Attraction domain of a nonlinear system using interval analysis and Lyapunov Theory

Nicolas Delanoue - Luc Jaulin

School and Conference on Computational Methods in Dynamics - Triestre

(本間) (本語) (本語)

Outline

Introduction

- Output
- Main steps of the algorithm
- 2 A neighborhood inside the attraction domain
 - Introduction Hartman Grobman
 - Non negative
 - Lyapunov Theory
 - Algorithm

3 Discretization

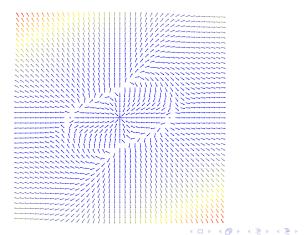
- Relation Graph theory
- Algorithm

・ 回 と ・ ヨ と ・ ヨ と …

3

Output

Let us consider :



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

2

Output Main steps of the algorithm

Definition - The flow

Let us denote by $\{\varphi^t: \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{R}}$ the flow, i.e.

$$\left. \frac{d}{dt} \varphi^t(x) \right|_{t=0} = f(x) \text{ and } \varphi^0 = Id$$
 (1)

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Output Main steps of the algorithm

Definition - The flow

Let us denote by $\{\varphi^t: \mathbb{R}^n \to \mathbb{R}^n\}_{t \in \mathbb{R}}$ the flow, i.e.

$$\left. \frac{d}{dt} \varphi^t(x) \right|_{t=0} = f(x) \text{ and } \varphi^0 = Id$$
 (1)

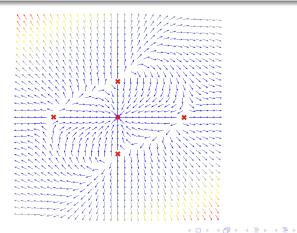
The map $t \mapsto \varphi^t x$ is the solution of the initial value problem :

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x. \end{cases}$$

Output Main steps of the algorithm

Definition

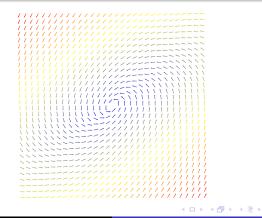
A point $x \in \mathbb{R}^n$ is an equilibrium point if $\varphi^t(x) = x, \forall t \in \mathbb{R}$ i.e. f(x) = 0.



æ

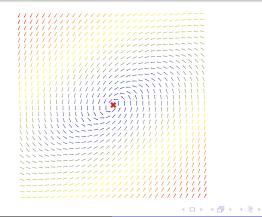
Output Main steps of the algorithm

Definition - Stable



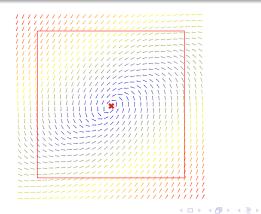
Output Main steps of the algorithm

Definition - Stable



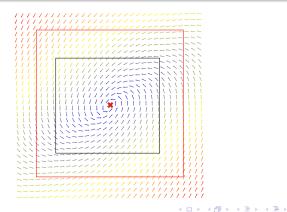
Output Main steps of the algorithm

Definition - Stable



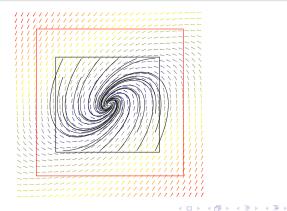
Output Main steps of the algorithm

Definition - Stable



Output Main steps of the algorithm

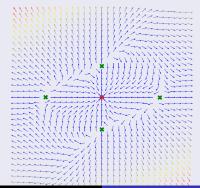
Definition - Stable



Output Main steps of the algorithm

Definition - Asymptotically stable

An equilibrum point x_{∞} is asymptotically stable if



Nicolas Delanoue - Luc Jaulin

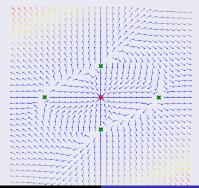
Attraction domain of a nonlinear system using interval analysis

Output Main steps of the algorithm

Definition - Asymptotically stable

An equilibrum point x_{∞} is asymptotically stable if

• x_{∞} is stable,



Nicolas Delanoue - Luc Jaulin

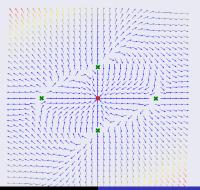
Attraction domain of a nonlinear system using interval analysis

