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Nicolas Delanoue - Sébastien Lagrange Classification of mapping from R2 to R2



Robotics
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion

Geometric model
Motion planning
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Geometric model
Motion planning

Position of the end effector depends on α and β

f : X → R2(
α
β

)
7→

(
2 cos(α) + cos(α + β)
2 sin(β) + sin(α + β)

)
(1)

Nicolas Delanoue - Sébastien Lagrange Classification of mapping from R2 to R2



Robotics
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion

Geometric model
Motion planning

Position of the end effector depends on α and β

f : X → R2(
α
β

)
7→

(
2 cos(α) + cos(α + β)
2 sin(β) + sin(α + β)

)2
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Given a path δ for the end-effector in the working space, find a
curve γ in the configuration space such that

f ◦ γ = δ
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“Graph” of f

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.

Equivalence

Let f and f ′ be two smooth maps. Then f ∼ f ′ if there exists
diffeomorphisms g : X → X and h : Y → Y such that the diagram

X
f−−−−→ Yyg

xh

X
f ′−−−−→ Y

commutes.
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Examples

1 f1(x) = 2x + 1, f2(x) = −x + 2,

f1 ∼ f2

2 f1(x) = x2, f2(x) = ax2 + bx + c ,

f1 ∼ f2

3 f1(x) = x + 1, f2(x) = x2 + 1,

f1 6∼ f2
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Proposition

Let f and f ′ be smooth maps. Suppose that f1 ∼ f2 with

x1
f−−−−→ y1yg

xh

x2
f ′−−−−→ y2

then rank dfx1 = df ′x2

Nicolas Delanoue - Sébastien Lagrange Classification of mapping from R2 to R2



Robotics
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion

Fold - Fold

Let us define the map fold by

folds : X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


det df (x1, y1)
det df (x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


(2)

The set S∆2 is directly connected to the map folds by the
following relation

S∆2 = folds−1({0})−∆S/ ∼ .
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