Classification of mappings from R? to R?

Nicolas Delanoue - Sébastien Lagrange

IPA 2012 - Intervals Pavings and Applications - Uppsala
http://www.math.uu.se/ipa2012/

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2


http://www.math.uu.se/ipa2012/

Outline

@ Robotics - Introduction
@ Motion planning
@ Discretization - Portrait of a map

@ Stable mappings and their singularities
@ Stable maps
@ (Genericity and Thom transversality theorem)
@ Withney theorem
@ Compact simply connected with boundary

© Interval analysis and mappings from R? to R.
@ Algorithm computing an invariant

© Conjecture and conclusion

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2



Robotics - Introduction

Geometric model

Motion planning

] lence

Discretization - Portrait of a map




Robotics - Introduction

Geometric model
Motion planning

Equivalence
Discretization - Portrait of a map

e JoN

End effector

Nicolas Del ien Lagrange Classification of



Robotics - Introduction Geometric model

Motion planning

Equivalence
Discretization - Portrait of a map

Position of the end effector depends on « and 3

f X — R?
o = 2cos(a) + cos(a + )
B 2sin(B) + sin(a + )
B
1 =
—T % T
Configuration space Working space
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Given a path § for the end-effector in the working space, find a
curve 7y in the configuration space such that

foy=4
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Robotics - Introduction

Geometric model

Motion planning

Equivalence

Discretization - Portrait of a map

Global picture

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.

Equivalence

Let £ and f’ be two smooth maps. Then f ~ f’ if there exists
diffeomorphisms g : X — X’ and h: Y’ — Y such that the

diagram
X 15y
=
x sy
commutes.
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Examples
Q fi(x)=2x+1, H(x)=—x+2,

fi~

Q fi(x)=x% fh(x)=ax>+bx+c,a#0
f~f

Q A(x)=x2+1, h(x) =x+1,

i
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Definition - Abstract simplicial complex

Let NV be a finite set of symbols {(a%), (a%),...,(a")}

An abstract simplicial complex K is a subset of the powerset of N’
satisfying : 0 € K = VYoo C 0,00 € K
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Example

K = {(&).(a"), (4%, (2%, (",
(&°, at), (at, a%), (%, a
(a%at,a%)}

This will be denoted by a%a‘a® + a3a*

N
~—
—
5]
w
[\5)
>
~—
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Geometric model
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Definition - Simplicial map

Given abstract simplicial complexes C and L, a simplicial map
F: K% — £% is a map with the following property :

If (a% at,...,a") is an element of K then F(a°), F(al),..., F(a")
span a simplex of L.
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Example - Simplicial map

K = agay + a1ap + apaz, L = bgb1 + bibo

al 112
F A =B
al — bl
a2 = b?
a® — bl
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Example - NOT a Simplicial map

K = agay + a1ap + apaz, L = bgb1 + bibo

al llz
F A =B
al — bl
a2 = b?
ad — K
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Example - Simplicial map

K = agaiar + aiaraz, L = bgbib;

\ b[)
] b2
bl
F % — B
al — bl
a2 — b?
a® = b
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Definition - Topologically conjugate

Let f and f’ be continous maps. Then f and f’ are topologically
conjugate if there exists homeomorphism g : X — X’ and
h:Y — Y’ such that the diagram

X 5y

= T
X — Y

commutes.

Proposition

fr = f g f!
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Definition - Portrait

Let f be a smooth map and F a simplicial map, F is a portrait of
fif
f~oF
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Robotics - Introduction

Example - Simplicial map

The simplicial map

is a portrait of [—4,3] > x + x?

