Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2

Nicolas Delanoue - Sébastien Lagrange

IPA 2012 - Intervals Pavings and Applications - Uppsala
http://www.math.uu.se/ipa2012/
Outline

1. Robotics - Introduction
 - Motion planning
 - Discretization - Portrait of a map

2. Stable mappings and their singularities
 - Stable maps
 - (Genericity and Thom transversality theorem)
 - Withney theorem
 - Compact simply connected with boundary

3. Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

4. Algorithm computing an invariant

5. Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Geometric model
Motion planning
Equivalence
Discretization - Portrait of a map

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
End effector
Position of the end effector depends on α and β

$$f : \mathbb{X} \rightarrow \mathbb{R}^2$$

$$(\alpha, \beta) \mapsto \left(2 \cos(\alpha) + \cos(\alpha + \beta), 2 \sin(\beta) + \sin(\alpha + \beta) \right)$$

Configuration space
Working space
Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Given a path δ for the end-effector in the working space, find a curve γ in the configuration space such that

$$f \circ \gamma = \delta$$
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Geometric model
Motion planning
Equivalence
Discretization - Portrait of a map

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
"Graph" of f

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Global picture

One wants a global “picture” of the map which does not depend on a choice of system of coordinates neither on the configuration space nor on the working space.

Equivalence

Let \(f \) and \(f' \) be two smooth maps. Then \(f \sim f' \) if there exists diffeomorphisms \(g : X \rightarrow X' \) and \(h : Y' \rightarrow Y \) such that the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{g} & & \uparrow{h} \\
X' & \xrightarrow{f'} & Y'
\end{array}
\]

commutes.
Examples

1. \(f_1(x) = 2x + 1, \ f_2(x) = -x + 2, \)
 \[f_1 \sim f_2 \]

2. \(f_1(x) = x^2, \ f_2(x) = ax^2 + bx + c, \ a \neq 0 \)
 \[f_1 \sim f_2 \]

3. \(f_1(x) = x^2 + 1, \ f_2(x) = x + 1, \)
 \[f_1 \not\sim f_2 \]
Definition - Abstract simplicial complex

Let \mathcal{N} be a finite set of symbols $\{(a^0), (a^1), \ldots, (a^n)\}$
An abstract simplicial complex \mathcal{K} is a subset of the powerset of \mathcal{N}
satisfying : $\sigma \in \mathcal{K} \Rightarrow \forall \sigma_0 \subset \sigma, \sigma_0 \in \mathcal{K}$
Example

\[\mathcal{K} = \{(a^0), (a^1), (a^2), (a^3), (a^4), \\
(a^0, a^1), (a^1, a^2), (a^0, a^2), (a^3, a^4), \\
(a^0, a^1, a^2)\} \]

This will be denoted by \(a^0 a^1 a^2 + a^3 a^4 \)
Definition - Simplicial map

Given abstract simplicial complexes \mathcal{K} and \mathcal{L}, a simplicial map $F : \mathcal{K}^0 \rightarrow \mathcal{L}^0$ is a map with the following property:
If (a^0, a^1, \ldots, a^n) is an element of \mathcal{K} then $F(a^0), F(a^1), \ldots, F(a^n)$ span a simplex of \mathcal{L}.
Example - Simplicial map

\[\mathcal{K} = a_0 a_1 + a_1 a_2 + a_2 a_3, \quad \mathcal{L} = b_0 b_1 + b_1 b_2 \]

\[F : \begin{array}{c} a^0 \mapsto b^0 \\ a^1 \mapsto b^1 \\ a^2 \mapsto b^2 \\ a^3 \mapsto b^1 \end{array} \]
Example - NOT a Simplicial map

\[K = a_0a_1 + a_1a_2 + a_2a_3, \quad L = b_0b_1 + b_1b_2 \]

\[F : \begin{align*}
 a^0 & \mapsto b^0 \\
 a^1 & \mapsto b^1 \\
 a^2 & \mapsto b^2 \\
 a^3 & \mapsto b^0
\end{align*} \]
Example - Simplicial map

\[\mathcal{K} = a_0 a_1 a_2 + a_1 a_2 a_3, \quad \mathcal{L} = b_0 b_1 b_2 \]

\[F : \begin{align*}
 a^0 & \mapsto b^0 \\
 a^1 & \mapsto b^1 \\
 a^2 & \mapsto b^2 \\
 a^3 & \mapsto b^0
\end{align*} \]
Definition - Topologically conjugate

Let f and f' be continuous maps. Then f and f' are topologically conjugate if there exists a homeomorphism $g : X \rightarrow X'$ and $h : Y \rightarrow Y'$ such that the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g & & \uparrow h \\
X' & \xrightarrow{f'} & Y'
\end{array}
\]

commutes.

