A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d’Angers - France

SMART 2014
1st Small Symposium on Set-Membership: Applications, Reliability and Theory
The University of Manchester, Aerospace Research Institute, Manchester, UK
http://www.umari.manchester.ac.uk/aboutus/events/
Outline

1. Introduction to classification
 - Objects, Equivalence, Invariants
 - Discretization - Portrait of a map

2. Stable mappings of the plane and their singularities
 - Stable maps
 - Whitney Theorem - Normal forms
 - Compact simply connected with boundary

3. Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

4. Computing the Apparent Contour

5. Conjecture, Application and Conclusion
 - Conclusion
Objects

The set of square matrices of order n (denoted by \mathcal{M}_n)
Objects
The set of square matrices of order n (denoted by \mathcal{M}_n)

Equivalence
We can defined an equivalence relation \sim between elements of \mathcal{M}_n with

$$A \sim B \iff \exists P \in GL, A = PBP^{-1}$$
Objects

The set of square matrices of order n (denoted by \mathcal{M}_n)

Equivalence

We can defined an equivalence relation \sim between elements of \mathcal{M}_n with

$$A \sim B \iff \exists P \in GL, A = PBP^{-1}$$

Invariant

The set of eigenvalues is an invariant because

$$A \sim B \Rightarrow sp(A) = sp(B)$$
Invariant

The set of eigenvalues is \textit{not a strong enough} invariant since

$$\exists A, B \in \mathcal{M}_n, A \not\sim B \text{ and } sp(A) = sp(B)$$
Invariant

The set of eigenvalues is not a strong enough invariant since

\[\exists A, B \in \mathcal{M}_n, A \not\sim B \text{ and } sp(A) = sp(B) \]

Example

\[A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]
Invariant

The set of eigenvalues is *not a strong enough* invariant since

\[\exists A, B \in \mathcal{M}_n, A \not\sim B \text{ and } sp(A) = sp(B) \]

Example

\[A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]

A really strong invariant

Let us call by \(J \) the Jordan method, we have

\[A \sim B \iff J(A) = J(B) \]
<table>
<thead>
<tr>
<th>Objects</th>
<th>Equivalence</th>
<th>Invariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square matrices</td>
<td>(A \sim B \iff \exists P \in GL, A = PBP^{-1})</td>
<td>Eigenvalues,</td>
</tr>
<tr>
<td>Objects</td>
<td>Equivalence</td>
<td>Invariants</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Square matrices</td>
<td>$A \sim B \iff \exists P \in GL, A = PBP^{-1}$</td>
<td>Eigenvalues, Jordanisation</td>
</tr>
<tr>
<td>Objects</td>
<td>Equivalence</td>
<td>Invariants</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Square matrices</td>
<td>$A \sim B \iff \exists P \in GL, A = PBP^{-1}$</td>
<td>Eigenvalues, Jordanisation</td>
</tr>
<tr>
<td>Real bilinear forms</td>
<td>$A \sim B \iff \exists U, V \in SO, A = UBV$</td>
<td>Singularvalues</td>
</tr>
</tbody>
</table>

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d'Angers - France
<table>
<thead>
<tr>
<th>Objects</th>
<th>Equivalence</th>
<th>Invariants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square matrices</td>
<td>$A \sim B \Leftrightarrow \exists P \in \text{GL}, A = PBP^{-1}$</td>
<td>Eigenvalues, Jordanisation</td>
</tr>
<tr>
<td>Real bilinear forms</td>
<td>$A \sim B \Leftrightarrow \exists U, V \in \text{SO}, A = UBV$</td>
<td>Singularvalues</td>
</tr>
<tr>
<td>Smooth maps</td>
<td>$f \sim f'$ if there exist diffeomorphic changes of variables (g, h) on X and Y such that $f = g \circ f' \circ h$</td>
<td>?</td>
</tr>
</tbody>
</table>

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Global picture

One wants a **global “picture”** of a given map which does not depend on a choice of system of coordinates neither on the source set nor on the target set.
Global picture

One wants a global “picture” of a given map which does not depend on a choice of system of coordinates neither on the source set nor on the target set.