Output Main steps of the algorithm

Definition - Asymptotically stable

An equilibrum point x_{∞} is *asymptotically stable* if

- x_{∞} is stable,
- there exists a neighborhood E such that $\forall x \in E, \lim_{t \to \infty} \varphi^t(x) = x_{\infty}$



Nicolas Delanoue - Luc Jaulin

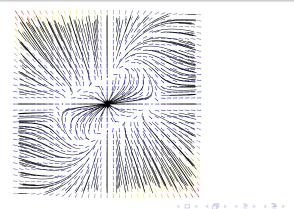
Attraction domain of a nonlinear system using interval analysis

Output Main steps of the algorithm

Definition - attraction domain

The attraction domain of x_∞ is the set

$$A_{x_{\infty}} = \{x \mid \lim_{t \to \infty} \varphi^t(x) = x_{\infty}\}.$$



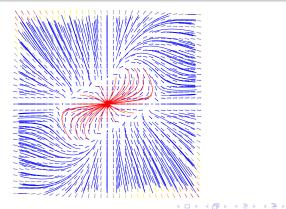
æ

Output Main steps of the algorithm

Definition - attraction domain

The attraction domain of x_∞ is the set

$$A_{x_{\infty}} = \{x \mid \lim_{t \to \infty} \varphi^t(x) = x_{\infty}\}.$$



æ

Output Main steps of the algorithm

Compute the attraction domain $A_{x_{\infty}}$.



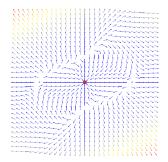
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Output Main steps of the algorithm

Compute the attraction domain $A_{x_{\infty}}$.

- **()** Show that there exists an unique equilibrium point x_{∞} ,
- 2
- 3



・ロト ・回ト ・ヨト ・ヨト

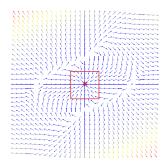
æ

Output Main steps of the algorithm

Compute the attraction domain $A_{x_{\infty}}$.

- **()** Show that there exists an unique equilibrium point x_{∞} ,
- 2 Prove that x_{∞} is asymptotically stable and compute a neighborhood of x_{∞} included in the attraction domain.

3

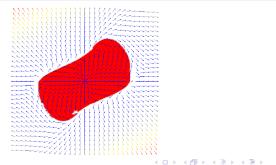


イロン イヨン イヨン イヨン

Output Main steps of the algorithm

Compute the attraction domain $A_{x_{\infty}}$.

- **()** Show that there exists an unique equilibrium point x_{∞} ,
- Prove that x_∞ is asymptotically stable and compute a neighborhood of x_∞ included in the attraction domain.
- Discretize the flow to compute a sequence {A_n}_{n∈ℕ} of sets such that A_n→_{n→∞} A_{x∞}.



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Outline

- Output
- Main steps of the algorithm
- 2 A neighborhood inside the attraction domain
 - Introduction Hartman Grobman
 - Non negative
 - Lyapunov Theory
 - Algorithm

3 Discretization

- Relation Graph theory
- Algorithm

3

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Theorem - Linear case

Let us consider $\dot{x} = Ax$.

The origin is asymptotically stable if and only if all eigenvalues λ of A have negative real parts.

・ロン ・回と ・ヨン ・ヨン

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field. A equilibrium point x_{∞} is *hyperbolic* if no eigenvalue of $Df(x_{\infty})$ has its real part equal to 0.

ヘロン 人間 とくほど くほとう

3

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field. A equilibrium point x_{∞} is *hyperbolic* if no eigenvalue of $Df(x_{\infty})$ has its real part equal to 0.

Hartman Grobman Theorem

If x_{∞} is a hyperbolic equilibrium point then there exists a neighborhood E of x_{∞} and a homeomorphism h such that the flow of f is topologically conjugate by h to the flow of its linearization $Df(x_{\infty})$.

◆□> ◆□> ◆目> ◆目> ◆目> □目 − つへぐ

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field. A equilibrium point x_{∞} is *hyperbolic* if no eigenvalue of $Df(x_{\infty})$ has its real part equal to 0.

Hartman Grobman Theorem

If x_{∞} is a hyperbolic equilibrium point then there exists a neighborhood E of x_{∞} and a homeomorphism h such that the flow of f is topologically conjugate by h to the flow of its linearization $Df(x_{\infty})$.

Problem

How to compute such a neighborhood?

