Interval analysis and Optimal Transport

Nicolas Delanoue - Mehdi Lhommeau - Philippe Lucidarme LARIS - Universite d'Angers - France

Constraints & Geometry Mine de Nantes http://www.ibex-lib.org/workshop-23-06-14

23th June 2014

・ロト ・日本 ・モート ・モート

Outline

1 Introduction to Optimal Transport

- Transportation
- Optimal Transport
- Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Example with books

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Example with books

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Transportation Optimal Transport Some known results

▲□→ ▲圖→ ▲厘→ ▲厘→

Transportation Optimal Transport Some known results

ヘロン 人間 とくほど 人間 とう

Transportation Optimal Transport Some known results

ヘロン 人間 とくほど 人間 とう

Transportation Optimal Transport Some known results

< □ > < @ > < 注 > < 注 > ... 注

Transportation Optimal Transport Some known results

Example in the discrete case

Transportation

・ロト ・回ト ・ヨト ・ヨト

Transportation Optimal Transport Some known results

Example in the discrete case

Transportation

・ロト ・回ト ・ヨト ・ヨト

Transportation Optimal Transport Some known results

Example in the discrete case

A plan transference π

・ロン ・回 と ・ ヨン ・ ヨン

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Plan transference problem

	4	2	1
2			•
1			•
4			•

・ロン ・回 と ・ ヨン ・ モン

Introduction to Optimal Transport A lower bound of the optimal value

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Plan transference problem

Solutions

$$\pi = \frac{\begin{vmatrix} 4 & 2 & 1 \\ 2 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 4 & 1 & 2 & 1 \end{vmatrix}, \quad \tilde{\pi} = \frac{\begin{vmatrix} 4 & 2 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 4 & 2 & 2 & 0 \end{vmatrix}.$$

・ロン ・回 と ・ ヨン ・ ヨン

Transportation Optimal Transport Some known results

Definition - Transference plan

A transference plan (or a transportation) π is a measure on the product space $X \times Y$ such that

$$\begin{cases} \pi(A \times Y) = \mu(A), \\ \pi(X \times B) = \nu(B). \end{cases}$$

all measurable subsets A of X and B of Y.

イロト イヨト イヨト イヨト

Transportation Optimal Transport Some known results

Definition - Transference plan

A transference plan (or a transportation) π is a measure on the product space $X \times Y$ such that

$$\begin{cases} \pi(A \times Y) = \mu(A), \\ \pi(X \times B) = \nu(B). \end{cases}$$

all measurable subsets A of X and B of Y.

In the discrete case

$$\left(\begin{array}{c} \forall i, \ \sum_{j} \pi_{ij} = \mu_i, \\ \forall j, \ \sum_{i} \pi_{ij} = \nu_j. \end{array} \right)$$

・ロト ・日本 ・モート ・モート

Transportation Optimal Transport Some known results

・ロト ・回ト ・ヨト ・ヨト

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

In the discrete case

$$\min_{\pi \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} c_{ij} \pi_{ij}$$
subject to $\forall i, \sum_j \pi_{ij} = \mu_i,$
 $\forall j, \sum_i \pi_{ij} = \nu_j.$

$$(1)$$

where c_{ij} are non negative real numbers which tells how much it costs to transport one unit of mass from location *i* to location *j*.

イロン イヨン イヨン イヨン

Transportation Optimal Transport Some known results

Kantorovich formulation

The optimal transportation cost between μ and ν is the value :

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{\pi \in \mathcal{B}(X \times Y)} \int_{X \times Y} c(x,y) d\pi(x,y)$$

subject to $\pi_{X} = \mu,$
 $\pi_{Y} = \nu$ (2)

The optimal π 's, i.e. those such that $I(\pi) = \mathcal{T}_c(\mu, \nu)$, if they exist, will be called *optimal transference plans*.

▲ □ ► < □</p>

Introduction to Optimal Transport

A lower bound of the optimal value An upper bound of the optimal value Conclusion - Future work Transportation Optimal Transport Some known results

Remark

The *optimal transportation problem* is an infinite dimensional linear programming problem.

i.e. I is a linear cost function, and constraints are linear.

イロン イヨン イヨン イヨン

Transportation Optimal Transport Some known results

c = ||x - y||^p, p > 1, the strict convexity of c guarantees that, if μ, ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.

・ロト ・回ト ・ヨト ・ヨト

Transportation Optimal Transport Some known results

- c = ||x y||^p, p > 1, the strict convexity of c guarantees that, if μ, ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.
- c = ||x y||², optimal transference plans are the (restrictions of) gradients of convex functions.