Definition - Equivalence

Let f and f' be two smooth maps. Then $f \sim f'$ if there exists diffeomorphisms $g : X \to X'$ and $h : Y' \to Y$ such that the diagram

$$
\begin{align*}
X & \xrightarrow{f} Y \\
\downarrow{g} & \quad & \quad \uparrow{h} \\
X' & \xrightarrow{f'} Y'
\end{align*}
$$

commutes.
Example

\[\mathbb{R} \xrightarrow{2x+6} \mathbb{R} \]
\[\mathbb{R} \xrightarrow{x+1} \mathbb{R} \]
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Example

$\mathbb{R} \xrightarrow{2x+6} \mathbb{R}$

$\mathbb{R} \xrightarrow{x+1} \mathbb{R}$
Examples

1. \(f_1(x) = x^2, \quad f_2(x) = ax^2 + bx + c, \quad a \neq 0 \)
 \[f_1 \sim f_2 \]

2. \(f_1(x) = x^2 + 1, \quad f_2(x) = x + 1, \)
 \[f_1 \not\sim f_2 \]
Examples

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d'Angers - France
Examples

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d’A
Proposition

Suppose that $f \sim f'$ with

\[
\begin{array}{c}
x_1 \xrightarrow{f} y_1 \\
g \downarrow \\
x_2 \xrightarrow{f'} y_2 \\
\end{array}
\]

then $f^{-1}(\{y_1\})$ is homeomorphic to $f'^{-1}(\{y_2\})$.
Proposition

Suppose that $f \sim f'$ with

$$
\begin{array}{ccc}
 x_1 & \xrightarrow{f} & y_1 \\
 \downarrow g & & \uparrow h \\
 x_2 & \xrightarrow{f'} & y_2
\end{array}
$$

then $\text{rank } df_{x_1} = \text{rank } df'_{x_2}$.

Proof

Chain rule, $df = dh \cdot df' \cdot dg$
Definition

Let us defined by S_f the set of critical points of f:

$$S_f = \{x \in X \mid df(x) \text{ is singular} \}.$$

Corollary

$$f \sim f' \Rightarrow S_f \simeq S_{f'}$$

where \simeq means homeomorphic.

i.e. the topology of the critical points set is an invariant.
This is not a strong enough invariant, there exists smooth maps $f, f' : [0, 1] \to [0, 1]$ such that

$$S_f \simeq S_{f'} \text{ and } f \not\sim f'.$$

Figure: Singularity theory.
This is not a strong enough invariant, there exists smooth maps $f, f' : [0, 1] \rightarrow [0, 1]$ such that

$$S_f \simeq S_{f'} \text{ and } f \not\sim f'.$$

\[\text{Figure : Topology of } X. \]
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Objects, Equivalence, Invariants
The one-dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d'Angers - France
Introducing classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Objects, Equivalence, Invariants
The one-dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Objects, Equivalence, Invariants
The one dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Objects, Equivalence, Invariants
The one dimensional case
Discretization - Portrait of a map
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

The one dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2. Objects, Equivalence, Invariants

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d'Angers - France

Discretization - Portrait of a map
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Objects, Equivalence, Invariants
The one dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

The one dimensional case
Discretization - Portrait of a map

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.
 Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Definition - Abstract simplicial complex

Let \mathcal{N} be a finite set of symbols $\{(a^0), (a^1), \ldots, (a^n)\}$.