(日) (同) (E) (E) (E)

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Theorem

Let $x_0 \in E$ where E is a convex set of \mathbb{R}^n , and $f \in C^2(\mathbb{R}^n, \mathbb{R})$. If $\exists x_0 \in E$ such that $f(x_0) = 0$ and $Df(x_0) = 0$. $\forall x \in E, D^2 f(x) \succeq 0$. then $\forall x \in E, f(x) \ge 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Theorem

Let $x_0 \in E$ where E is a convex set of \mathbb{R}^n , and $f \in C^2(\mathbb{R}^n, \mathbb{R})$. If $\exists x_0 \in E$ such that $f(x_0) = 0$ and $Df(x_0) = 0$. $\forall x \in E, D^2 f(x) \succeq 0$. then $\forall x \in E, f(x) \ge 0$.

Definition

A symmetric matrix A is positive definite (denoted $A \succeq 0$) if

$$\forall x \in \mathbb{R}^n - \{0\}, x^T A x > 0$$

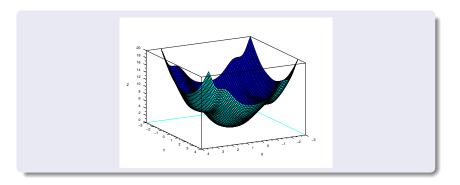
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Example

To prove that
$$f(x) \ge 0, \forall x \in [-1/2, 1/2]^2$$

where $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by
 $f(x, y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1.$



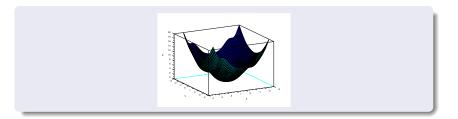
◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Example

Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 the function defined by :
 $f(x, y) = -\cos(x^2 + \sqrt{2}\sin^2 y) + x^2 + y^2 + 1.$
One has : $f(0, 0) = 0$ and $Df(0, 0) = (0, 0)$
 $Df(x, y) = \begin{pmatrix} 2x(\sin(x^2 + \sqrt{2}\sin^2 y) + 1) \\ 2\sqrt{2}\cos y\sin y\sin(\sqrt{2}\sin^2 y + x^2) + 2y \end{pmatrix}.$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

$$D^{2}f = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} = \begin{pmatrix} \frac{\partial^{2}f}{\partial x^{2}} & \frac{\partial^{2}f}{\partial x \partial y} \\ \frac{\partial^{2}f}{\partial y \partial x} & \frac{\partial^{2}f}{\partial y^{2}} \end{pmatrix}$$

$$a_{1,1} = 2\sin(\sqrt{2}\sin^2 y + x^2) + 4x^2\cos(\sqrt{2}\sin^2 y + x^2) + 2.$$

$$a_{2,2} = -2\sqrt{2}\sin^2 y \sin(\sqrt{2}\sin^2 y + x^2) + 2\sqrt{2}\cos^2 y \sin(\sqrt{2}\sin^2 y + x^2) + 8\cos^2 y \sin^2 y \cos(\sqrt{2}\sin^2 y + x^2) + 2.$$

$$a_{1,2} = a_{2,1} = 4\sqrt{2}x \cos y \sin y$$

 $\cos (\sqrt{2} \sin y^2 + x^2).$

(ロ) (四) (E) (E) (E)

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Evaluation with interval analysis gives : $\forall x \in [-1/2, 1/2]^2$, $D^2 f(x) \subset [A]$

$$[A] = \begin{pmatrix} [1.9, 4.1] & [-1.3, 1.4] \\ [-1.3, 1.4] & [1.9, 5.4] \end{pmatrix}.$$

One only has to check that : $\forall A \in [A]$, A is positive definite.

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

A set of symmetric matrices [A] is an interval of symmetric matrices if :

$$[A] = \{(a_{ij})_{ij}, a_{ij} = a_{ji}, a_{ij} \in [a]_{ij}\}$$

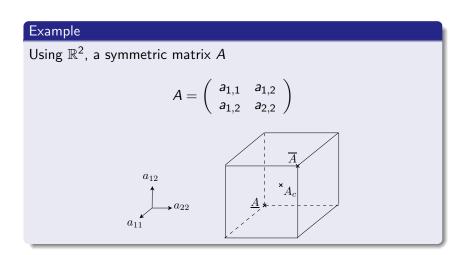
i.e.