イロン イヨン イヨン イヨン

Transportation Optimal Transport Some known results

- $c = ||x y||^p$, p > 1, the strict convexity of c guarantees that, if μ , ν are absolutely continuous with respect to Lebesgue measure, then there is a unique solution to the Kantorovich problem.
- c = ||x y||², optimal transference plans are the (restrictions of) gradients of convex functions.
- Many others in

Topics in Optimal Transportation, Cédric Villani, AMS (2003)

イロト イポト イヨト イヨト

Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

イロン イヨン イヨン イヨン

Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \underline{\mathcal{T}} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ \forall i, \forall j, \ \pi_{ij} \geq 0. \end{split}$$

・ロト ・日本 ・モート ・モート

Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \mathcal{I} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ \forall i, \forall j, \ \pi_{ij} \geq 0. \end{split}$$

then $\underline{\mathcal{T}} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Spatial discretization

< □ > < □ > < □ > < □ > < □ > .

Finite dimensional relaxation

Spatial discretization

Finite dimensional relaxation

Spatial discretization

Finite dimensional relaxation

Enclosing

If $\mu = f(x)dx$, and [f] an inclusion function for f then

$$\int_X f(x) \mathrm{d} x \in \sum_i [f](X_i) \lambda(X_i)$$

Finite dimensional relaxation

Proof

Let
$$\{X_i\}$$
, $\{Y_j\}$ be a pavings, let $\pi_{ij} = \pi(X_i \times Y_j)$ then $\forall \pi, \exists \xi_{ij} \in X_i \times Y_j$,

$$\sum_{i,j} c(\xi_{ij}) \pi_{ij} = \int_{X \times Y} c(x, y) \mathrm{d}\pi(x, y)$$
(3)

▲口> ▲圖> ▲注> ▲注>

Finite dimensional relaxation

Proof

Let
$$\{X_i\}$$
, $\{Y_j\}$ be a pavings, let $\pi_{ij} = \pi(X_i \times Y_j)$ then $\forall \pi, \exists \xi_{ij} \in X_i \times Y_j$,

$$\sum_{i,j} c(\xi_{ij}) \pi_{ij} = \int_{X \times Y} c(x, y) \mathrm{d}\pi(x, y)$$
(3)

Since
$$\underline{c}_{ij} \leq c(\xi_{ij})$$
 and $\pi_{ij} \geq 0$, then
 $\forall \pi,$

$$\sum_{i,j} \underline{c}_{ij} \pi_{ij} \leq \int_{X \times Y} c(x, y) d\pi(x, y)$$
(4)

・ロ・ ・回・ ・ヨ・ ・ヨ・

Finite dimensional relaxation

Proof

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \mathcal{K} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ \text{subject to} \quad \forall i, \ \mu_i = \sum_j \pi_{ij} = \mu_i, \\ \forall j, \ \nu_j = \sum_i \pi_{ij} = \nu_j, \\ \forall i, \forall j, \ \pi_{ij} \ge \mathbf{0}. \end{split}$$

then $\mathcal{K} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Proof

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y)$,

$$\begin{split} \underline{\mathcal{T}} = & \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\ & \text{subject to} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\ & \forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\ & \forall i, \forall j, \ \pi_{ij} \geq \mathbf{0}. \end{split}$$

then $\underline{\mathcal{T}} \leq \mathcal{T}_{c}(\mu, \nu).$

Finite dimensional relaxation

Example

イロン イヨン イヨン イヨン

Finite dimensional relaxation

イロト イヨト イヨト イヨト

Finite dimensional relaxation

Outline

1 Introduction to Optimal Transport

- Transportation
- Optimal Transport
- Some known results
- 2 A lower bound of the optimal value
 - Finite dimensional relaxation
- 3 An upper bound of the optimal value
 - Duality
 - Finite dimensional relaxation
- 4 Conclusion Future work

・ 同 ト ・ ヨ ト ・ ヨ ト

Duality Finite dimensional relaxation

Linear programming - Duality

Primal problem $\min_{x \in \mathbb{R}^n}$ $c^T x$ subject toAx = b, $x \ge 0.$

・ロン ・回 と ・ ヨン ・ ヨン

Duality Finite dimensional relaxation

Linear programming - Duality

Primal problem

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to $Ax = b$,
 $x \ge 0$

Dual problem

$$\begin{array}{ll}
\max_{y \in \mathbb{R}^m} & \boldsymbol{b}^T y \\
\text{subject to} & y_i \in \mathbb{R}, \\
& \boldsymbol{A}^T y \leq c.
\end{array}$$
(5)

Duality Finite dimensional relaxation

Duality

$$\inf_{\substack{\pi \in \mathcal{B}(X \times Y) \\ \text{subject to}}} \int_{X \times Y} c(x, y) d\pi(x, y)$$
$$\pi_X = \mu,$$
$$\pi_Y = \nu$$

$$\sup_{\substack{\phi,\psi\in\mathcal{C}_b(X,Y)\\ \text{subject to}}} \int_X \varphi(x) \, \mathrm{d}\mu(x) + \int_Y \psi(y) \, \mathrm{d}\nu(y)$$
(6)