An abstract simplicial complex \mathcal{K} is a subset of the powerset of \mathcal{N} satisfying: $\sigma \in \mathcal{K} \Rightarrow \forall \sigma_0 \subset \sigma, \sigma_0 \in \mathcal{K}$.
\[\mathcal{K} = \{(a^0), (a^1), (a^2), (a^3), (a^4), \\
(a^0, a^1), (a^1, a^2), (a^0, a^2), (a^3, a^4), \\
(a^0, a^1, a^2)\} \]

This will be denoted by \(a^0 a^1 a^2 + a^3 a^4 \)
Definition

Given abstract simplicial complexes \mathcal{K} and \mathcal{L}, a simplicial map $F : \mathcal{K}^0 \rightarrow \mathcal{L}^0$ is a map with the following property:

$$(a^0, a^1, \ldots, a^n) \in \mathcal{K} \Rightarrow (F(a^0), F(a^1), \ldots, F(a^n)) \in \mathcal{L}.$$
Example - Simplicial map

\[K = a_0 a_1 + a_1 a_2 + a_2 a_3, \quad L = b_0 b_1 + b_1 b_2 \]

\[F : \quad a^0 \mapsto b^0 \]
\[a^1 \mapsto b^1 \]
\[a^2 \mapsto b^2 \]
\[a^3 \mapsto b^1 \]
Example - NOT a Simplicial map

\[K = a_0a_1 + a_1a_2 + a_2a_3, \quad L = b_0b_1 + b_1b_2 \]

\[F : a^0 \mapsto b^0, \quad a^1 \mapsto b^1, \quad a^2 \mapsto b^2, \quad a^3 \mapsto b^0 \]
Example - Simplicial map

\(\mathcal{K} = a_0 a_1 a_2 + a_1 a_2 a_3, \quad \mathcal{L} = b_0 b_1 b_2 \)

\[
\begin{align*}
F : & \quad a^0 \mapsto b^0 \\
& \quad a^1 \mapsto b^1 \\
& \quad a^2 \mapsto b^2 \\
& \quad a^3 \mapsto b^0
\end{align*}
\]
Definition

Let f and f' be continuous maps. Then f and f' are \textit{topologically conjugate} if there exists homeomorphism $g : X \to X'$ and $h : Y \to Y'$ such that the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{g} & & \uparrow{h} \\
X' & \xrightarrow{f'} & Y'
\end{array}
\]

commutes.

Proposition

\[f \sim f' \Rightarrow f \sim_0 f'\]
Definition

Let f be a smooth map and F a simplicial map, F is a portrait of f if

$$f \sim_0 F$$
Example - Simplicial map

The simplicial map

is a portrait of \([-4, 3] \ni x \mapsto x^2 - 1 \in \mathbb{R}\)
Proposition

For every closed subset A of \mathbb{R}^n, there exists a smooth real valued function f such that

$$A = f^{-1}({0})$$
Proposition

For every closed subset A of \mathbb{R}^n, there exists a smooth real valued function f such that

$$A = f^{-1} \{0\}$$

We are not going to consider all cases ...
Definition

Let f be a smooth map, f is stable if there exists a neighborhood N_f such that

$$\forall f' \in N_f, f' \sim f$$

Examples

1. $g : x \mapsto x^2$ is stable,
2. $f_0 : x \mapsto x^3$ is not stable, since with $f_\epsilon : x \mapsto x(x^2 - \epsilon),

$$\epsilon \neq 0 \Rightarrow f_\epsilon \not\sim f_0.$$
Whitney Theorem - 1955

Let X and Y be 2-dimensional manifolds and f be generic. The critical point set S_f is a regular curve. With $p \in S_f$, one has

$$T_p S_f \oplus \ker df_p = T_p X \quad \text{or} \quad T_p S_f = \ker df_p$$

Geometric representation

1. if $T_p S_f \oplus \ker df_p = T_p X$,

2. if $T_p S_f = \ker df_p$,
Geometric representation

1. \(T_p S_f \oplus \ker df_p = T_p X : \text{fold point} \)

2. \(T_p S_p = \ker df_p : \text{cusp point} \)
Geometric representation

1. $T_p S_f \oplus \ker df_p = T_p X :$ fold point

2. $T_p S_p = \ker df_p :$ cusp point
Normal forms

1. If $T_p S_f \oplus \ker df_p = T_p X$, then there exists a nbd N_p such that
 \[f|N_p \sim (x, y) \mapsto (x, y^2). \]

