations pour atteindre le minimiseur $x^* = (0,0)$ à 10^{-3} près?

Exercice 2 (Critère quadratique)

1. On considère un critère quadratique de la forme

$$J(x) = \frac{1}{2}x^T A x + B^T x + c. \tag{1}$$

En développant J(x+u), montrez que $J'(x) = \frac{1}{2}x^T(A^T+A) + B^T$. Rappel : par définition, J'(x) est l'(unique) application linéaire $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ telle que $J(x+u) = J(x) + f(u) + o(\|u\|)$. (Ici, on identifie f et $Mat_e(f)$.)

- 2. On considère $J(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2 x_1x_2) + x_1$. Écrivez J sous la forme (1). En se ramenant à une base propre de A, montrez que J est strictement convexe sur \mathbb{R} . Que peut-on en conclure pour la minimisation de J?
- 3. Appliquez le théorème de Weierstrass à J.

Exercice 3 (Algorithme de Newton-Raphson)

On considère le critère $J(x_1, x_2) = x_1^4 + x_2^2 - x_1 x_2$.

- 1. Calculez le gradient $\nabla J(x_1, x_2)$ et le Hessien $H(x_1, x_2)$. Écrivez en Matlab les fonctions correspondantes.
- 2. Écrivez en Matlab l'algorithme de Newton pour le point initial $x^0 = (1,1)$ et le test d'arrêt $\|\nabla J\left(x^{stop}\right)\| \leq 10^{-10}$. Combien d'itérations cela donne-t-il? Vers quel point stationnaire x^* converge-t-il?