Proposition

\[f \sim f' \Rightarrow f \sim_0 f'\]
Definition - Portrait

Let \(f \) be a smooth map and \(F \) a simplicial map, \(F \) is a portrait of \(f \) if

\[
f \sim_0 F
\]
Example - Simplicial map

The simplicial map

\[a^0 \rightarrow a^1 \rightarrow a^2 \rightarrow a^3 \]
\[b^0 \rightarrow b^1 \rightarrow b^2 \]

is a portrait of \([-4, 3] \ni x \mapsto x^2 - 1 \in \mathbb{R}\]
Proposition

Suppose that $f \sim f'$ with

\[x_1 \xrightarrow{f} y_1 \] \[\downarrow g \] \[\uparrow h \] \[\downarrow \] \[x_2 \xrightarrow{f'} y_2 \]

then $f^{-1}({y_1})$ is homeomorphic to $f'^{-1}({y_2})$.
Proposition

For every closed subset A of \mathbb{R}^n, there exists a smooth real valued function f such that

$$A = f^{-1}(\{0\})$$
Proposition

For every closed subset A of \mathbb{R}^n, there exists a smooth real valued function f such that

$$A = f^{-1}(\{0\})$$

We are not going to consider all cases ...
Definition - Stable mapping

Let f be a smooth map, f is stable if there exists a nbhd N_f such that

$$\forall f' \in N_f, f' \sim f$$

Examples

1. $g : x \mapsto x^2$ is stable,
2. $f_0 : x \mapsto x^3$ is not stable, since with $f_\epsilon : x \mapsto x(x^2 - \epsilon)$,

$$\epsilon \neq 0 \Rightarrow f_\epsilon \not\sim f_0.$$
Proposition

Suppose that $f \sim f'$ with

\[\begin{array}{ccc}
 x_1 & \xrightarrow{f} & y_1 \\
 \downarrow{g} & & \uparrow{h} \\
 x_2 & \xrightarrow{f'} & y_2
\end{array} \]

then $\text{rank } df_{x_1} = \text{rank } df'_{x_2}$.
Inverse function theorem

For a differentiable map $f : X \rightarrow Y$ with $\dim X = \dim Y = n$, if the rank $d f_p = n$ then there exists an open nbhd U_p of p such that

$$f|U_p : U_p \rightarrow f(U_p)$$

is a diffeomorphism.
Inverse function theorem

For a differentiable map \(f : X \rightarrow Y \) with \(\dim X = \dim Y = n \), if the rank of \(f_p = n \) then there exists an open nbhd \(U_p \) of \(p \) such that

\[
f|_{U_p} : U_p \rightarrow f(U_p)
\]

is a diffeomorphism.

Globalisation

Does \(\forall p \in X, \text{rank } d f_p = n \) imply that \(f : X \rightarrow Y \) is a diffeomorphism?
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Introduction
Stable maps
(Genericity and Thom transversality theorem)
Whitney theorem
Compact simply connected with boundary

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Definition - Differential

\[df(x) = \begin{pmatrix} \partial_1 f_1(x) & \ldots & \partial_n f_1(x) \\ \vdots & \ddots & \vdots \\ \partial_1 f_p(x) & \ldots & \partial_n f_p(x) \end{pmatrix} \]

Definition - \(\tilde{df}(X) \)

\[\tilde{df}(X) = \left\{ \begin{pmatrix} \partial_1 f_1(\xi^1) & \ldots & \partial_n f_1(\xi^1) \\ \vdots & \ddots & \vdots \\ \partial_1 f_p(\xi^p) & \ldots & \partial_n f_p(\xi^p) \end{pmatrix} \mid \xi^1, \ldots, \xi^p \in X \right\} \]