2. If $T_p S_f = \ker df_p$, then there exists a nbd N_p such that
 \[f|N_p \sim (x, y) \mapsto (x, xy + y^3). \]
Definition

Let f a smooth map from $X \rightarrow \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X. The *apparent contour* of f is

$$f(S_f \cup \partial X)$$

The topology of the Apparent contour is an invariant.
Definition

Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X. The *apparent contour* of f is

$$f(S_f \cup \partial X)$$

The topology of the Apparent contour is an invariant.
Definition

Let \(f \) a smooth map from \(X \rightarrow \mathbb{R}^2 \) with \(X \) a simply connected compact subset of \(\mathbb{R}^2 \) with smooth boundary \(\partial X \). The *apparent contour* of \(f \) is

\[
f(S_f \cup \partial X)
\]

The topology of the Apparent contour is an invariant.
Definition

Let f a smooth map from $X \rightarrow \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X. The *apparent contour* of f is

$$f(S_f \cup \partial X)$$

The *topology of the Apparent contour* is an invariant.
Definition

Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X. The apparent contour of f is

$$f(S_f \cup \partial X)$$

The topology of the Apparent contour is an invariant.
Theorem (Global properties of generic maps)

Let X be a compact simply connected domain of \mathbb{R}^2 with $\partial X = \Gamma^{-1}(\{0\})$. A generic smooth map f from X to \mathbb{R}^2 has the following properties:

1. S_f is regular curve. Moreover, elements of S are folds and cusp. The set of cusp is discrete.
Theorem

1. 3 singular points do not have the same image,
2. 2 singular points having the same image are folds points and they have normal crossing.
Theorem

4. **3 boundary points do not have the same image,**

5. **2 boundary points having the same image cross normally.**
Theorem

6. **3 different points belonging to** $S_f \cup \partial X$ **do not have the same image,**

7. **If a point on the singularity curve and a boundary have the same image, the singular point is a fold and they have normal crossing.**
Theorem

8. if the singularity curve intersects the boundary, then this point is a fold,

9. moreover tangents to the singularity curve and boundary curve are different.
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.
Proposition

Let \(f \) be a smooth generic map from \(X \) to \(\mathbb{R}^2 \), let us denote by \(c \) the map defined by:

\[
\begin{align*}
 c : X & \to \mathbb{R}^2 \\
 p & \mapsto df_p \xi_p
\end{align*}
\]

(1)

where \(\xi \) is the vector field defined by \(\xi_p = \left(\begin{array}{c} \partial_2 \det df_p \\ -\partial_1 \det df_p \end{array} \right) \).

If \(c(p) = 0 \) and \(dc_p \) is invertible then \(p \) is a simple cusp. This sufficient condition is locally necessary.
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \).
Computing the Apparent Contour
Conjecture, Application and Conclusion

Interval Newton method

\[
\begin{align*}
c & : X \rightarrow \mathbb{R}^2 \\
p & \mapsto df_p \xi_p
\end{align*}
\]
Interval Newton method

\[c : X \rightarrow \mathbb{R}^2 \]
\[p \mapsto df_p \xi_p \]
2 different folds

\[S^{\Delta^2} = \{(x_1, x_2) \in S \times S - \Delta(S) \mid f(x_1) = f(x_2)\} / \simeq \]

where \(\simeq \) is the relation defined by
\[(x_1, x_2) \simeq (x'_1, x'_2) \iff (x_1, x_2) = (x'_2, x'_1). \]
2 different folds

$S^\Delta^2 = \{(x_1, x_2) \in X \times X - \Delta(X) | \begin{align*}
\det df_{x_1} &= 0 \\
\det df_{x_2} &= 0 \\
f_1(x_1) &= f_1(x_2) \\
f_2(x_1) &= f_2(x_2)
\end{align*}\} \sim$

where \sim is the relation defined by
$(x_1, x_2) \sim (x'_1, x'_2) \iff (x_1, x_2) = (x'_2, x'_1)$.

Method

Bisection scheme on $X \times X$.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Method

Bisection scheme on $X \times X$.

