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Example in the discrete case

µ = (2, 1, 4) ν = (4, 2, 1)

A plan transference π

4 2 1

2 2 0 0
1 1 0 0
4 1 2 1

, π =

 2 0 0
1 0 0
1 2 1


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4 2 1

2 . . .
1 . . .
4 . . .

Solutions

π =

4 2 1

2 2 0 0
1 1 0 0
4 1 2 1

, π̃ =

4 2 1

2 1 0 1
1 1 0 0
4 2 2 0
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Definition - Transference plan

A transference plan (or a transportation) π is a measure on the
product space X × Y such that{

π(A× Y ) = µ(A),
π(X × B) = ν(B).

all measurable subsets A of X and B of Y .

In the discrete case {
∀i ,

∑
j πij = µi ,

∀j ,
∑

i πij = νj .
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Comparing two plan transferences

Transportation π Transportation π̃

I (π) = 0 + 0 + 1 + 2 + 1 + 1 + 0 = 5 I (π̃) = 0 + 2 + 1 + 2 + 2 + 1 + 1 = 9
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In the discrete case

min
π∈Rn⊗Rm

∑
i ,j

cijπij

subject to ∀i ,
∑
j

πij = µi ,

∀j ,
∑
j

πij = νj .

(1)

where cij are non negative real numbers which tells how much it
costs to transport one unit of mass from location i to location j .
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Kantorovich formulation

The optimal transportation cost between µ and ν is the value :

Tc(µ, ν) = inf
π∈B(X×Y )

∫
X×Y

c(x , y)dπ(x , y)

subject to πX = µ,

πY = ν

(2)

The optimal π’s, i.e. those such that I (π) = Tc(µ, ν), if they exist,
will be called optimal transference plans.
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Remark

The optimal transportation problem is an infinite dimensional
linear programming problem.
i.e. I is a linear cost function, and constraints are linear.
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1 c = ‖x − y‖p, p > 1 , the strict convexity of c guarantees
that, if µ, ν are absolutely continuous with respect to
Lebesgue measure, then there is a unique solution to the
Kantorovich problem.

2 c = ‖x − y‖2, optimal transference plans are the (restrictions
of) gradients of convex functions.

3 many others in

Topics in Optimal Transportation, Cédric Villani, AMS (2003)
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Finite dimensional relaxation

Proposition - Relaxation

Let µ and ν (with support X and Y ) be absolutely continuous measures
with respect to Lebesgue measure. If {Xi}i and {Yi}i be finite pavings of
X and Y . Suppose that µ(Xi ) ∈ [µ

i
, µi ], ν(Yj) ∈ [ν j , ν j ], and

∀x , y ∈ Xi × Yj , c ij ≤ c(x , y),

T = min
πij∈Rn⊗Rm

∑
i,j

c ijπij

subject to ∀i , µ
i
≤
∑
j

πij ≤ µi ,

∀j , ν j ≤
∑
i

πij ≤ ν j ,

∀i ,∀j , πij ≥ 0.

then T ≤ Tc(µ, ν).
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Spatial discretization
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Enclosing

If µ = f (x)dx , and [f ] an inclusion function for f then∫
X
f (x)dx ∈

∑
i

[f ](Xi )λ(Xi )

µ
i

µ(X ) µi∑
i f (Xi )λ(Xi ) ≤

∫
X f (x)dx ≤

∑
i f (Xi )λ(Xi )
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Finite dimensional relaxation

Proof

Let {Xi}, {Yj} be a pavings, let πij = π(Xi × Yj) then
∀π,∃ξij ∈ Xi × Yj ,∑

i ,j

c(ξij)πij =

∫
X×Y

c(x , y)dπ(x , y) (3)

Since c ij ≤ c(ξij) and πij ≥ 0, then
∀π, ∑

i ,j

c ijπij ≤
∫
X×Y

c(x , y)dπ(x , y) (4)
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Finite dimensional relaxation

Example

X = Y = [0, 1]

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

1

0.2
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0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

µ = 1dx ν = 1.5(1− y2)dy

c(x , y) = ‖x − y‖2
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Finite dimensional relaxation
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Figure : Guaranteed lower bounds of Tc(µ, ν) where n = Card{Xi}i
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Duality
Finite dimensional relaxation

Linear programming - Duality

Primal problem

min
x∈Rn

cT x

subject to Ax = b,

x ≥ 0.

