$\begin{array}{c} \mbox{Stable mappings and their singularities}\\ \mbox{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.}\\ \mbox{Algorithm computing an invariant}\\ \mbox{Conjecture and conclusion} \end{array}$

Classification of mapping from \mathbb{R}^2 to \mathbb{R}^2

Nicolas Delanoue - Sébastien Lagrange

IPA 2012 - Intervals Pavings and Applications - Uppsala http://www.math.uu.se/ipa2012/

- 4 回 2 - 4 □ 2 - 4 □

Outline

Robotics

- Motion planning
- 2 Stable mappings and their singularities
 - Equivalence between smooth mappings
 - Genericity and Thom transversality theorem
 - Stability
 - Discretization Portrait of a map
- 3 Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 .
 - Boundary Boundary
 - Fold Fold
 - Cusp
 - Boundary Fold
- 4 Algorithm computing an invariant
- 5 Conjecture and conclusion

回 と く ヨ と く ヨ と

 $\begin{array}{c} \mbox{Stable mappings and their singularities}\\ \mbox{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.}\\ \mbox{Algorithm computing an invariant}\\ \mbox{Conjecture and conclusion} \end{array}$

Geometric model Motion planning

Nicolas Delanoue - Sébastien Lagrange Classification of mapping from \mathbb{R}^2 to \mathbb{R}^2

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Nicolas Delanoue - Sébastien Lagrange Classification of mapping from \mathbb{R}^2 to \mathbb{R}^2

 $\begin{array}{c} \mbox{Stable mappings and their singularities} \\ \mbox{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.} \\ \mbox{Algorithm computing an invariant} \\ \mbox{Conjecture and conclusion} \end{array}$

Geometric model Motion planning

Position of the end effector depends on α and β

$$f : X \to \mathbb{R}^{2}$$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \begin{pmatrix} 2\cos(\alpha) + \cos(\alpha + \beta) \\ 2\sin(\beta) + \sin(\alpha + \beta) \end{pmatrix} (1)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

э

 $\begin{array}{l} \mbox{Stable mappings and their singularities} \\ \mbox{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.} \\ \mbox{Algorithm computing an invariant} \\ \mbox{Conjecture and conclusion} \end{array}$

Geometric model Motion planning

Position of the end effector depends on α and β

$$f : X \to \mathbb{R}^2$$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \begin{pmatrix} 2\cos(\alpha) + \cos(\alpha + \beta) \\ 2\sin(\beta) + \sin(\alpha + \beta) \end{pmatrix}$$

・ロン ・回と ・ヨン・

э

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$

・ロン ・聞と ・ほと ・ほと

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

Э

Stable mappings and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Algorithm computing an invariant Conjecture and conclusion

Geometric model Motion planning

"Graph" of f

One wants a global "picture" of the map which does not depend on a choice of system of coordinates neither on the configuration space nor on the working space.

Equivalence

Let f and f' be two smooth maps. Then $f \sim f'$ if there exists diffeomorphisms $g: X \to X$ and $h: Y \to Y$ such that the diagram

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y \\ & \downarrow^{g} & & \uparrow^{h} \\ X & \stackrel{f'}{\longrightarrow} & Y \end{array}$$

commutes.

 $\begin{array}{c} \text{Robotics}\\ \textbf{Stable mappings and their singularities}\\ \text{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.}\\ \text{Algorithm computing an invariant}\\ \text{Conjecture and conclusion} \end{array}$

Examples

•
$$f_1(x) = 2x + 1, f_2(x) = -x + 2,$$

 $f_1 \sim f_2$
• $f_1(x) = x^2, f_2(x) = ax^2 + bx + c,$
 $f_1 \sim f_2$
• $f_1(x) = x + 1, f_2(x) = x^2 + 1,$
 $f_1 \not\sim f_2$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Proposition

Let f and f' be smooth maps. Suppose that $f_1 \sim f_2$ with

then rank $df_{x_1} = df'_{x_2}$

(ロ) (四) (三) (三) (三)

Robotics Stable mappings and their singularities Interval analysis and mappings from R² to R². Algorithm computing an invariant Conjecture and conclusion

Let us define the map *fold* by

$$folds : X \times X \longrightarrow \mathbb{R}^{4}$$

$$\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix}, \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} \mapsto \begin{pmatrix} \det df(x_{1}, y_{1}) \\ \det df(x_{2}, y_{2}) \\ f_{1}(x_{1}, y_{1}) - f_{1}(x_{2}, y_{2}) \\ f_{2}(x_{1}, y_{1}) - f_{2}(x_{2}, y_{2}) \end{pmatrix}$$

$$(2)$$

Fold - Fold

The set $S^{\Delta 2}$ is directly connected to the map folds by the following relation

$$S^{\Delta 2}=\mathit{folds}^{-1}(\{0\})-\Delta S/\sim.$$

・ロン ・回と ・ヨン・

 $\begin{array}{c} \mbox{Stable mappings and their singularities}\\ \mbox{Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.}\\ \mbox{Algorithm computing an invariant}\\ \mbox{Conjecture and conclusion} \end{array}$

lala

・ロト ・回 ト ・ヨト ・ヨト

æ