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IPA 2012 - Intervals Pavings and Applications - Uppsala
http://www.math.uu.se/ipa2012/
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Position of the end effector depends on α and β

f : X → R2(
α
β

)
7→

(
2 cos(α) + cos(α + β)
2 sin(β) + sin(α + β)

)2
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Given a path δ for the end-effector in the working space, find a
curve γ in the configuration space such that

f ◦ γ = δ
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Global picture

One wants a global “picture” of the map which does not depend
on a choice of system of coordinates neither on the configuration
space nor on the working space.

Equivalence

Let f and f ′ be two smooth maps. Then f ∼ f ′ if there exists
diffeomorphisms g : X → X ′ and h : Y ′ → Y such that the
diagram

X
f−−−−→ Yyg

xh

X ′
f ′−−−−→ Y ′

commutes.
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Examples

1 f1(x) = 2x + 1, f2(x) = −x + 2,

f1 ∼ f2

2 f1(x) = x2, f2(x) = ax2 + bx + c , a 6= 0

f1 ∼ f2

3 f1(x) = x2 + 1, f2(x) = x + 1,

f1 6∼ f2
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Definition - Abstract simplicial complex

Let N be a finite set of symbols {(a0), (a1), . . . , (an)}
An abstract simplicial complex K is a subset of the powerset of N
satisfying : σ ∈ K ⇒ ∀σ0 ⊂ σ, σ0 ∈ K
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Example

K =
{

(a0), (a1), (a2), (a3), (a4),

(a0, a1), (a1, a2), (a0, a2), (a3, a4),

(a0, a1, a2)
}

This will be denoted by a0a1a2 + a3a4

Figure: A realisation of K.
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Definition - Simplicial map

Given abstract simplicial complexes K and L, a simplicial map
F : K0 → L0 is a map with the following property :
If (a0, a1, . . . , an) is an element of K then F (a0),F (a1), . . . ,F (an)
span a simplex of L.
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Example - Simplicial map

K = a0a1 + a1a2 + a2a3, L = b0b1 + b1b2

b
bb

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b1
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Example - NOT a Simplicial map

K = a0a1 + a1a2 + a2a3, L = b0b1 + b1b2

b
bb

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b0
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Example - Simplicial map

K = a0a1a2 + a1a2a3, L = b0b1b2

b

b

b

F : a0 7→ b0

a1 7→ b1

a2 7→ b2

a3 7→ b0
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Definition - Topologically conjugate

Let f and f ′ be continous maps. Then f and f ′ are topologically
conjugate if there exists homeomorphism g : X → X ′ and
h : Y → Y ′ such that the diagram

X
f−−−−→ Yyg

xh

X ′
f ′−−−−→ Y ′

commutes.

Proposition

f ∼ f ′ ⇒ f ∼0 f ′
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Definition - Portrait

Let f be a smooth map and F a simplicial map, F is a portrait of
f if

f ∼0 F
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Example - Simplicial map

The simplicial map

b
bb

is a portrait of [−4, 3] 3 x 7→ x2 − 1 ∈ R-4 -3 -2 -1 1 2 3
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Proposition

Suppose that f ∼ f ′ with

x1
f−−−−→ y1yg

xh

x2
f ′−−−−→ y2

then f −1({y1}) is homeomorphic to f ′−1({y2}).
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Proposition

For every closed subset A of Rn, there exists a smooth real valued
function f such that

A = f −1({0})

We are not going to consider all cases . . .
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Definition - Stable mapping

Let f be a smooth map, f is stable if their exists a nbrd Nf such
that

∀f ′ ∈ Nf , f
′ ∼ f

Examples

1 g : x 7→ x2 is stable,

2 f0 : x 7→ x3 is not stable, since with fε : x 7→ x(x2 − ε),

ε 6= 0⇒ fε 6∼ f0.
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Proposition

Suppose that f ∼ f ′ with

x1
f−−−−→ y1yg

xh

x2
f ′−−−−→ y2

then rank dfx1 = rank df ′x2
,
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Inverse function theorem

For a differentiable map f : X → Y with dim X = dim Y = n, if
the rank d fp = n then there exists an open nbhd Up of p such that

f |Up : Up → f (Up)

is a diffeomorphism.

Globalisation

Does ∀p ∈ X , rank d fp = n imply that f : X → Y is a
diffeomorphism ?
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Definition - Differential

df (x) =

 ∂1f1(x) . . . ∂nf1(x)
...

. . .
...

∂1fp(x) . . . ∂nfp(x)


Definition - d̃ f (X )

d̃ f (X ) =


 ∂1f1(ξ1) . . . ∂nf1(ξ1)

...
. . .

...
∂1fp(ξp) . . . ∂nfp(ξp)

 |ξ1, . . . , ξp ∈ X


Remark

df (X ) ⊂ d̃ f (X ) ⊂ natural extension of df with X .
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Lemma

Let X be a convex compact subset of Rn,
f : X → Rp a smooth mapping with n ≤ p.
If ∀J ∈ d̃ f (X ), rank J = n then f is an embedding.