・ロン ・雪と ・目と ・目と

Duality Finite dimensional relaxation

Duality

$$\inf_{\substack{\pi \in \mathcal{B}(X \times Y)}} \int_{X \times Y} c(x, y) d\pi(x, y)$$

subject to $\pi_X = \mu$,
 $\pi_Y = \nu$

$$\sup_{\substack{\phi,\psi\in\mathcal{C}_b(X,Y)\\ \text{subject to}}} \int_X \varphi(x) \, \mathrm{d}\mu(x) + \int_Y \psi(y) \, \mathrm{d}\nu(y)$$
(6)

where $\mathcal{C}_b(X, Y)$ denotes the set of all pairs of bounded and continuous functions $\phi: X \to \mathbb{R}$ and $\psi: Y \to \mathbb{R}$.

イロン イヨン イヨン イヨン

Duality Finite dimensional relaxation

Duality

$$\inf_{\pi \in \mathcal{B}(X \times Y)} \quad \int_{X \times Y} c(x, y) d\pi(x, y)$$

subject to $\pi_X = \mu,$
 $\pi_Y = \nu$

$$\sup_{\substack{\phi,\psi\in\mathcal{C}_b(X,Y)\\ \text{subject to}}} \int_X \varphi(x) \, \mathrm{d}\mu(x) + \int_Y \psi(y) \, \mathrm{d}\nu(y)$$
(6)

where $\mathcal{C}_b(X, Y)$ denotes the set of all pairs of bounded and continuous functions $\phi : X \to \mathbb{R}$ and $\psi : Y \to \mathbb{R}$.

If X is compact and Haussdorff, $C_b(X)^* = \{ \text{Radon measure} \}$

Duality Finite dimensional relaxation

Kantorovich Duality

The minimum of the Kantorovich problem is equal to

$$\mathcal{T}_{c}(\mu,\nu) = \sup_{\substack{\phi,\psi\in\mathcal{C}_{b}(X,Y)\\\text{subject to}}} \int_{X} \varphi(x) \, \mathrm{d}\mu(x) + \int_{Y} \psi(y) \, \mathrm{d}\nu(y)$$
(7)

・ロト ・回ト ・ヨト ・ヨト

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Interpretation in the discrete case

Duality Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

・ロト ・回ト ・ヨト ・ヨト

Duality Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

$$\overline{\mathcal{T}} = \sup_{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m} \sum_i \phi_i \overline{\mu}_i + \sum_j \psi_j \overline{\nu}_i$$
subject to
$$\phi_i + \psi_j \le \overline{c}_{ij}$$
(11)

・ロン ・回と ・ヨン ・ヨン

Duality Finite dimensional relaxation

Proposition - Relaxation

Let μ and ν (with support X and Y) be absolutely continuous measures with respect to Lebesgue measure. If $\{X_i\}_i$ and $\{Y_i\}_i$ be finite pavings of X and Y. Suppose that $\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j]$, and $\forall x, y \in X_i \times Y_j, c(x, y) \leq \overline{c}_{ij}$,

$$\overline{\mathcal{T}} = \sup_{\substack{(\phi_i) \in \mathbb{R}^n, (\psi_j) \in \mathbb{R}^m \\ \text{subject to} \\ \text{then} \\ \mathcal{T}_c(\mu, \nu) \leq \overline{\mathcal{T}}.$$

$$(11)$$

イロト イヨト イヨト イヨト

Duality Finite dimensional relaxation

Software

• filib - FI_LIB - A fast interval library,

http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

• GLPK - GNU Linear Programming Kit (GLPK),

http://www.gnu.org/software/glpk/

• GMP - GNU Multiple Precision Arithmetic Library,

https://gmplib.org/

• Source code is available on my webpage.

イロト イヨト イヨト イヨト

Future work

• Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.

・ロッ ・回 ・ ・ ヨッ ・

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):

・ロト ・回ト ・ヨト

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),
 - Others as in *Moments, Positive Polynomials and Their Applications*, J.B Lasserre, Imperial College Press Optimization Series (2009)

イロト イヨト イヨト イヨト

Future work

- Compute guaranteed enclosures of the solution combining linear programming and constraint propagation.
- Generalize this methodology to other problems (D. Henrion & J.B. Lasserre):
 - Probability and Markov Chains
 - Optimal Control with occupation measures (ODE),
 - Others as in *Moments, Positive Polynomials and Their Applications*, J.B Lasserre, Imperial College Press Optimization Series (2009)

Merci pour votre attention.

イロト イヨト イヨト イヨト