Geometric model

Motion planning

Equivalence

Discretization - Portrait of a map

B0~

b2

—-1eR
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Introduction
Stable mappings and their singularities Stable maps
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Suppose that f ~ f’ with

f
X1 — N
= Tn
f‘/
X2 —— )2

then f~1({y1}) is homeomorphic to f'~1({y2}).
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Proposition
For every closed subset A of R”, there exists a smooth real valued

function f such that
A=f({0})
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Proposition
For every closed subset A of R”, there exists a smooth real valued

function f such that
A=f({0})

We are not going to consider all cases ... J
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Definition - Stable mapping
Let f be a smooth map, f is stable if their exists a nbrd Nf such
that

Vf' € Ny, f' ~ f

Examples

| A

@ g : x> x° is stable,
@ fy: x — x° is not stable, since with £ : x = x(x? — ¢),

e£0=f o fo.
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Introduction

Stable mappings and their singularities Stable maps

(Genericity and Thom transversality theorem)
Withney theorem

Compact simply connected with boundary

Suppose that f ~ f’ with

then rank df,, = rank df],

X1

f
X1 — N
e T
f‘/
Xp — W
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Inverse function theorem

For a differentiable map f : X — Y with dim X =dim Y = n, if
the rankd f, = n then there exists an open nbhd U, of p such that

FIU, = Uy — F(Up)

is a diffeomorphism.
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For a differentiable map f : X — Y with dim X =dim Y = n, if
the rankd f, = n then there exists an open nbhd U, of p such that

FIU, = Uy — F(Up)

is a diffeomorphism.

Globalisation

Does Vp € X, rankdf, = nimply that f : X — Y is a
diffeomorphism ?
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Compact simply connected with boundary

Definition - Differential

Ohf(x) ... Onfi(x)

81f;(x) 8,,f,;(x)

Definition - df(X)

on(eY) ... 0,A(€)
df(X) = : : €L, P e X
Onfp(EP) .. Onfp(€P)

Remark

df(X) C df(X) C natural extension of df with X.
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Stable mappings and their singularities

Introduction

Stable maps

(Genericity and Thom transversality theorem)
Withney theorem

Compact simply connected with boundary

Let X be a convex compact subset of R",
f: X —>~]Rp a smooth mapping with n < p.
IfVJ € df(X), rankJ = n then f is an embedding.
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Let X be a convex compact subset of R",
f: X —>~]Rp a smooth mapping with n < p.
IfVJ € df(X), rankJ = n then f is an embedding.

In other words, f ~ i where i : (x1,...,Xp) — (X1,...,Xn,0,... ,O).J
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Let X be a convex compact subset of R",
f: X —>NRP a smooth mapping with n < p.
IfVJ € df(X), rank J = n then f is an embedding.

In other words, f ~ i where i : (x1,...,Xp) — (X1,...,Xn,0,... ,O).J

In other words, | is portrait of f, where / is the abstract simplicial
identity map.

b2
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Transversality - Definition
Two submanifolds of M, L; and L, are said to intersect
transversally if

Vpe Linly,, ToM =Tyl +TplLo.

One denotes this by L M Ly

a. Catastrophes et bifurcations - Michel Demazure

Nicolas Delanoue - Sébastien Lagrange ication of mappings from R? to R2




Introduction
Stable mappings and their singularities Stable maps
(Genericity and Thom transversality theorem)
Withney theorem
Compact simply connected with boundary

Transversality - Definition

Let £ : X — Y be a smooth map between manifolds, and let Z be
a submanifold of Y. We say that f is transversal to Z, denoted as
fmZz, if

x € FH(Z)= d T X + TepyZ = Trp Y
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Proposition

Let k be the codimension of Z in Y.

If £ h Z, then f=1(Z) is a regular submanifold (possibly empty) of
X of codimension k.
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Stable mappings and their singularities

Thom transversality Theorem
Let Z be submanifold of Y,

{f €C(X,Y)|fmh Z} is residual.

In this case, one says that f is generic.

Classification of mappings from R? to
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Thom transversality Theorem
Let Z be submanifold of Y,

{f €C(X,Y)|fmh Z} is residual.

In this case, one says that f is generic.

| \

Example

Generically, for a smooth map from f : R” — R”, one has f h {0}.
Therefore {x € X | f(x) = 0} is a 0-dimensional manifold.
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Stable mappings and their singularities

Thom transversality Theorem
Let Z be submanifold of J'(X, Y),

{f €C®(X,Y)|jfMmZ} is residual.

In this case, one says that f is generic.