$$[\underline{A}, \overline{A}] = \left\{ A \text{ symmetric, } \underline{A} \leq A \leq \overline{A} \right\}.$$

イロン イヨン イヨン イヨン

æ

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

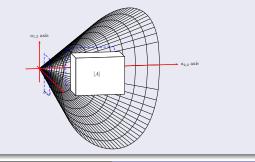
Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Remark - Rohn

Let V([A]) finite set of corners of [A]. Since $\{A \succeq 0\}$ and [A] are convex subset of S^n :

 $[A] \succeq 0 \Leftrightarrow V([A]) \succeq 0$

 $\{A \mid a_{ij} = a_{ji}\}$ is of dimension $\frac{n(n+1)}{2}$ then $\#V([A]) = 2^{\frac{n(n+1)}{2}}$.

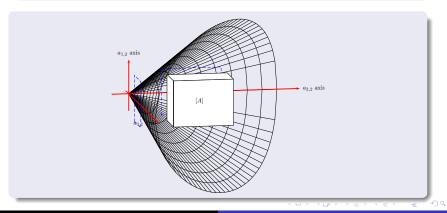


Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Theorem- Adefeld

Let [A] a symmetric interval matrix and $C = \{z \in \mathbb{R}^n \text{ such that } |z_i| = 1\}$ If $\forall z \in C$, $A_z = A_c + \text{Diag}(z) \Delta \text{Diag}(z) \succeq 0$ then $[A] \succeq 0$.



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

A function $L: E \subset \mathbb{R}^n \to \mathbb{R}$ is of Lyapunov $(\dot{x} = f(x))$ if :

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

A function $L: E \subset \mathbb{R}^n \to \mathbb{R}$ is of Lyapunov $(\dot{x} = f(x))$ if :

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

A function $L: E \subset \mathbb{R}^n \to \mathbb{R}$ is of Lyapunov $(\dot{x} = f(x))$ if :

$$(x) = 0 \Leftrightarrow x = x_{\infty}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Definition

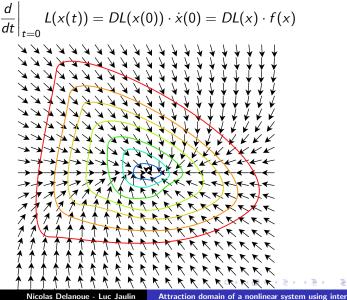
A function $L: E \subset \mathbb{R}^n \to \mathbb{R}$ is of Lyapunov $(\dot{x} = f(x))$ if :

$$(x) = 0 \Leftrightarrow x = x_{\infty}$$

$$DL(x) \cdot f(x) < 0, \ \forall x \in E - \{x_{\infty}\}$$

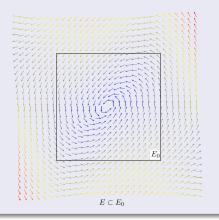
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction - Hartman Grobman Lyapunov Theory Algorithm



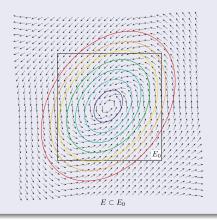
Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem



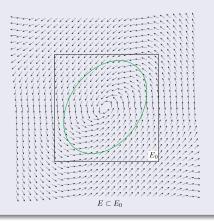
Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem



Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

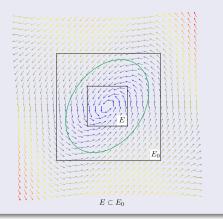
Lyapunov theorem



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem



In the linear case :

$$\dot{x} = Ax$$

With $L(x) = x^T W x$,

Lyapunov theorem conditions

(2)

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Introduction A neighborhood inside the attraction domain Discretization A neighborhood inside the attraction domain Discretization

In the linear case :

$$\dot{x} = Ax$$

With $L(x) = x^T W x$,

Lyapunov theorem conditions

 $W \succeq 0.$

(2)

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

Introduction A neighborhood inside the attraction domain Discretization A neighborhood inside the attraction domain Discretization

In the linear case :

$$\dot{x} = Ax$$

With $L(x) = x^T W x$,

Lyapunov theorem conditions

 $0 W \succeq 0.$

 $W \succeq 0.$

(2)

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Introduction A neighborhood inside the attraction domain Discretization A neighborhood inside the attraction domain Discretization