In other words, f ∼ i where i : (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

In other words, I is portrait of f , where I is the abstract simplicial
identity map.

b

b

b
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Transversality - Definition

Two submanifolds of M, L1 and L2 are said to intersect
transversally if

∀p ∈ L1 ∩ L2,TpM = TpL1 + TpL2.

One denotes this by L1 t L2

a

a. Catastrophes et bifurcations - Michel Demazure
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Transversality - Definition

Let f : X → Y be a smooth map between manifolds, and let Z be
a submanifold of Y . We say that f is transversal to Z , denoted as
f t Z , if

x ∈ f −1 (Z )⇒ dfxTxX + Tf (x)Z = Tf (x)Y
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Proposition

Let k be the codimension of Z in Y .
If f t Z , then f −1 (Z ) is a regular submanifold (possibly empty) of
X of codimension k.
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Thom transversality Theorem

Let Z be submanifold of Y ,

{f ∈ C∞(X ,Y ) | f t Z} is residual.

In this case, one says that f is generic.

Example

Generically, for a smooth map from f : Rn → Rn, one has f t {0}.
Therefore {x ∈ X | f (x) = 0} is a 0-dimensional manifold.
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Thom transversality Theorem

Let Z be submanifold of J r (X ,Y ),

{f ∈ C∞(X ,Y ) | j r f t Z} is residual.

In this case, one says that f is generic.

Example

For a generic smooth map from f : R→ R, one has
j1f t {y = 0, p = 0}. Therefore

{x | f (x) = 0 ∧ f ′(x) = 0} = ∅
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Withney theorem

Let X and Y be 2-dimentional manifolds and f : X → Y be
generic. The set S(f ) = {x ∈ X | det dfx = 0} is a regular curve.
Let p ∈ S(f ), f (p) = q. One of the following two situations can
occur :
TpS(f )⊕ ker dfp = TpX or TpS(f ) = ker dfp

Normal forms

1 if TpS(f )⊕ ker dfp = TpX , then there exits nbrds Np and Nq

such that
f |Np ∼ (x , y) 7→ (x , y 2)

2 if TpS(f ) = ker dfp, then there exists nbrds Np and Nq such
that

f |Np ∼ (x , y) 7→ (x , xy + y 3)
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Geometric representation

1 if TpS(f )⊕ ker dfp = TpX ,

2 if TpS(f ) = ker dfp,
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Theorem (Properties of generic maps)

Let X be a compact simply connected domain of R2 with
∂X = Γ−1({0}). A generic smooth map f from X to R2 has the
following properties :

1 S = {p ∈ X | det dfp = 0} is regular curve. Moreover, elements
of S are folds and cusp. The set of cusp is discrete.
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Theorem

3 3 singular points do not have the same image,

4 2 singular points having the same image are folds points and
they have normal crossing.
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Theorem

5 3 boundary points do not have the same image,

6 2 boundary points having the same image cross normally.
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Theorem

7 3 different points belonging to the union the singularity curve
and boundary do not have the same image,

8 If a point on the singularity curve and a boundary have the
same image, the singular point is a fold and they have normal
crossing.
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Theorem

9 if the singularity curve intersects the boundary, then this point
is a fold,

10 moreover tangents to the singularity curve and boundary
curve are different.
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Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold
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Proposition

Let f be a smooth generic map from X to R2, let us denote by c
the map defined by :

c : X → R2

p 7→ dfpξp
(1)

where ξ is the vector field defined by ξp =

(
∂2 det dfp
−∂1 det dfp

)
.

If c(p) = 0 and dcp is invertible then p is a simple cusp. This
sufficient condition is locally necessary.
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Interval Newton method

c : X → R2

p 7→ dfpξp
(2)
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2 different folds

S∆2 = {(x1, x2) ∈ S × S −∆(S) | f (x1) = f (x2)}/ '

where ' is the relation defined by
(x1, x2) ' (x ′1, x

′
2)⇔ (x1, x2) = (x ′2, x

′
1).

Method

Adaptive bisection scheme on X × X .
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[x1] 6= [x2]

[x1] = [x2]
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Let us define the map folds by

folds : X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


det df (x1, y1)
det df (x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


One has

S∆2 = folds−1({0})−∆S/ ' .
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For any (α, α) in ∆S , the d folds is conjugate to
a b 0 0
0 0 a b

a11 a12 a11 a12

a21 a22 a21 a22


which is not invertible since det

(
a11 a12

a21 a22

)
= det df (α) = 0. In

other words, as any box of the form [x1]× [x1] contains ∆S , the
interval Newton method will fail.

One needs a method to prove that f |S ∩ [x1] is an embedding.
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One needs a method to prove that f |S ∩ [x1] is an embedding.

[x1] = [x2]

Not in this case ...
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Corollary

Let f : X → R2 be a smooth map and X a compact subset of R2.
Let Γ : X → R be a submersion such that the curve
S = {x ∈ X | Γ(x) = 0} is contractible. If

∀J ∈ d̃ f (X ) ·
(

∂2Γ(X )
−∂1Γ(X )

)
, rank J = 1

then f |S is an embedding.
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The last condition is not satisfiable if [x1] contains a cusp . . .

