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A transference plan (or a transportation) 7 is a measure on the
product space X x Y such that

5

1(A),
v(B).

all measurable subsets A of X and B of Y.
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A transference plan (or a transportation) 7 is a measure on the
product space X x Y such that

5

1(A),
v(B).

all measurable subsets A of X and B of Y.

In the discrete case

{ Vi, Zjﬂfj = WUy,

Vi, > imij = vj.
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In the discrete case

min E CjiTji
TERNQRM — YTy
ij

subject to Vi, Zﬂ'ij = W, (1)

J
Vi, Y mj=v;.
J

where ¢j; are non negative real numbers which tells how much it
costs to transport one unit of mass from location / to location j.
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Kantorovich formulation
The optimal transportation cost between u and v is the value :

C b — i f bl d )
Teun) = _jof [ elxy)intey)

()

subject to wx = u,

Ty =V

.

The optimal 7's, i.e. those such that /(7)) = Tc(u,v), if they exist,
will be called optimal transference plans.
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The optimal transportation problem is an infinite dimensional
linear programming problem.
i.e. | is a linear cost function, and constraints are linear.
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QO c=|x—y|P, p>1, the strict convexity of ¢ guarantees
that, if u, v are absolutely continuous with respect to
Lebesgue measure, then there is a unique solution to the
Kantorovich problem.
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@ c = ||x — y||?, optimal transference plans are the (restrictions
of) gradients of convex functions.

© many others in

Topics in Optimal
Tr tion

Topics in Optimal Transportation, Cédric Villani, AMS (2003)
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A lower bound of the optimal value Fifts coeste] celbefa

Proposition - Relaxation

Let u and v (with support X and Y') be absolutely continuous measures
with respect to Lebesgue measure. If {X;}; and {Y;}; be finite pavings of
X and Y. Suppose that u(X;) € [p,, 1], v(Y) € [}, 7], and

Vx,y € Xi x Yj,¢; < c(x,y),
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i ERQRM

T = min E CijTij
ij

subject to Vi, M < Zﬂ',‘j <,
J

1

Vi,¥j, m; > 0.
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Proposition - Relaxation

Let u and v (with support X and Y') be absolutely continuous measures
with respect to Lebesgue measure. If {X;}; and {Y;}; be finite pavings of
X and Y. Suppose that u(X;) € [p,, 1], v(Y) € [}, 7], and

Vx,y € Xi x Yj,¢; < c(x,y),

T = min g CijTij
ij

i ERQRM

subject to Vi, M < Zﬂ',‘j <,

J
i

Vi,¥j, m; > 0.

then T < Te(p, v). J
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Finite dimensional relaxation

Spatial discretizati

Y Y, Y3
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Finite dimensional relaxation

Enclosing

If © = f(x)dx, and [f] an inclusion function for f then

/X Fx)dx € STIACOAX)

K u(X) R

o E(XDAX) < Jx f(x)dx < 30 F(XDA(X)
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Proof

Let {X;}, {Y;} be a pavings, let mjj = m(X; x Yj) then
v, 3 € Xi x Y,

S cl€g)m = /X | clxyin(x.y) 3)

i
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Proof

Let {X;}, {Y;} be a pavings, let mjj = m(X; x Yj) then
v, 3 € Xi x Y,

S cl€g)m = /X | clxyin(x.y) 3)

i

Since ¢;; < c(j) and 7; > 0, then

Y,
Semi< [ cloydnixy) (@
i XxY
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Proof

Let u and v (with support X and Y') be absolutely continuous measures
with respect to Lebesgue measure. If {X;}; and {Y;}; be finite pavings of
X and Y. Suppose that p(X;) € [, 5], v(Yj) € [y, 7], and

Vx,y € Xi X Y, ¢; < c(x,y),

K= min E C.Tjj
7 ER"QR™M s =uTY
isj
subject to Vi, p; = E A =1
J

V_j7 Vj: E 7T,'J':Vj,
i

VI-,VJ., Tij Z 0.

then K < Te(p,v). J
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Example
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Finite dimensional relaxation

N
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Figure : Guaranteed lower bounds of 7;(u,v) where n = Card{X;};
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Duality
An upper bound of the optimal value Finite dimensional relaxation

Linear programming - Duality

Primal problem

min cTx

xeRn

subject to Ax = b,
x > 0.
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Linear programming - Duality

Primal problem

min cTx

x€ERN

subject to Ax = b,
x > 0.