Dual problem

max
y∈Rm

bT y

subject to yi ∈ R,
AT y ≤ c .

(5)
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Duality

inf
π∈B(X×Y )

∫
X×Y

c(x , y)dπ(x , y)

subject to πX = µ,

πY = ν

sup
φ,ψ∈Cb(X ,Y )

∫
X

ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

subject to ϕ(x) + ψ(y) ≤ c(x , y).

(6)

where Cb(X ,Y ) denotes the set of all pairs of bounded and continuous
functions φ : X → R and ψ : Y → R.

If X is compact and Haussdorff, Cb(X )∗ = {Radon measure}
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Duality
Finite dimensional relaxation

Kantorovich Duality

The minimum of the Kantorovich problem is equal to

Tc(µ, ν) = sup
φ,ψ∈Cb(X ,Y )

∫
X
ϕ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

subject to ϕ(x) + ψ(y) ≤ c(x , y).

(7)
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Interpretation in the discrete case

sup
(φi )∈Rn,(ψj )∈Rm

∑
i

φiµi +
∑
j

ψjνi

subject to φi + ψj ≤ cij

(8)
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Duality
Finite dimensional relaxation

Proposition - Relaxation

Let µ and ν (with support X and Y ) be absolutely continuous measures
with respect to Lebesgue measure. If {Xi}i and {Yi}i be finite pavings of
X and Y . Suppose that µ(Xi ) ∈ [µ

i
, µi ], ν(Yj) ∈ [ν j , ν j ], and

∀x , y ∈ Xi × Yj , c(x , y) ≤ c ij ,

T = sup
(φi )∈Rn,(ψj )∈Rm

∑
i

φiµi +
∑
j

ψjν i

subject to φi + ψj ≤ c ij

(11)

then Tc(µ, ν) ≤ T .
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Figure : Guaranteed upper bounds of Tc(µ, ν) where n = Card{Xi}i
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Software

filib - FI LIB - A fast interval library,
http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

GLPK - GNU Linear Programming Kit (GLPK),
http://www.gnu.org/software/glpk/

GMP - GNU Multiple Precision Arithmetic Library,
https://gmplib.org/

Source code is available on my webpage.

Nicolas Delanoue Interval analysis and Optimal Transport
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Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains
Optimal Control with occupation measures (ODE),
Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport



Introduction to Optimal Transport
A lower bound of the optimal value

An upper bound of the optimal value
Conclusion - Future work

Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains
Optimal Control with occupation measures (ODE),
Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport



Introduction to Optimal Transport
A lower bound of the optimal value

An upper bound of the optimal value
Conclusion - Future work

Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains

Optimal Control with occupation measures (ODE),
Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport



Introduction to Optimal Transport
A lower bound of the optimal value

An upper bound of the optimal value
Conclusion - Future work

Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains
Optimal Control with occupation measures (ODE),

Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport



Introduction to Optimal Transport
A lower bound of the optimal value

An upper bound of the optimal value
Conclusion - Future work

Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains
Optimal Control with occupation measures (ODE),
Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport



Introduction to Optimal Transport
A lower bound of the optimal value

An upper bound of the optimal value
Conclusion - Future work

Future work

Compute guaranteed enclosures of the solution combining
linear programming and constraint propagation.

Generalize this methodology to other problems (D. Henrion &
J.B. Lasserre):

Probability and Markov Chains
Optimal Control with occupation measures (ODE),
Others as in Moments, Positive Polynomials and Their
Applications, J.B Lasserre, Imperial College Press Optimization
Series (2009)

Merci pour votre attention.

Nicolas Delanoue Interval analysis and Optimal Transport


	Introduction to Optimal Transport
	Transportation
	Optimal Transport
	Some known results

	A lower bound of the optimal value
	Finite dimensional relaxation

	An upper bound of the optimal value 
	Duality
	Finite dimensional relaxation

	Conclusion - Future work