Remark

\[df(X) \subset \tilde{df}(X) \subset \text{natural extension of } df \text{ with } X. \]
Lemma

Let X be a convex compact subset of \mathbb{R}^{n}, $f : X \to \mathbb{R}^{p}$ a smooth mapping with $n \leq p$. If $\forall J \in \tilde{df}(X)$, rank $J = n$ then f is an embedding.
Lemma

Let X be a convex compact subset of \mathbb{R}^n, $f : X \to \mathbb{R}^p$ a smooth mapping with $n \leq p$. If $\forall J \in \tilde{df}(X)$, $\text{rank } J = n$ then f is an embedding.

In other words, $f \sim i$ where $i : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0)$.
Lemma

Let X be a convex compact subset of \mathbb{R}^n, $f : X \rightarrow \mathbb{R}^p$ a smooth mapping with $n \leq p$. If $\forall J \in \tilde{df}(X)$, rank $J = n$ then f is an embedding.

In other words, $f \sim i$ where $i : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0)$.

In other words, I is portrait of f, where I is the abstract simplicial identity map.
Transversality - Definition

Two submanifolds of M, L_1 and L_2 are said to intersect transversally if

$$\forall p \in L_1 \cap L_2, T_p M = T_p L_1 + T_p L_2.$$

One denotes this by $L_1 \pitchfork L_2$

a. Catastrophes et bifurcations - Michel Demazure

Nicolas Delanoue - Sébastien Lagrange

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Transversality - Definition

Let \(f : X \rightarrow Y \) be a smooth map between manifolds, and let \(Z \) be a submanifold of \(Y \). We say that \(f \) is transversal to \(Z \), denoted as \(f \pitchfork Z \), if

\[
x \in f^{-1}(Z) \Rightarrow df_x T_x X + T_{f(x)} Z = T_{f(x)} Y
\]
Proposition

Let k be the codimension of Z in Y. If $f \pitchfork Z$, then $f^{-1}(Z)$ is a regular submanifold (possibly empty) of X of codimension k.
Thom transversality Theorem

Let Z be submanifold of Y,

$$\{ f \in C^\infty(X, Y) \mid f \pitchfork Z \}$$

is residual.

In this case, one says that f is generic.
Thom transversality Theorem

Let Z be submanifold of Y,

$$\{ f \in \mathcal{C}^\infty(X, Y) \mid f \pitchfork Z \} \text{ is residual.}$$

In this case, one says that f is generic.

Example

Generically, for a smooth map from $f : \mathbb{R}^n \to \mathbb{R}^n$, one has $f \pitchfork \{0\}$. Therefore $\{ x \in X \mid f(x) = 0 \}$ is a 0-dimensional manifold.
Thom transversality Theorem

Let Z be submanifold of $J^r(X, Y)$,

$$\{ f \in C^\infty(X, Y) \mid j^r f \pitchfork Z \}$$

is residual.

In this case, one says that f is generic.

Example

For a generic smooth map from $f : \mathbb{R} \rightarrow \mathbb{R}$, one has $j^1 f \pitchfork \{ y = 0, p = 0 \}$. Therefore

$$\{ x \mid f(x) = 0 \land f'(x) = 0 \} = \emptyset$$
Withney theorem

Let X and Y be 2-dimensional manifolds and $f : X \to Y$ be generic. The set $S(f) = \{ x \in X \mid \det df_x = 0 \}$ is a regular curve. Let $p \in S(f)$, $f(p) = q$. One of the following two situations can occur:

- $T_p S(f) \oplus \ker df_p = T_p X$ or $T_p S(f) = \ker df_p$

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Withney theorem

Let X and Y be 2-dimensional manifolds and $f : X \rightarrow Y$ be generic. The set $S(f) = \{x \in X \mid \det df_x = 0\}$ is a regular curve. Let $p \in S(f)$, $f(p) = q$. One of the following two situations can occur:

$$T_p S(f) \oplus \ker df_p = T_p X \text{ or } T_p S(f) = \ker df_p$$

Normal forms

1. If $T_p S(f) \oplus \ker df_p = T_p X$, then there exists nbrds N_p and N_q such that

$$f|N_p \sim (x, y) \mapsto (x, y^2)$$

2. If $T_p S(f) = \ker df_p$, then there exists nbrds N_p and N_q such that

$$f|N_p \sim (x, y) \mapsto (x, xy + y^3)$$
Geometric representation

1. If $T_pS(f) \oplus \ker df_p = T_pX$,

 ![Diagram 1](null)