In the linear case :

$$\dot{x} = Ax$$

With $L(x) = x^T W x$,

Lyapunov theorem conditions

- $W \succeq 0.$
- $W \succeq 0.$
- $(A^T W + W A) \succeq 0.$

(2)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem conditions

•
$$W \succeq 0.$$

• $-(A^T W + WA) \succeq 0.$

Different ways to find a Lyapunov function in the linear case

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem conditions

$$W \succeq 0.$$

$$(-(A^T W + WA) \succeq 0.$$

Different ways to find a Lyapunov function in the linear case

• First choose
$$W \succeq 0$$
, then check that $-(A^T W + WA) \succeq 0$,

・ロン ・四マ ・ヨマ ・ヨマ

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem conditions

•
$$W \succeq 0.$$

• $-(A^T W + WA) \succeq 0.$

Different ways to find a Lyapunov function in the linear case

- First choose $W \succeq 0$, then check that $-(A^T W + WA) \succeq 0$,
- Solve equation $-(A^TW + WA) = I$, then check that $W \succeq 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Lyapunov theorem conditions

$$W \succeq 0.$$

$$(A^T W + WA) \succeq 0.$$

Different ways to find a Lyapunov function in the linear case

- First choose $W \succeq 0$, then check that $-(A^T W + WA) \succeq 0$,
- Solve equation $-(A^TW + WA) = I$, then check that $W \succeq 0$.

Theorem

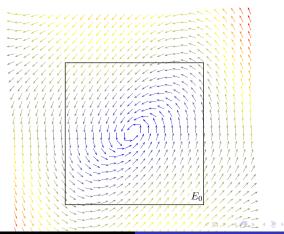
Let $\dot{x} = Ax$, O is asymptotically stable if and only if the solution W of the equation $-(A^TW + WA) = I$ is positive definite.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 1. Prove that E_0 contains a unique equilibrium point x_{∞} . Step 2. Find $[x_{\infty}] \subset E_0$ such that $x_{\infty} \in [x_{\infty}]$.

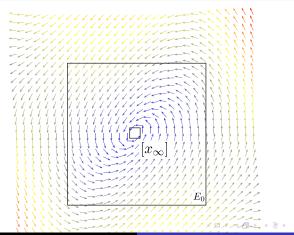


Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 1. Prove that E_0 contains a unique equilibrium point x_{∞} . Step 2. Find $[x_{\infty}] \subset E_0$ such that $x_{\infty} \in [x_{\infty}]$.

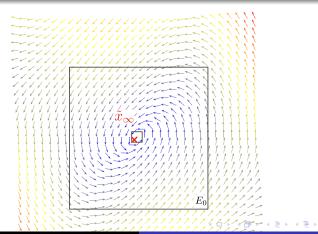


Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 3. Linearize around
$$x_{\infty}$$
 with \tilde{x}_{∞} ($\tilde{x}_{\infty} \in [x_{\infty}]$) :
 $\overline{(x - x_{\infty})} = Df(\tilde{x}_{\infty})(x - x_{\infty}).$

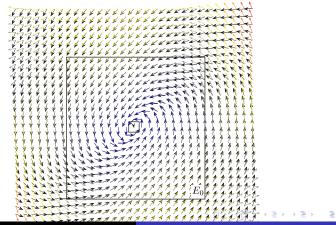


Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 3. Linearize around
$$x_{\infty}$$
 with \tilde{x}_{∞} ($\tilde{x}_{\infty} \in [x_{\infty}]$) :
 $\overline{(x - x_{\infty})} = Df(\tilde{x}_{\infty})(x - x_{\infty}).$

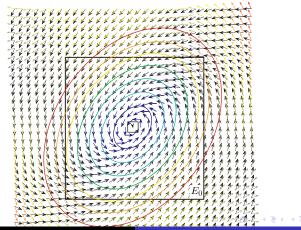


Nicolas Delanoue - Luc Jaulin

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 4. Find a Lyapunov function $L_{x_{\infty}}$ for the linear system $Df(\tilde{x}_{\infty})$.

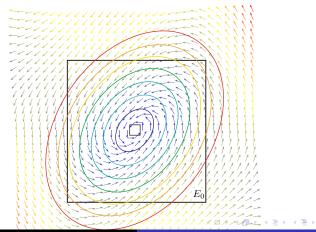


Nicolas Delanoue - Luc Jaulin

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm

Algorithm A

Step 5. Check that $L_{x_{\infty}}$ is of Lyapunov for the non linear system $\dot{x} = f(x)$.