Proposition

Suppose that there exists a unique simple cusp p0 in the interior of
X . Let α ∈ R2∗, s.t. α · Im dfp0 = 0, and ξ a non vanashing vector
field such that ∀p ∈ S , ξp ∈ TpS (S contractible).
If g =

∑
αiξ

3fi : X → R is a nonvanishing function then f |S is
injective. This condition is locally necessary.

Here the vector field ξ is seen as the derivation of C∞(X ) defined
by

ξ =
∑

ξi
∂

∂xi
.
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Initialisation : P ← ∅, P′ ← {X × X},
while P′ 6= ∅ do

[x1]× [x2]← s where s ∈ P′.
P′ ← P′ − {[x1]× [x2]}.
if [x1] = [x2] then

if f |S ∩ [x1] is an embedding then

Print ([x1]× [x1]) ∩ S∆2 = ∅

else
Divide [x1] into [xa1 ] and [xb1 ]

P′ ← P′ ∪ {[xa1 ]× [xa1 ]} ∪ {[xa1 ]× [xb1 ]} ∪ {[xb1 ]× [xb1 ]} ;
end if

else
if Interval Newton algorithm with folds on [x1]× [x2] succeed then

P ← P ∪ {[x1]× [x2]}
else

Divide [x1] into [xa1 ] and [xb1 ]

Divide [x2] into [xa2 ] and [xb2 ]

P′ ← P′ ∪ {[xa1 ]× [xa2 ]} ∪ {[xa1 ]× [xb2 ]} ∪ {[xb1 ]× [xa2 ]} ∪ {[xb1 ]× [xb2 ]} ;
end if

end if
end while
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∂X ∆2 = {(x1, x2) ∈ ∂X × ∂X −∆(∂X ) | f (x1) = f (x2)}/ '
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Let us define the map boundaries by

boundaries : X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


Γ(x1, y1)
Γ(x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


One has

∂X ∆2 = boundaries−1({0})−∆∂X/ ' .
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BF = {(x1, x2) ∈ ∂X × S | f (x1) = f (x2)}

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Robotics - Introduction
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

[x1] 6= [x2]

[x1] = [x2]
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[x1] 6= [x2]

X × X → R4

(
x1

y1

)
,

(
x2

y2

)
7→


det df (x1, y1)
γ(x2, y2)

f1(x1, y1)− f1(x2, y2)
f2(x1, y1)− f2(x2, y2)


[x1] = [x2]

X → R2(
x1

y1

)
7→

(
det df (x1, y1)
γ(x1, y1)

)

Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Robotics - Introduction
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion

Cusp
Fold - Fold
Boundary - Boundary
Boundary - Fold

Lemma

Let α : t 7→ (α1(t), α2(t)) and β : t 7→ (β1(t), β2(t)) be two
smooth curves such that

∀t,

{
α̇1 > 0

β̇1 > 0
(4)

∃tα∃tβ

{
α(tα) = β(tβ)
α̇2
α̇1

(tα) = β̇2

β̇1
(tβ)

(5)

∀t1∀t2,
α̈2α̇1 − α̇2α̈1

α̇3
1

>
β̈2β̇1 − β̇2β̈1

β̇3
1

(6)

Then α(t1) = β(t2) implies t1 = tα and t2 = tβ.
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Definition

Let f be a smooth map from a compact simply connected domain
X of R2 to R2. Let us denote by X0 the subset of X defined by

X0 =

x ∈ X |

x is a cusp
or ∃y , (x , y) ∈ S∆2

or ∃y , (x , y) ∈ ∂X ∆2

or ∃y , (x , y) ∈ BF
or ∃y , (y , x) ∈ BF
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Theorem

Let P = {pi}1≤i≤n be a paving such that

i) S ∪ ∂X ⊂ ∪ipi ,

ii) ∀(pi , pj), pi ∩ pj 6= ∅ ⇒ (S ∪ ∂X )∩ pi ∩ pj is simply connected,

iii) ∀pi ,X ∩ pi contains at most one element of X0,

Let X be the relation on {pi}1≤i≤n defined by

pXq ⇔ (S ∪ ∂X ) ∩ p ∩ q is simply connected.

Let us define an equivalence relation f on {pi} by

pfq ⇔ f (X0 ∩ p) = f (X0 ∩ q) and X0 ∩ p 6= ∅,

then X/f is homeomorphic to the Apparent contour of f .
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Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Robotics - Introduction
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion
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Nicolas Delanoue - Sébastien Lagrange Classification of mappings from R2 to R2



Robotics - Introduction
Stable mappings and their singularities

Interval analysis and mappings from R2 to R2.
Algorithm computing an invariant

Conjecture and conclusion
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Theorem

Let f be a smooth map from a compact simply connected domain
X of R2 to R2. For every portrait F of f , the 1-skeleton of ImF
contains a subgraph that is an expansion of Gf .
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Conjecture

From Gf and its right embedding in R2 it is possible to create a
portrait for f .
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Tack för din uppmärksamhet !
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