Dual problem

max b7

yeRm y

subject to y; € R, (5)
ATy < c.
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Duality

inf ,y)dm(x,
. /X | clxyin(x.y)

subject to wx = U,

Ty =V

sup /X p(x) du(x) + /Y ¥(y)dr(y)

b, PECH(X,Y)
subject to () + t(y) < c(x,).
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Duality

inf ,y)dm(x,
. /X | clxyin(x.y)

subject to wx = U,

Ty =V

sup /X p(x) du(x) + /Y ¥(y)dr(y)

b, PECH(X,Y)
subject to () + t(y) < c(x,).

(6)

where Cp(X, Y) denotes the set of all pairs of bounded and continuous
functions o : X - R and ¢ : Y — R.
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Duality

inf ,y)dm(x,
. /X | clxyin(x.y)

subject to wx = U,

Ty =V

sup /X p(x) du(x) + /Y ¥(y)dr(y)

b, PECH(X,Y)
subject to () + t(y) < c(x,).

(6)

where Cp(X, Y) denotes the set of all pairs of bounded and continuous
functions o : X - R and ¢ : Y — R.

If X is compact and Haussdorff, C,(X)* = {Radon measure} |




Duality
An upper bound of the optimal value Finite dimensional relaxation

Kantorovich Duality

The minimum of the Kantorovich problem is equal to

Te(wv)=  sup /X o(x) du(x) + /Y b(y) du(y)

¢ pECH(X,Y)
subject to () +1(y) < c(x,y).

(7)
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An upper bound of the optimal value Finite dimensional relaxation

Interpretation in the discrete case
su > i+ Z Y

(¢i)eR, w,)eR’" ; (8)
subject to i +v¢; < ¢

h= R e
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Interpretation in the discrete case
> i+ Z YV

(¢>,)6R w,)eR’" ; (9)

subject to i +v¢; < ¢
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> i+ Z YV

(6r)Rn ()R ; (10)

subject to i +v¢; < ¢

= =
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Proposition - Relaxation

Let u and v (with support X and Y') be absolutely continuous measures
with respect to Lebesgue measure. If {X;}; and {Y;}; be finite pavings of
X and Y. Suppose that p(X;) € [p., 5], v(Y) € [v,7], and

Vx,y € Xi x Yj, c(x,y) < Tjj,
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(¢i)ER™,(Y;)ER™ i F (11)
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Proposition - Relaxation

Let u and v (with support X and Y') be absolutely continuous measures
with respect to Lebesgue measure. If {X;}; and {Y;}; be finite pavings of
X and Y. Suppose that p(X;) € [p., 5], v(Y) € [v,7], and

VX»)/ € Xi X \/J'7C(X,y) < Eyv

(¢pi)ER",(;)ER™

subject to i+ < ¢

T= sup Z bip; + Z Vv
i J

then Te(p,v) <T. J
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Figure : Guaranteed upper bounds of 7¢(u,v) where n = Card{X;};
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Conclusion - Future work

o filib - FI_LIB - A fast interval library,

http://www2.math.uni-wuppertal.de/~xsc/software/filib.html

@ GLPK - GNU Linear Programming Kit (GLPK),

http://www.gnu.org/software/glpk/

@ GMP - GNU Multiple Precision Arithmetic Library,

https://gmplib.org/

@ Source code is available on my webpage.
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Merci pour votre attention. J
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