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

Introduction A neighborhood inside the attraction domain Discretization	Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm
---	--

About step 5 :
$$L_{x_{\infty}}(x) = (x - x_{\infty})^T W_{\tilde{x}_{\infty}}(x - x_{\infty})$$

One has to check that

$$g_{x_{\infty}}(x) = -DL_{x_{\infty}}(x) \cdot f(x) \ge 0$$

・ロト・(四ト・(川下・(日下・(日下)

Introduction A neighborhood inside the attraction domain Discretization	Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm
---	--

About step 5 :
$$L_{x_{\infty}}(x) = (x - x_{\infty})^T W_{\tilde{x}_{\infty}}(x - x_{\infty})$$

One has to check that

$$g_{x_{\infty}}(x) = -DL_{x_{\infty}}(x) \cdot f(x) \ge 0$$

•
$$g_{x_{\infty}}(x_{\infty})=0$$

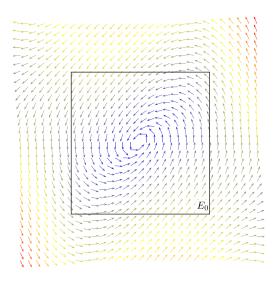
•
$$Dg_{x_{\infty}}(x_{\infty})=0$$

According to theorem 2, we only have to check :

$$D^2g_{x_{\infty}}(E_0) \succeq 0$$

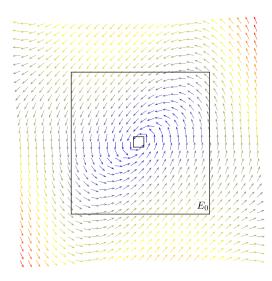
< 口 > < 回 > < 回 > < 回 > < 回 > <

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



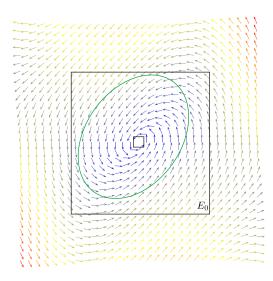
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



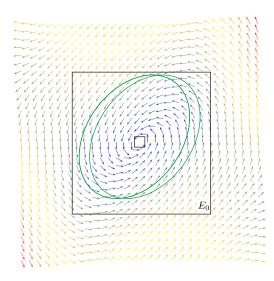
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



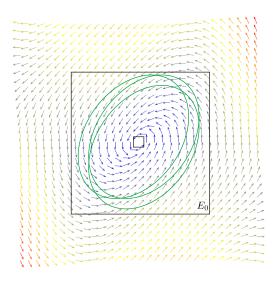
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



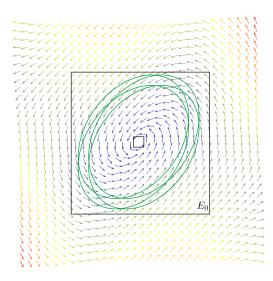
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



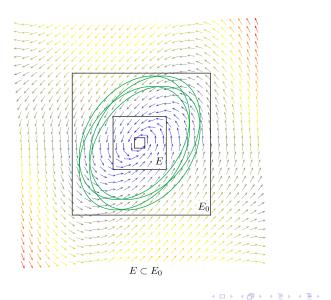
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction - Hartman Grobman Non negative Lyapunov Theory Algorithm



Relation - Graph theory Algorithm

Outline

- Output
- Main steps of the algorithm
- 2 A neighborhood inside the attraction domain
 - Introduction Hartman Grobman
 - Non negative
 - Lyapunov Theory
 - Algorithm

3 Discretization

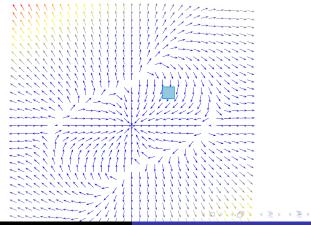
- Relation Graph theory
- Algorithm

・日・ ・ ヨ・ ・ ヨ・

Relation - Graph theory Algorithm

Picard-Linderlöf

Let $\dot{x} = f(x)$ and $t \in \mathbb{R}$, there exists guaranteed methods able to compute an inclusion function for the flow $\varphi^t : \mathbb{R}^n \to \mathbb{R}^n$.