\mathbb{R}^2
Method

Bisection scheme on $X \times X$.

\[\mathbb{R}^2\]

X
Method

Bisection scheme on $X \times X$.

\[
\begin{array}{c}
\mathbb{R}^2 \\
\downarrow \\
X \\
\downarrow \\
\mathbb{R}^2
\end{array}
\]
Method

Bisection scheme on $X \times X$.

A guaranteed numerical method to classify smooth mappings from R^2 to R^2.
Method

Bisection scheme on \(X \times X \).

\[\mathbb{R}^2 \]

\[X \]

\[\Delta X \]

\[\mathbb{R}^2 \]
Method

Bisection scheme on $X \times X$.

\[\mathbb{R}^2 \]

\[X \]

\[\mathbb{R}^2 \]
Method

Bisection scheme on $X \times X$.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Computing the Apparent Contour
Conjecture, Application and Conclusion
Method

Bisection scheme on $X \times X$.

\[
\begin{align*}
\mathbb{R}^2 & \quad \mathbb{R}^2 \\
X & \quad X
\end{align*}
\]
Method

Bisection scheme on $X \times X$.
Method

Bisection scheme on $X \times X$.

![Diagram](image-url)
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Method

Bisection scheme on $X \times X$.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

$[x_1] \neq [x_2]$
Let us define the map $folds$ by

$$folds : \quad X \times X \quad \rightarrow \quad \mathbb{R}^4$$

$$\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) \quad \mapsto \quad \left(\begin{array}{c} \det df(x_1, y_1) \\ \det df(x_2, y_2) \\ f_1(x_1, y_1) - f_1(x_2, y_2) \\ f_2(x_1, y_1) - f_2(x_2, y_2) \end{array} \right)$$

One has

$$S^{\Delta^2} = folds^{-1}(\{0\}) - \Delta S / \simeq.$$
For any \((\alpha, \alpha)\) in \(\Delta S\), the d folds is conjugate to

\[
\begin{pmatrix}
 a & b & 0 & 0 \\
 0 & 0 & a & b \\
a_{11} & a_{12} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{21} & a_{22}
\end{pmatrix}
\]

which is not invertible since \(\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \det df(\alpha) = 0\). In other words, as any box of the form \([x_1] \times [x_1]\) contains \(\Delta S\), the interval Newton method will fail.

One needs a method to prove that \(f|S \cap [x_1]\) is an embedding.
One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$[x_1] = [x_2]$
One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$[x_1] = [x_2]$

Not in this case ...
Corollary

Let $f : X \to \mathbb{R}^2$ be a smooth map and X a compact subset of \mathbb{R}^2. Let $\Gamma : X \to \mathbb{R}$ be a submersion such that the curve $S = \{ x \in X \mid \Gamma(x) = 0 \}$ is contractible. If

$$\forall J \in \tilde{df}(X) \cdot \begin{pmatrix} \partial_2 \Gamma(X) \\ -\partial_1 \Gamma(X) \end{pmatrix}, \text{rank } J = 1$$

then $f|S$ is an embedding.
The last condition is not satisfiable if $[x_1]$ contains a cusp . . .

Proposition

Suppose that there exists a unique simple cusp p_0 in the interior of X. Let $\alpha \in \mathbb{R}^2^*$, s.t. $\alpha \cdot \text{Im} \ df_{p_0} = 0$, and ξ a non vanishing vector field such that $\forall p \in S, \xi_p \in T_pS$ (S contractible).

If $g = \sum \alpha_i \xi^3 f_i : X \to \mathbb{R}$ is a nonvanishing function then $f|S$ is injective. This condition is locally necessary.