For a generic smooth map from f : R — R, one has
jYf m{y =0,p = 0}. Therefore

x| f(x)=0Af'(x)=0}=0

Classification of mappings from R? to R2
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Withney theorem

Let X and Y be 2-dimentional manifolds and f : X — Y be
generic. The set S(f) = {x € X | detdf, = 0} is a regular curve.
Let p € S(f), f(p) = g. One of the following two situations can
occur :

T,S(f) @ ker df, = T,X or T,S(f) = ker df,

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R? to R2
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Withney theorem

Let X and Y be 2-dimentional manifolds and f : X — Y be
generic. The set S(f) = {x € X | detdf, = 0} is a regular curve.
Let p € S(f), f(p) = g. One of the following two situations can
occur :

T,S(f) @ ker df, = T,X or T,S(f) = ker df,

Normal forms

Q if T,5(f) @ kerdf, = T, X, then there exits nbrds N, and Ny
such that

f‘NPN (Xay) = (Xay2)

Q if T,S(f) = ker df,, then there exists nbrds N, and N such
that

FINy ~ (x,y) = (x,xy + y°)
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Stable mappings and their singularities

metric representat

Introduction

Stable maps

(Genericity and Thom transversality theorem)
Withney theorem

Compact simply connected with boundary

Q if T,S(f) @ kerdf, = T,X,

o

@ if T,S(f) = ker df,,

liil
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Stable mappings and their singularities Stable maps
(Genericity and Thom transversality theorem)
Withney theorem
Compact simply connected with boundary

Theorem (Properties of generic maps)

Let X be a compact simply connected domain of R? with
OX = T~1({0}). A generic smooth map f from X to R? has the
following properties :

Q@ S = {p € X|detdf, =0} is regular curve. Moreover, elements
of S are folds and cusp. The set of cusp is discrete.
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Introduction
Stable mappings and their singularities Stable maps
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Theorem
© 3 singular points do not have the same image,

Q 2 singular points having the same image are folds points and
they have normal crossing.

[
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Stable mappings and their singularities Stable maps
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Compact simply connected with boundary

Theorem
© 3 boundary points do not have the same image,

@ 2 boundary points having the same image cross normally.
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Stable mappings and their singularities Stable maps
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Theorem

@ 3 different points belonging to the union the singularity curve
and boundary do not have the same image,

© If a point on the singularity curve and a boundary have the
same image, the singular point is a fold and they have normal
crossing.
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Stable mappings and their singularities Stable maps
(Genericity and Thom transversality theorem)
Withney theorem
Compact simply connected with boundary

Theorem
© if the singularity curve intersects the boundary, then this point
is a fold,

@ moreover tangents to the singularity curve and boundary
curve are different.
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Cusp
Fold - Fold

Boundary - Boundary
Boundary - Fold

=
h
+
el
!

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from 22 to R




Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

Proposition

Let f be a smooth generic map from X to R?, let us denote by ¢
the map defined by :

: 2
c )/: : dlff (1)
PSP
0> det df,
—01 det df, ) '
If ¢(p) =0 and dc, is invertible then p is a simple cusp. This
sufficient condition is locally necessary.

where ¢ is the vector field defined by &, = <
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Interval analysis and mappings from R ) = [l

Boundary - Boundary
Boundary - Fold
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Cusp

Fold - Fold
Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

. . 2
Interval analysis and mappings from R

N

2={(xa,x) € SxS—A(S) | f(xa) = f(x)}/ =~

where ~ is the relation defined by
(x1,%) = (x1,%5) & (x1,%) = (X3, 1)

Adaptive bisection scheme on X x X.
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Interval analysis and mappings from R to

Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

[x1] # [x]
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Interval analysis and mappings from R? to R?.

Let us define the map folds by

folds : X x X —

(n)-(2) =

Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

R4
det df (x1, y1)
det df(Xg,yg)
fi(xi,y1) — filx2, y2)
f(x1,y1) — 2(x2, y2)

One has

S22 — folds—1({0}) — AS/ ~ .

Nicolas Delanoue - Sébastien Lagrange
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Cusp
Fold - Fold
- Boundary

Interval analysis and mappings from R? to R?.

For any («, ) in AS, the d folds is conjugate to

a b 0 0
0 0 a b
a1 412 411 A
a1 a2 ax ax

which is not invertible since det

a1 ax
other words, as any box of the form [x1] x [x1] contains AS, the
interval Newton method will fail.