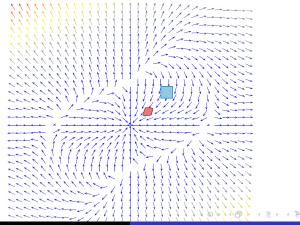


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Picard-Linderlöf

Let $\dot{x} = f(x)$ and $t \in \mathbb{R}$, there exists guaranteed methods able to compute an inclusion function for the flow $\varphi^t : \mathbb{R}^n \to \mathbb{R}^n$.

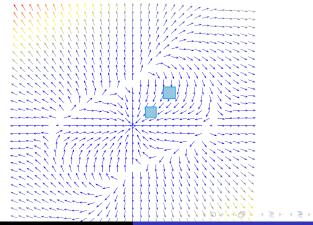


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Picard-Linderlöf

Let $\dot{x} = f(x)$ and $t \in \mathbb{R}$, there exists guaranteed methods able to compute an inclusion function for the flow $\varphi^t : \mathbb{R}^n \to \mathbb{R}^n$.

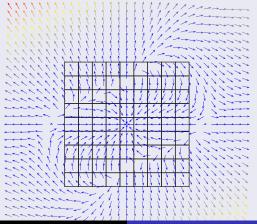


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.

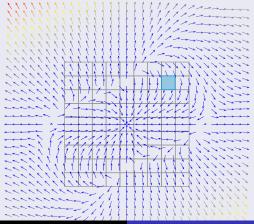


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.



Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

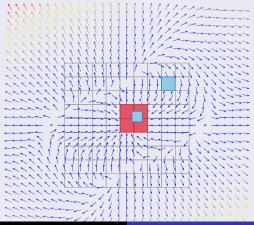
Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.

Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.

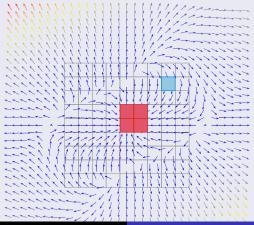


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}_j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.

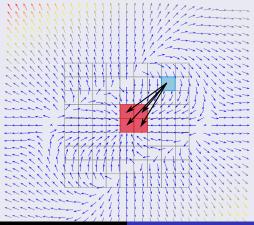


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Definition

Let $t \in \mathbb{R}$, and $\{\mathbb{S}_i\}_{i \in I}$ a paving of \mathbb{S} , let us denote by \mathcal{R} the relation on I defined by $i\mathcal{R}_j \Leftrightarrow \varphi^t(\mathbb{S}_i) \cap \mathbb{S}_j \neq \emptyset$.

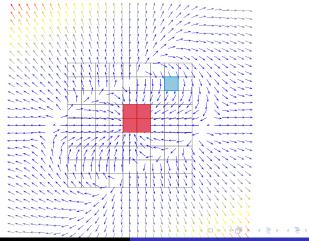


Nicolas Delanoue - Luc Jaulin

Relation - Graph theory Algorithm

Proposition

If $\forall j \in I, i \mathcal{R} j \Rightarrow \mathbb{S}_j \subset A_{x_{\infty}}$ then $\mathbb{S}_i \subset A_{x_{\infty}}$.



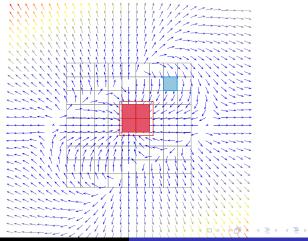
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Proposition

If $\forall j \in I, i \mathcal{R} j \Rightarrow \mathbb{S}_j \subset A_{x_{\infty}}$ then $\mathbb{S}_i \subset A_{x_{\infty}}$.



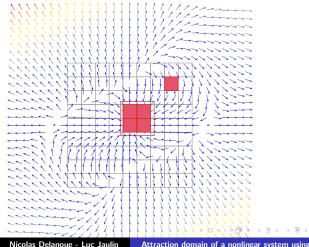
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory

Proposition

If $\forall j \in I, i \mathcal{R} j \Rightarrow \mathbb{S}_j \subset A_{x_{\infty}}$ then $\mathbb{S}_i \subset A_{x_{\infty}}$.



Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Algorithm B

Inputs :

- $\dot{x} = f(x)$,
- x_{∞} an asymptotically stable point,
- A a neighborhood of x_{∞} included in $A_{x_{\infty}}$.

イロト イヨト イヨト イヨト

Relation - Graph theory Algorithm

Algorithm B

Inputs :

- $\dot{x} = f(x)$,
- x_{∞} an asymptotically stable point,
- A a neighborhood of x_{∞} included in $A_{x_{\infty}}$.
- Create a cover of $\{\mathbb{S}_i\}_{i \in I}$ of E.