2. If $T_pS(f) = \ker df_p$,

 ![Diagram 2](null)
Let X be a compact simply connected domain of \mathbb{R}^2 with $\partial X = \Gamma^{-1} \{0\}$. A generic smooth map f from X to \mathbb{R}^2 has the following properties:

1. $S = \{ p \in X \mid \det df_p = 0 \}$ is regular curve. Moreover, elements of S are folds and cusp. The set of cusp is discrete.
3 singular points do not have the same image,

2 singular points having the same image are folds points and they have normal crossing.
Theorem

5. 3 boundary points do not have the same image,
6. 2 boundary points having the same image cross normally.
Theorem

7. 3 different points belonging to the union the singularity curve and boundary do not have the same image,

8. If a point on the singularity curve and a boundary have the same image, the singular point is a fold and they have normal crossing.
Theorem

9. if the singularity curve intersects the boundary, then this point is a fold,

10. moreover tangents to the singularity curve and boundary curve are different.
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Proposition

Let f be a smooth generic map from X to \mathbb{R}^2, let us denote by c the map defined by:

$$c : X \rightarrow \mathbb{R}^2$$

$$p \mapsto df_p \xi_p$$

where ξ is the vector field defined by $\xi_p = \begin{pmatrix} \partial_2 \det df_p \\ -\partial_1 \det df_p \end{pmatrix}$.

If $c(p) = 0$ and dc_p is invertible then p is a simple cusp. This sufficient condition is locally necessary.
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

Algorithm computing an invariant

Conjecture and conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

Interval Newton method

$$c : X \rightarrow \mathbb{R}^2$$
$$p \mapsto df_p \xi_p$$

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

Algorithm computing an invariant

Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
2 different folds

\[S^{\Delta^2} = \{(x_1, x_2) \in S \times S - \Delta(S) \mid f(x_1) = f(x_2)\} / \simeq \]

where \(\simeq \) is the relation defined by
\[(x_1, x_2) \simeq (x'_1, x'_2) \iff (x_1, x_2) = (x'_2, x'_1).\]

Method

Adaptive bisection scheme on \(X \times X.\)
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2

$[x_1] \neq [x_2]$

$[x_1] = [x_2]$
Let us define the map $folds$ by

$$folds : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^4$$

$$(x_1, y_1, x_2, y_2) \mapsto \left(\begin{array}{c} \det df(x_1, y_1) \\ \det df(x_2, y_2) \\ f_1(x_1, y_1) - f_1(x_2, y_2) \\ f_2(x_1, y_1) - f_2(x_2, y_2) \end{array}\right)$$

One has

$$S^{\Delta^2} = folds^{-1}(\{0\}) - \Delta S / \simeq .$$
For any \((\alpha, \alpha)\) in \(\Delta S\), the d folds is conjugate to
\[
\begin{pmatrix}
 a & b & 0 & 0 \\
 0 & 0 & a & b \\
 a_{11} & a_{12} & a_{11} & a_{12} \\
 a_{21} & a_{22} & a_{21} & a_{22}
\end{pmatrix}
\]
which is not invertible since \(\det\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) = \det df(\alpha) = 0\). In other words, as any box of the form \([x_1] \times [x_1]\) contains \(\Delta S\), the interval Newton method will fail.

One needs a method to prove that \(f|S \cap [x_1]\) is an embedding.
One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$[x_1] = [x_2]$
One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$[x_1] = [x_2]$
Corollary

Let $f : X \to \mathbb{R}^2$ be a smooth map and X a compact subset of \mathbb{R}^2. Let $\Gamma : X \to \mathbb{R}$ be a submersion such that the curve $S = \{ x \in X \mid \Gamma(x) = 0 \}$ is contractible. If

$$\forall J \in \tilde{df}(X) \cdot \begin{pmatrix} \partial_2 \Gamma(X) \\ -\partial_1 \Gamma(X) \end{pmatrix}, \text{rank } J = 1$$

then $f|S$ is an embedding.
The last condition is not satisfiable if \([x_1]\) contains a cusp . . .