A ) = det df(@) = 0. In

One needs a method to prove that f|S N [x1] is an embedding. J
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

One needs a method to prove that 7|S N [x;] is an embedding. J

RN

[x1] = [x]
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Cusp

Interval analysis and mappings from R el = (el

Boundary - Boundary
Boundary - Fold

One needs a method to prove that 7|S N [x;] is an embedding. J

RN

[x1] = [x]

Not in this case ...
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

Corollary

Let f : X — R? be a smooth map and X a compact subset of R2.
Let [ : X — R be a submersion such that the curve
S ={x € X |I(x) =0} is contractible. If

0al'(X)

VJ € df(X) - ( R (X)

),rankJ:l

then f|S is an embedding.
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

The last condition is not satisfiable if [x;] contains a cusp ...

Proposition

Suppose that there exists a unique simple cusp pg in the interior of
X. Let « € R%*, st. - Im dfp, = 0, and & a non vanashing vector
field such that Vp € S,§, € T,S (S contractible).

If g = «;€3f; : X — R is a nonvanishing function then f|S is
injective. This condition is locally necessary.

Here the vector field £ is seen as the derivation of C°°(X) defined

by 5
§= 25’87,
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Cusp

Interval analysis and mappings from R to ) = [l

Boundary - Boundary
Boundary - Fold

Initialisation : P < @, P’ + {X x X},
while P’ # 0 do
[x1] X [x] s where s € P’.
P’ P7 — {bal x bel}.
if [x;] = [x] then
if f|S N [x1] is an embedding then

Print ([x1] X [x1]) N S22 = 0

else
Divide [x1] into [x{] and [xf]
ARG RS R R O SR U
end I
else
if Interval Newton algorithm with folds on [x1] X [x2] succeed then
P PU{Pa] x [x]}
else
Divide [x1] into [x?] and [x?]
Divide [x] into [x3] and [xzb]
P PPUABT X BRI O {0 X BT U bt x bEIY L {0 0813
end ¥
end if
end while

Nicolas Delanoue - Sébastien Lagrange



Cusp

Interval analysis and mappings from R to ) = [l

Boundary - Boundary
Boundary - Fold

Initialisation : P < @, P’ + {X x X},
while P’ # 0 do
[x1] X [x] s where s € P’.
P’ P — {pa] x bel}.
if [x;] = [x] then
if ]S M [x1] is an embedding then

Print ([x1] x [x1]) N S22 = ¢

else
Divide [x1] into [x{] and [xf]
ARG RS R R O SR U
end I
else
if Interval Newton algorithm with folds on [x1] X [x2] succeed then
P PU{Pa] x [x]}
else
Divide [x] into [x?] and [x?]
Divide [x;] into [x3] and [xzb]
7 PPUABET X BRI U B X T U Abd] < bEIY L {0 0813
end ¥
end if
end while
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Cusp

Interval analysis and mappings from R to ) = [l

Boundary - Boundary
Boundary - Fold

Initialisation : P < @, P’ + {X x X},
while P’ # 0 do
[x1] X [x] s where s € P’.
P’ PT — {bal x bel}.
if [x;] = [x] then
if f|S N [x1] is an embedding then

Print ([x1] X [x1]) N S22 = 0

else
Divide [x1] into [x{] and [xf]
P! = PP U] x D413 U {1 x BT} U I X X1}
end if
else
if Interval Newton algorithm with folds on [x1] X [x2] succeed then
P+ Pu{bal x Pel}
else
Divide [x1] into [x?] and [x?]
Divide [x] into [x3] and [xzb]
P PPUABT X BRI O {0 X BT U bt x bEIY L {0 0813
end ¥
end if
end while
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Cusp

Interval analysis and mappings from R to ) = [l

Boundary - Boundary
Boundary - Fold

Initialisation : P < @, P’ + {X x X},
while P’ # 0 do
[x1] X [x] s where s € P’.
P’ PT — {bal x bel}.
if [x;] = [x] then
if f|S N [x1] is an embedding then