<ロ> (日) (日) (日) (日) (日)

Relation - Graph theory Algorithm

Algorithm B

Inputs :

- $\dot{x} = f(x)$,
- x_{∞} an asymptotically stable point,
- A a neighborhood of x_{∞} included in $A_{x_{\infty}}$.
- Create a cover of $\{\mathbb{S}_i\}_{i \in I}$ of E.
- **2** Compute the relation \mathcal{R} .

イロト イヨト イヨト イヨト

э

Relation - Graph theory Algorithm

Algorithm B

Inputs :

- $\dot{x} = f(x)$,
- x_{∞} an asymptotically stable point,
- A a neighborhood of x_{∞} included in $A_{x_{\infty}}$.
- Create a cover of $\{\mathbb{S}_i\}_{i \in I}$ of E.
- **2** Compute the relation \mathcal{R} .
- For each *i* of *I*, if

$$\forall j \in I, i\mathcal{R}j \Rightarrow \mathbb{S}_j \subset A$$

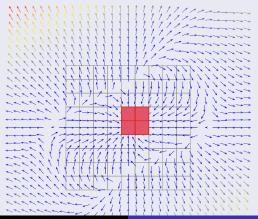
then $A := A \cup \mathbb{S}_i$, go to step 3 until a fixed point.

イロト イポト イヨト イヨト

Relation - Graph theory Algorithm

Example

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x(x^2 - xy + 3y^2 - 1) \\ y(x^2 - 4yx + 3y^2 - 1) \end{pmatrix}$$



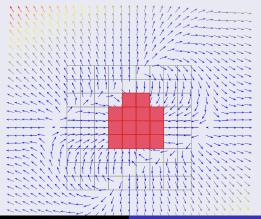
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Example

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x(x^2 - xy + 3y^2 - 1) \\ y(x^2 - 4yx + 3y^2 - 1) \end{pmatrix}$$



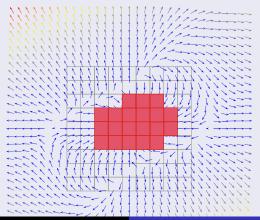
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Example

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x(x^2 - xy + 3y^2 - 1) \\ y(x^2 - 4yx + 3y^2 - 1) \end{pmatrix}$$



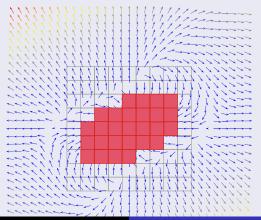
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Example

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x(x^2 - xy + 3y^2 - 1) \\ y(x^2 - 4yx + 3y^2 - 1) \end{pmatrix}$$



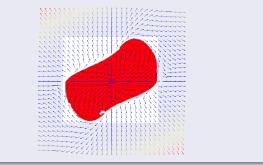
Nicolas Delanoue - Luc Jaulin

Attraction domain of a nonlinear system using interval analysis

Relation - Graph theory Algorithm

Example

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = \left(\begin{array}{c} x(x^2 - xy + 3y^2 - 1) \\ y(x^2 - 4yx + 3y^2 - 1) \end{array}\right)$$



Nicolas Delanoue - Luc Jaulin Attraction domain of a nonlinear system using interval analysis

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Relation - Graph theory Algorithm

Conclusion

• The source code is available on my web page,

・ロン ・回と ・ヨン・

Relation - Graph theory Algorithm

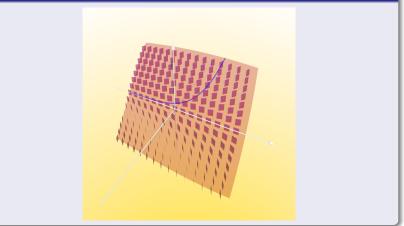
Conclusion

- The source code is available on my web page,
- Interval Arithmetic Techniques for the Design of Controllers for Nonlinear Dynamical Systems with Applications in Mechatronics, *H. Aschemann, J. Minisini, and A. Rauh*

イロト イヨト イヨト イヨト

Relation - Graph theory Algorithm

And now? Jet space and interval analysis



イロン イヨン イヨン イヨン

Relation - Graph theory Algorithm

• Grazie per la vostra attenzione !

・ロト ・回ト ・ヨト ・ヨト