Proposition

Suppose that there exists a unique simple cusp \(p_0\) in the interior of \(X\). Let \(\alpha \in \mathbb{R}^2^*\), s.t. \(\alpha \cdot \text{Im } df_{p_0} = 0\), and \(\xi\) a non vanishing vector field such that \(\forall p \in S, \xi_p \in T_p S\) (\(S\) contractible).

If \(g = \sum \alpha_i \xi^3 f_i : X \to \mathbb{R}\) is a nonvanishing function then \(f|S\) is injective. This condition is locally necessary.

Here the vector field \(\xi\) is seen as the derivation of \(C^\infty(X)\) defined by

\[\xi = \sum \xi_i \frac{\partial}{\partial x_i}.\]
Initialisation : $P \leftarrow \emptyset$, $P' \leftarrow \{X \times X\}$,

while $P' \neq \emptyset$ do

$[x_1] \times [x_2] \leftarrow s$ where $s \in P'$.

$P' \leftarrow P' - \{[x_1] \times [x_2]\}$.

if $[x_1] = [x_2]$ then

if $f|S \cap [x_1]$ is an embedding then

Print ($[x_1] \times [x_1]$) $\cap S^{\Delta 2} = \emptyset$

else

Divide $[x_1]$ into $[x_1^a]$ and $[x_1^b]$

$P' \leftarrow P' \cup \{[x_1^a] \times [x_1^a]\} \cup \{[x_1^a] \times [x_1^b]\} \cup \{[x_1^b] \times [x_1^a]\}$

end if

else

Divide $[x_1] \times [x_2]$ \leftarrow $[x_1^a] \times [x_2^a]$ $\cup \{[x_1^a] \times [x_2^b]\} \cup \{[x_1^b] \times [x_2^a]\} \cup \{[x_1^b] \times [x_2^b]\}$

end if

end if

end while
Initialisation : $P \leftarrow \emptyset$, $P' \leftarrow \{X \times X\}$,

while $P' \neq \emptyset$ do

$[x_1] \times [x_2] \leftarrow s$ where $s \in P'$.

$P' \leftarrow P' - \{[x_1] \times [x_2]\}$.

if $[x_1] = [x_2]$ then

if $f|S \cap [x_1]$ is an embedding then

Print $([x_1] \times [x_1]) \cap S^{\Delta_2} = \emptyset$

else

Divide $[x_1]$ into $[x_1]^a$ and $[x_1]^b$

$P' \leftarrow P' \cup \{[x_1]^a \times [x_1]^a\} \cup \{[x_1]^a \times [x_1]^b\} \cup \{[x_1]^b \times [x_1]^b\}$;

end if

else

Divide $[x_1]$ into $[x_1]^a$ and $[x_1]^b$

Divide $[x_2]$ into $[x_2]^a$ and $[x_2]^b$

$P' \leftarrow P' \cup \{[x_1]^a \times [x_2]^a\} \cup \{[x_1]^a \times [x_2]^b\} \cup \{[x_1]^b \times [x_2]^a\} \cup \{[x_1]^b \times [x_2]^b\}$;

end if

end if

end while
Initialisation: $P \leftarrow \emptyset$, $P' \leftarrow \{X \times X\}$,
while $P' \neq \emptyset$ do
 $[x_1] \times [x_2] \leftarrow s$ where $s \in P'$.
 $P' \leftarrow P' - \{[x_1] \times [x_2]\}$.
 if $[x_1] = [x_2]$ then
 if $f|S \cap [x_1]$ is an embedding then
 Print $([x_1] \times [x_1]) \cap S^{\Delta 2} = \emptyset$
 else
 Divide $[x_1]$ into $[x^a_1]$ and $[x^b_1]$
 $P' \leftarrow P' \cup \{[x^a_1] \times [x^a_1]\} \cup \{[x^a_1] \times [x^b_1]\} \cup \{[x^b_1] \times [x^a_1]\}$
 end if
 else
 Divide $[x_1]$ into $[x^a_1]$ and $[x^b_1]$
 $P' \leftarrow P' \cup \{[x^a_1] \times [x^a_1]\} \cup \{[x^a_1] \times [x^b_1]\} \cup \{[x^b_1] \times [x^b_1]\}$
 end if
end if
end while
Initialisation: \(P \leftarrow \emptyset, P' \leftarrow \{X \times X\}, \)