Here the vector field ξ is seen as the derivation of $\mathcal{C}^\infty(X)$ defined by

$$\xi = \sum \xi_i \frac{\partial}{\partial x_i}.$$
Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

\[\partial X^{\Delta^2} = \{(x_1, x_2) \in \partial X \times \partial X - \Delta(\partial X) \mid f(x_1) = f(x_2)\}/ \simeq \]
A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

$[x_1] \neq [x_2]$

$[x_1] = [x_2]$
Let us define the map boundaries by

$$\text{boundaries} : \quad X \times X \quad \rightarrow \quad \mathbb{R}^4$$

$$\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \left(\begin{array}{c} x_2 \\ y_2 \end{array} \right) \quad \mapsto \quad \left(\begin{array}{c} \Gamma(x_1, y_1) \\ \Gamma(x_2, y_2) \\ f_1(x_1, y_1) - f_1(x_2, y_2) \\ f_2(x_1, y_1) - f_2(x_2, y_2) \end{array} \right)$$

One has

$$\partial X^{\Delta^2} = \text{boundaries}^{-1}({0}) - \Delta \partial X / \simeq .$$
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

$$BF = \{(x_1, x_2) \in \partial X \times S \mid f(x_1) = f(x_2)\}$$
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Nicolas Delanoue - Sébastien Lagrange
LARIS - Université d'A
A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

$[x_1] \neq [x_2]$

$[x_1] = [x_2]$
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

$$[x_1] \neq [x_2]$$

$$\mathbb{R}^4 \ni \left(\begin{array}{c}
\det df(x_1, y_1) \\
\Gamma(x_2, y_2) \\
f_1(x_1, y_1) - f_1(x_2, y_2) \\
f_2(x_1, y_1) - f_2(x_2, y_2)
\end{array} \right)$$

$$[x_1] = [x_2]$$

$$\mathbb{R}^2 \ni \left(\begin{array}{c}
\det df(x_1, y_1) \\
\Gamma(x_1, y_1)
\end{array} \right)$$
Computing the Apparent Contour
Conjecture, Application and Conclusion

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Computing the Apparent Contour
Conjecture, Application and Conclusion

Synthesis

\[
X = \begin{pmatrix}
 e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 & e_9 & e_{10} & e_{11}
\end{pmatrix}
\]

\[
\chi = \begin{pmatrix}
a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
b & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
c_1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
c_2 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
d_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
d_2 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
e_1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
e_2 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
f & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
g & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{pmatrix}
\]
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Synthesis

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

\[\mathcal{X}/f = \begin{pmatrix} e^1 & e^2 & e^3 & e^4 & e^5 & e^6 & e^7 & e^8 & e^9 & e^{10} & e^{11} \\ A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ B & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ C & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ D & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ E & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ F & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ G & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \]
Theorem

For every portrait F of f, the 1-skeleton of $\text{Im}F$ contains a subgraph that is an expansion of \mathcal{X}/f.
Conjecture

From \mathcal{X}/f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From \mathcal{X}/f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From \mathcal{X}/f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From X'/f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
A numerical approach to compute the topology of the Apparent Contour of a smooth mapping from \mathbb{R}^2 to \mathbb{R}^2, Nicolas Delanoue, Sébastien Lagrange, Journal of Computational and Applied Mathematics

Stable Mappings and Their Singularities, M. Golubitsky, V. Guillemin, Springer
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.

Conjecture
Application to robotics
Conclusion
End effector
Position of the end effector depends on α and β

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

$$\left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \mapsto \left(\begin{array}{c} 2 \cos(\alpha) + \cos(\alpha + \beta) \\ 2 \sin(\beta) + \sin(\alpha + \beta) \end{array} \right)$$

Configuration space

Working space

Nicolas Delanoue - Sébastien Lagrange LARIS - Université d'Angers - France
Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Introduction to classification
Stable mappings of the plane and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Computing the Apparent Contour
Conjecture, Application and Conclusion

Nicolas Delanoue - Sébastien Lagrange - LARIS - Université d’A

A guaranteed numerical method to classify smooth mappings from \mathbb{R}^2 to \mathbb{R}^2.
Application

Computing *intrinsic properties* of a robot to understand its behaviour.

\[x = f(\alpha) \]
Guaranteed detection of the singularities of 3R robotic manipulators by Romain BENOIT in EUCOMES 2014.
Source code is available on my webpage.
Source code is available on my webpage.

Merci pour votre attention.