Print ([x1] X [x1]) N S22 = 0

else
Divide [x1] into [x{] and [xf]
AR R R 1 U {B] < 1}
end I
else
if Interval Newton algorithm with folds on [x1] X [x2] succeed then
P« PU{[xq] x [x]}
else
Divide [x1] into [x?] and [x?]
Divide [x] into [x3] and [xzb]
AR L DR D1} U D] x D81} U {Ix] x D51} 5
end ¥
end if
end while
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Cusp

Interval analysis and mappings from R to ) = [l

Boundary - Boundary
Boundary - Fold

Initialisation : P < @, P’ + {X x X},
while P’ # 0 do
[x1] X [x] s where s € P’.
P’ PT — {bal x bel}.
if [x;] = [x] then
if f|S N [x1] is an embedding then

Print ([x1] X [x1]) N S22 = 0

else
Divide [x1] into [x{] and [xf]
P PRO AR B O A1 < BT U (] < b))
end I
else
if Interval Newton algorithm with folds on [x1] X [x2] succeed then
P+ Pu{bal x Pel}
else
Divide [x1] into [x?] and [x?]
Divide [x] into [x3] and [xzb]
B PPUAR X DI O () BE13 U {B9] x D813 U {7] x 151} 5
end ¥
end if
end while
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

. . 2
Interval analysis and mappings from R

OXB2 = {(x1,x) € X x dX — A(9X) | f(x1) = f(x0)}/ ~

Nicolas Delanoue - Sébastien Lagrange ication of mappings from R



Cusp

Fold - Fold
Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

Let us define the map boundaries by

boundaries - X x X — R*
M(x1, 1

)
( ;i > ’ ( ;z ) 7o Ak yl()Xi)gE&,yz)

f(x1, y1) — h(x2, ¥2)

One has
X2 = boundaries 1({0}) — AOX/ ~ .
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Cusp

Interval analysis and mappings from R ) = [l

Boundary - Boundary
Boundary - Fold

BF = {(Xl,Xz) €oX xS | f(Xl) = f(XZ)} J
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from
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Cusp

Fold - Fold

Boundary - Boundary
Boundary - Fold

Interval analysis and mappings from R? to R?.

[xi] # D]

X x X — R*
det df(Xl, yl)

< X1 > ( X2 > e V(X2,Y2)
yvi )\ » fi(x1, y1) — fi(x2, y2)

fa(x1, y1) — f2(x2, y2)

X — R2
( X1 ) . < detdf(xl,yl) )
1 'Y(Xla}/l)
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Cusp
Fold - Fold

. . 2
Interval analysis and mappings from R

Boundary - Boundary
Boundary - Fold

Let o : t — (1(t),a2(t)) and B : t — (B1(t), 52(t)) be two
smooth curves such that
a > 0
. 4
2 (@
a(ta) = B(tg)
EltaEItg & . 5 (5)
{ () = ()
Vi, (v .—3012041 - B251 _—35251 (6)
a3 51
Then a(t1) = S(t2) implies t; = t, and t, = tg.
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Algorithm computing an invariant

Definition

Let f be a smooth map from a compact simply connected domain
X of R? to R?. Let us denote by Xp the subset of X defined by

X is a cusp
or 3y, (x,y) € SA?
Xo=<{xeX| or 3y, (x,y)coxr?
or dy,(x,y) € BF
or 3Jy,(y,x) € BF
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Algorithm computing an invariant

Theorem

Let P = {pi}1<i<n be a paving such that
i) SUoX C U;p;,
i) Y(pi,pj), piNp; # 0= (SUIX)Np; N pjis simply connected,

iii) Vpj, X N p; contains at most one element of Xp,
Let X' be the relation on {p;}1<i<, defined by

pXqg < (SUOX)NpNq is simply connected.
Let us define an equivalence relation f on {p;} by
pfqg < f(XoNp) = F(XoNgq) and Xo N p # 0,

then X' /f is homeomorphic to the Apparent contour of f.
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Algorithm computing an invariant




Algorithm computing an invariant

Let f be a smooth map from a compact simply connected domain
X of R? to R2. For every portrait F of f, the 1-skeleton of ImF
contains a subgraph that is an expansion of Grf.
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Conjecture and conclusion

Conjecture

From Gf and its right embedding in R? it is possible to create a
portrait for f.
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Conjecture and conclusion

Tack for din uppmarksamhet ! J
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