while \(P' \neq \emptyset \) do

\([x_1] \times [x_2] \leftarrow s \) where \(s \in P' \).

\(P' \leftarrow P' - \{[x_1] \times [x_2]\} \).

if \([x_1] = [x_2]\) then

if \(f|S \cap [x_1] \) is an embedding then

\[([x_1] \times [x_1]) \cap S^{\Delta^2} = \emptyset \]

else

Divide \([x_1]\) into \([x_1^a]\) and \([x_1^b]\)

\(P' \leftarrow P' \cup \{[x_1^a] \times [x_1^a]\} \cup \{[x_1^a] \times [x_1^b]\} \cup \{[x_1^b] \times [x_1]\} \)

end if

else

Divide \([x_2]\) into \([x_2^a]\) and \([x_2^b]\)

Divide \([x_1]\) into \([x_1^a]\) and \([x_1^b]\)

\(P' \leftarrow P' \cup \{[x_1^a] \times [x_2^a]\} \cup \{[x_1^a] \times [x_2^b]\} \cup \{[x_1^b] \times [x_2]\} \cup \{[x_1^b] \times [x_2^b]\} \)

end if

end if

end while

Nicolas Delanoue - Sébastien Lagrange

Classification of mappings from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \)
Initialisation : $P \leftarrow \emptyset, P' \leftarrow \{X \times X\}$,
while $P' \neq \emptyset$ do
 $[x_1] \times [x_2] \leftarrow s$ where $s \in P'$.
 $P' \leftarrow P' - \{[x_1] \times [x_2]\}$.
 if $[x_1] = [x_2]$ then
 if $f|S \cap [x_1]$ is an embedding then
 Print $([x_1] \times [x_1]) \cap S^\Delta_2 = \emptyset$
 else
 Divide $[x_1]$ into $[x^a_1]$ and $[x^b_1]$
 $P' \leftarrow P' \cup \{[x^a_1] \times [x^a_1]\} \cup \{[x^b_1] \times [x^b_1]\}$
 end if
 else
 if Interval Newton algorithm with folds on $[x_1] \times [x_2]$ succeed then
 $P \leftarrow P \cup \{[x_1] \times [x_2]\}$
 else
 Divide $[x_1]$ into $[x^a_1]$ and $[x^b_1]$
 Divide $[x_2]$ into $[x^a_2]$ and $[x^b_2]$
 $P' \leftarrow P' \cup \{[x^a_1] \times [x^a_2]\} \cup \{[x^a_1] \times [x^b_2]\} \cup \{[x^b_1] \times [x^a_2]\} \cup \{[x^b_1] \times [x^b_2]\}$
 end if
 end if
end while

Nicolas Delanoue - Sébastien Lagrange
Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
\[\partial X^{\Delta^2} = \left\{ (x_1, x_2) \in \partial X \times \partial X - \Delta(\partial X) \mid f(x_1) = f(x_2) \right\} / \simeq \]
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Let us define the map \(\text{boundaries} \) by

\[
\text{boundaries} : \quad X \times X \quad \rightarrow \quad \mathbb{R}^4
\]

\[
\begin{pmatrix}
 x_1 \\
y_1
\end{pmatrix}, \quad \begin{pmatrix}
 x_2 \\
y_2
\end{pmatrix} \quad \mapsto \quad \begin{pmatrix}
 \Gamma(x_1, y_1) \\
 \Gamma(x_2, y_2) \\
f_1(x_1, y_1) - f_1(x_2, y_2) \\
f_2(x_1, y_1) - f_2(x_2, y_2)
\end{pmatrix}
\]

One has

\[
\partial X^{\Delta^2} = \text{boundaries}^{-1}(\{0\}) - \Delta \partial X / \simeq.
\]
\[BF = \{ (x_1, x_2) \in \partial X \times S \mid f(x_1) = f(x_2) \} \]
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant

Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Stable mappings and their singularities

Interval analysis and mappings from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \).

Algorithm computing an invariant

Conjecture and conclusion

\[
\begin{align*}
\text{Cusp} & \\
\text{Fold} - \text{Fold} & \\
\text{Boundary} - \text{Boundary} & \\
\text{Boundary} - \text{Fold} & \\
\end{align*}
\]
Lemma

Let $\alpha : t \mapsto (\alpha_1(t), \alpha_2(t))$ and $\beta : t \mapsto (\beta_1(t), \beta_2(t))$ be two smooth curves such that

$$\forall t, \begin{cases} \dot{\alpha}_1 > 0 \\ \dot{\beta}_1 > 0 \end{cases}$$ (4)

$$\exists t_\alpha \exists t_\beta \left\{ \begin{array}{c} \alpha(t_\alpha) = \beta(t_\beta) \\ \frac{\dot{\alpha}_2}{\dot{\alpha}_1}(t_\alpha) = \frac{\dot{\beta}_2}{\dot{\beta}_1}(t_\beta) \end{array} \right. $$ (5)

$$\forall t_1, t_2, \frac{\ddot{\alpha}_2 \dot{\alpha}_1 - \dot{\alpha}_2 \dddot{\alpha}_1}{\dot{\alpha}_1^3} > \frac{\ddot{\beta}_2 \dot{\beta}_1 - \dot{\beta}_2 \dddot{\beta}_1}{\dot{\beta}_1^3} $$ (6)

Then $\alpha(t_1) = \beta(t_2)$ implies $t_1 = t_\alpha$ and $t_2 = t_\beta$.
Definition

Let f be a smooth map from a compact simply connected domain X of \mathbb{R}^2 to \mathbb{R}^2. Let us denote by X_0 the subset of X defined by

$$X_0 = \begin{cases}
 x \in X & | \begin{array}{ll}
 x \text{ is a cusp} & \\
 \text{or } & \exists y, (x, y) \in S^{\Delta^2} \\\n \text{or } & \exists y, (x, y) \in \partial X^{\Delta^2} \\\n \text{or } & \exists y, (x, y) \in BF \\\n \text{or } & \exists y, (y, x) \in BF
\end{array}
\end{cases}$$
Robots - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction

Stable mappings and their singularities

Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.

Algorithm computing an invariant

Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \).
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \)
Theorem

Let \(P = \{p_i\}_{1 \leq i \leq n} \) be a paving such that

i) \(S \cup \partial X \subset \bigcup_i p_i \),

ii) \(\forall (p_i, p_j), p_i \cap p_j \neq \emptyset \Rightarrow (S \cup \partial X) \cap p_i \cap p_j \) is simply connected,

iii) \(\forall p_i, X \cap p_i \) contains at most one element of \(X_0 \),

Let \(\mathcal{X} \) be the relation on \(\{p_i\}_{1 \leq i \leq n} \) defined by

\[
 p \mathcal{X} q \iff (S \cup \partial X) \cap p \cap q \text{ is simply connected.}
\]

Let us define an equivalence relation \(f \) on \(\{p_i\} \) by

\[
 pfq \iff f(X_0 \cap p) = f(X_0 \cap q) \text{ and } X_0 \cap p \neq \emptyset,
\]

then \(\mathcal{X}/f \) is homeomorphic to the Apparent contour of \(f \).
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant
Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2
Theorem

Let f be a smooth map from a compact simply connected domain X of \mathbb{R}^2 to \mathbb{R}^2. For every portrait F of f, the 1-skeleton of ImF contains a subgraph that is an expansion of G_f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Conjecture

From G_f and its right embedding in \mathbb{R}^2 it is possible to create a portrait for f.
Robotics - Introduction
Stable mappings and their singularities
Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2.
Algorithm computing an invariant

Conjecture and conclusion

Tack för din uppmärksamhet!